1. Field of the Invention
The present invention relates to the field of tools or devices that drive inter-changeable bits, and more specifically, the present invention relates to devices that impart simultaneous rotational motion to a driving bit along more than one rotational axis.
2. Background of the Invention
Flexible extension shafts are used in providing rotational force or movement to bits and to drive fasteners, and are used in hand-tool applications as are well known in the art. Known long flexible extension shafts can bend from 0 degrees to typically 45-90 degrees from their longitudinal axis. If long enough, the shaft can bend to 180 degrees. However, such long extension shafts are somewhat unwieldy, particularly in tight quarters. In close situations where an extension shaft is needed, and particularly at sharp angles (i.e., at greater than 90 degrees), neither a long extension shaft nor a typical extension shaft will work.
U.S. Pat. No. 4,876,929, awarded to the instant inventors, and owned by the instant Assignee (the '929 patent) incorporated herein by reference in its entirety, discloses a flexible rotation shaft that imparts rotary torque to a bit. The device disclosed in the '929 patent provides rotational torque over a wide range of bending angles of the shaft, such that the shaft axis bends as much as 90 degrees without degradation in rotational force. State of the art devices provide one axis of rotation, but generally do not allow for bit/fastener rotation at sharp angles.
A need exists for a device that provides the extension capabilities of state of the art extension shafts, but having greater acute angle capabilities. The device should be operable in confining spaces. Furthermore, the device should be able to impart rotational torque at greater than 90 degrees (up to approximately 180 degrees) relative to the oppositely extending end of the device.
Further limitations and disadvantages of conventional and traditional approaches will become apparent to one of skill in the art, through comparison of such systems with the present invention as set forth in the remainder of the present application with reference to the drawings.
It is an object of the present invention to provide a device for providing rotational torque over a wide range of angles that overcomes many of the disadvantages of the prior art.
Another object of the present invention is to provide a device that imparts rotational torque simultaneously along more than one axis of rotation. A feature of the device is a flexible driver with a first end extending in a first direction and adapted to be received by a chuck, a second end and an angled driver attached to the second end and adapted to receive a tool. An advantage of the device is that it can simultaneously torque in a plurality of rotational axes (where the axis are not co-planar) while imposing linear force directed in the first direction.
Still another object of the present invention is to provide a device to impart rotational torque to a bit or a fastener at an acute angle relative to the source of torque power. A feature of the device is that it provides rotational force for a bit, fastener or tool, where the device itself is adapted to bend from 0 to approximately 360 degrees (but generally greater than 90 degrees up to approximately 180 degrees) in any direction relative to a chord line formed by the first and second ends of a flexible extension shaft. The first end of the shaft is positioned proximate the source of such rotational force or torque, and the second end is positioned proximate the bit, fastener or tool. An advantage of the device is that intricate manipulations of workpieces are facilitated in small or tight areas.
Briefly, the invention provides a device which imparts rotational movement and linear force to a tool, the device comprising a flexible extension shaft having first and second ends, whereby said first end is adapted to provide rotational movement in a first plane of rotation and liner force to at least said second end; and at least one angled driver coupled to said second end, whereby rotational and liner force is provided to the tool along a 360 degree range of motion.
In at least one embodiment, the flexible extension shaft can bend from 0 degrees to approximately 360 degrees from its longitudinal axis. Embodiments are contemplated in which one or more angled drivers are used in conjunction with the flexible extension shaft. Further, one or more of such angled drivers are formed having a fixed or variable (i.e., adjustable) predetermined angle greater than 0 degrees but less than 180 degrees (generally between approximately 0 and 90 degrees). The angle driver provides an axis of rotation to the tool in a plane different from the plane of axis of rotation conferred by the second end. The angled driver may be integrally molded with or removably coupled to the second end of the shaft.
The base of the angle driver may be in rotatable communication with the second end of the shaft so as to be coaxial with the axis of rotation of the shaft.
Yet another embodiment relates to imparting rotational and linear force to a tool using the device. In this embodiment, a work angle is determined as necessary to circumvent or navigate around objects or surfaces of a piece of equipment so as to arrive at a trouble region. The method comprises bending a flexible extension shaft (greater than 90 degrees for example) having first and second ends, where the second end has one or more angled drivers. A drive device is used to provide rotational and linear force to at least the first end, wherein the first end is adapted to provide rotational and linear force to at least the second end along a 360-degree range of motion as described previously. A bit is inserted into the one or more angled drivers, and rotational torque is provided thereto.
The foregoing invention and its advantages may be readily appreciated from the following detailed description of the invention, when read in conjunction with the accompanying drawing in which:
One embodiment of the device is depicted in
Generally, the device 10 comprises a flexible extension shaft 12, a first end 14, and a second end 16. In one embodiment, the first end 14 is adapted to cooperate with a drive device that provides a means for imposing upon a bit rotational torque in at least one plane and linear force (such as a cordless portable electric screwdriver 5 having a chuck 7 for example, best viewed in
The internal mechanism of one embodiment of the flexible extension shaft 12 is similar to that disclosed in the '929 patent. In the illustrated embodiment, the first end 14 of the flexible extension shaft 12 and the chuck 7 have complementarily shaped non-circular cross-sections (see
The second end 16 of the flexible extension shaft 12 and angled driver (and similarly the angled driver and tool 9) similarly has complementarily shaped non-circular cross-sections (see
Referring to
In at least one embodiment, the cylindrical body portions 14a and 16a are spaced apart by a distance greater than the distance between the shoulders 46 and 48 in the cylindrical fittings 38 and 40, permitting axial movement of the cylindrical body portions 14a and 16a and the concentric coil springs 30, 32, 34 relative to the cylindrical fittings 38 and 40 and the flexible sleeve 36. In at least one embodiment, a shaft biasing coil spring 50 is disposed about the concentric coil springs 30, 32, 34 of the flexible extension shaft 12 between the shoulder (such as shoulder 48 for example) in one of the cylindrical fittings (such as cylindrical fitting 40 for example) in the corresponding one of the cylindrical body portions (such as portion 16a for example) to normally bias the other of the cylindrical body portions (such as 14a for example) into engagement with the shoulder (such as 46 for example) in the other of the cylindrical fittings (such as 38 for example).
As will be appreciated by referring to
In at least one embodiment, the second end 16 is further configured as an angled driver having angle β, such as that depicted in
Alternatively, and as shown in
In the embodiment depicted in
In at least one embodiment, the angled driver 60 comprises a typical helical worm drive mechanism, a beveled gear configuration, or the like. For example, the angled driver comprises a beveled gear configuration depicted as element numbers 67-69 in
The positioning of an angled driver at the second or distal end 16 of the flexible extension shaft allows torque, derived from the internal cable combination (element numbers 30, 32, and 34) to be transferred to a point 61 on the driver 60 proximal to the second end 16. This allows the rotational torque originally supplied by the operator handle 5 to be applied to a different axis of rotation which is at an angle β different than the first axis of rotation provided by the free end 16. It is contemplated that angle β may be fixed or adjustable. Depending on the internal configuration of the angle driver 60, the angle β can vary from greater than 0 degrees to less than 180 degrees, but generally approximately 60 degrees to approximately 90 degrees relative to second end 16. In at least one embodiment, angled driver 60 may include an adjustable drive mechanism and housing that enables angle β to be adjustable.
Means for conferring such an adjustable angle β includes, but is not limited to, a yoke-and-tang configuration, an intermeshing multi-sphere configuration, and a combination thereof.
The two spheres 92, 94 contact each other at their respective teeth-containing regions 93 so as to cause male-female interaction, (i.e. meshing, engagement, nesting, etc) of the crests of teeth of one sphere with the troughs defined by the regions between teeth crests on the other sphere. Contact between the spheres is maintained via a retaining collar 95 attached to a portion of the housing of the angle driver and encircling a periphery of the distal-most sphere 94, whereby said periphery is smaller than the circumference of the sphere. The retaining collar 95 is removably attached to the housing of the distal end 63 of the angled driver via a spring clip or other typical retaining means. The collar is adapted to be received and retained in a portion of an interior surface of said housing that defines an annular grove.
The first sphere is attached to the distal end of the actuating shaft 67. The second sphere 94 is received by the housing of the distal end 63 of the angled driver so as to allow rotation of the second sphere 94 relative to the first sphere 92. This rotation enables the first sphere to confer motion to the second sphere when the shaft 67 rotates such that the distal aperture 64 of the angled driver also rotates. While
Another embodiment to confer varying angles for the tool 9 to emanate from the angled driver include a yoke-and-tang configuration, such as that depicted in
A distal end of the tang 98 terminates in a housing 71 virtually identical to that which defines the distal opening 64 of the angled driver of the aforementioned embodiments.
In operation, the tang rotates within the yoke along a 180 degree arc, so as to confer up to a 90 angle for β. With the rotation of the drive shaft 67, a fastener, tool bit, or other angled driver inserted into the distal opening 64 is enabled to engage with a workpiece anywhere along a first plane defined by the 180 degree arc. Given that the arc is further rotated 360 degrees in a second plane perpendicular to the first plane, the yoke and tang device, as with the intermeshing spheres configuration discussed supra, enables a user to apply the tool 9 to a workpiece at any point on a half hemisphere so defined by the range of motion of the distal opening.
The tool or bit 9 is thus positioned at a terminus point 63 on the driver 60 (i.e., a point 63 on the driver 60 distal from the second end 16) in rotatable communication with the shaft 12 and at that angle β. The angle β of the angled driver 60, combined with the angle of the chord line (that line defined by the positions of first and second ends 14, 16 of the flexible extension shaft 12) provides the user with a wide range of angles in which to manipulate the tool 9.
Referring to
As should now be appreciated, the cordless portable electric drive device 5 when utilized with the unique flexible extension shaft 12 is extremely versatile. The fact that it is universally deflectable relative to the axis α accommodates use of the drive device 5 in hard-to-reach or limited access areas since the tool 9 can be disposed at an acute angle relative to the axis α by deflecting or bending the flexible extension shaft 12 such as illustrated in
The drive device is used to provide rotational and linear force to at least the first end 14. Providing such torque and force to the first end 14 causes the concentric coil springs 30, 32, 34 to rotate internally in the flexible sleeve 36. The difference in distance between the cylindrical body portions 14a and 16a and the cylindrical fittings 38 and 40 accommodate the arc into which the flexible extension shaft is oftentimes advantageously deflected and held during use of the drive device.
More than one angled driver device is contemplated. A second angled driver 70 may be removably mated with the distal end 63 of the first angled driver 60 via any of the arrangements provided previously, allowing independent rotational positioning between drivers 60, 70. Alternatively the drivers can be mated with each other via hexagonal shaft/aperture configurations to minimize slippage and ensure full transfer of rotational torque. Additionally, the angled drivers 60, 70 may be fixedly mated. Therefore, the two drivers may be angularly offset from each other along the plane of rotation of the internal rotating shaft. It should be understood that, while only two angled drivers 60, 70 are discussed, more than two angled drivers are contemplated.
More specifically, as shown in
At least one embodiment comprises a method for imparting rotational and linear force to a tool using the device 10 in any configuration or arrangement described previously. In this embodiment, a work angle is determined; such as circumventing regions of the machine 80 in need of repair so as to arrive at a trouble region 82.
One embodiment of the method comprises determining the one or more angles needed to reach the trouble region and bending the flexible extension shaft 12 (greater than 90 degrees for example). A drive device 5 is used to provide rotational and linear force to at least the first end 14, wherein the first end 14 is adapted to provide rotational and linear force to at least the second end 16 along a 360 degree range of motion as described previously. The tool 9 is inserted into the one or more angled drivers 60, and rotation torque is provided.
While the invention has been described with reference to details of the illustrated embodiment, these details are not intended to limit the scope of the invention as defined in the appended claims. For example, the device can incorporate a plurality of angled drivers, perhaps three or more and mirrors at each driver point to aid in the manipulation of extremely intricate machinery. The mirrors are provided to facilitate viewing of the otherwise out-of-sight workpiece surface 82.
The present application is related to, and claims priority from, U.S. Provisional Application Ser. No. 60/642,002 filed Jan. 7, 2005, the complete subject matter of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60642002 | Jan 2005 | US |