The present disclosure relates to the field of medical devices and is generally directed toward tools and methods for distracting or otherwise preparing an intervertebral disc space for various procedures to be performed within the disc space.
This invention relates to devices and methods for preparing and cleaning an intervertebral workspace. More specifically, the present invention relates to tools and methods for intervertebral distraction and cleaning of an intervertebral space including, for example, spinal end plates.
Spondylosyndesis, or spinal fusion, is a surgical technique used to combine two or more vertebrae into a single, rigid working unit. This is typically achieved by introducing a supplementary bone tissue, such as an autograft or allograft, into the intervertebral space between two target vertebrae, at the location that is typically occupied by an intervertebral disc. The supplementary bone tissue is then used in conjunction with the patient's natural osteoblastic processes in order to grow bone or osseous tissue between the two or more target vertebrae, which acts to fuse them together into the desired rigid unit. This procedure is used primarily to eliminate pain that is caused by abnormal motion of one or both of the target vertebrae; pain relief occurs by immobilizing the vertebrae themselves and preventing the abnormal motion. Alternatively, surgically implantable synthetic intervertebral fusion cages or devices may be used to perform spinal fusion procedures.
Surgically implantable intervertebral fusion cages are well known in the art and have been actively used to perform spinal fusion procedures for many years. Their use became popularized during the mid 1990's with the introduction of the BAK Device from Zimmer Inc., a specific intervertebral fusion cage that has been implanted worldwide more than any other intervertebral fusion cage system. The BAK system is a fenestrated, threaded, cylindrical, titanium alloy device that is capable of being implanted into a patient as described above through an anterior or posterior approach, and is indicated for cervical and lumbar spinal surgery. The BAK system typifies a spinal fusion cage in that it is a highly fenestrated, hollow structure that will fit between two vertebrae at the location of the intervertebral disc.
Where fusion is intended to occur between adjacent vertebral bodies of a patient's spine, the surgeon typically prepares an opening at the site of the intended fusion by removing some or all of the disc material that exists between the adjacent vertebral bodies to be fused. Because the outermost layers of bone of the vertebral end plate are relatively inert to new bone growth, the surgeon must work on the end plate to remove at least the outermost cell layers of bone to gain access to the blood-rich, vascular bone tissue within the vertebral body. In this manner, the vertebrae are prepared in a way that encourages new bone growth onto or through an implant that is placed between the vertebrae. An implant or insert may or may not promote fusion of the adjacent vertebral bodies, may be an artificial spinal disc, may permit surface ingrowth, and may be made of bone or inert material, such as titanium.
Current methods of forming and preparing a disc space between vertebrae are known to include various grasping instruments, drills, rotating burrs, chisels, and other scraping implements. There has been a long felt and unmet need to provide a distraction tool which is capable of spreading or separating vertebral bodies and further capable of cleaning, scouring, and/or removing tissue from a disc space.
Embodiments of the present invention disclose various surgical tools such as distractors which comprise features adapted to remove unwanted tissue, debris, and/or contamination from an intervertebral disc space. In one embodiment, a distractor tool is provided which comprises a unique configuration on its head or distal end which generally facilitates insertion of the tool into a disc space and further enables the removal of tissue and undesired substances from the disc space and the spinal end plates. In various embodiments, this is accomplished by providing a surgical tool with a distal end having a unique geometry such that insertion of the tool is generally unobstructed while extraction of the tool generally enables the scraping and/or frictional removal of debris which may be present within a workspace.
In various embodiments, a plurality of surgical tools is provided wherein the plurality of surgical tools comprises tools of different sizes and/or shapes. Thus, a user or surgeon is provided with numerous different shaft and distal end combinations so that the appropriate tool may be selected for the appropriate application. One of skill in the art will recognize that different patient characteristics and operating conditions may dictate different device selection. Accordingly, the present invention contemplates providing a plurality of tools which offers such discretion.
Other embodiments of the present invention provide a means for a user to selectively activate or actuate features of an intervertebral workspace tool in order to scrape or otherwise collect various tissue disposed within the disc space. For example, it is contemplated that tools of the present invention comprise movable features, such as selectively engageable clam shell or shovel-type devices which are activated and/or controlled by features at a proximal end of the device adapted for user interaction. In alternative embodiments, user operated features are provided such as pressure applying means. Pressure applying means of the present invention may comprise, for example, a working shaft and distal end to which a vacuum pressure is supplied, thereby drawing debris toward at least a distal end of the tool(s).
In various embodiments, one or more distraction tools are provided, the one or more distraction tools being capable of transmitting or applying a positive pressure to a disc space. For example, a quantity of fluid or gas may be directed through portions of a distraction tool by a positive pressure for impacting various regions and materials within the disc space.
In further embodiments, the present invention comprises various fenestrations, portals, and/or apertures adapted for transmitting a pressure (e.g. a positive or negative pressure) induced by a device located external to the workspace and transmitted through portions of a tool. Vacuum pressures may be selectively applied to various portions of an intervertebral work space tool based on necessity and/or user preference.
Various embodiments of the present invention provide for detachable and/or disposable shafts which connect to disc space tool heads and/or distal ends. For example, novel intervertebral disc space tool heads of the present invention, as shown and described herein, may be detachably disposed on an elongated shaft. In various embodiments, elongated shafts of the present invention may comprise various surgical grade materials, such as surgical steel, titanium, and other suitable materials. The shafts may be reusable for at least two or more procedures and may be generally adapted for autoclaving and other required and/or appropriate sanitation methods. In alternative embodiments, elongated shafts of the present invention are comprised of a material which generally enables the shafts to be disposable. For example, disposable shafts may be comprised of a material which is not suited for sanitization and repeated use and/or material which renders disposal of the shaft economically practical.
In various embodiments, disposable shafts are provided which are adapted to be connected to detachable distal portions, heads, or working portions. For example, disposable shafts may be provided where the shafts are capable of being securely anchored to a head portion so as to minimize or eliminate the risk of detachment and subsequent depositing of a distractor head assembly within an intervertebral workspace. In one embodiment, shafts of the present invention are detachably anchored to a head portion through the use of male/female threaded portions disposed on opposite devices. Detachable shafts of the present invention allow for the ability to selectively apply an appropriate shaft to a desired head or distal portion of a tool. For example, detachable shafts of the present invention allow for the ability to utilize different size, length, and shaped shafts on patients of different sizes and dimensions while utilizing a similarly appropriate distal end tool or distractor wedge. In this manner, the need to store or keep on hand numerous or excessive amounts of tools is reduced. Likewise, manufacturing costs of producing a similarly excessive amount of tools is reduced.
In various embodiments, tools of the present invention are made from a biocompatible material such as a thermal plastic (e.g. PEEK), a polymer, metal, combination thereof or otherwise, such as desired and/or is appropriate.
In various embodiments, one or more portions of tools of the present invention comprise rasps, teeth, or structures having various combinations of plateaus and/or valleys for contact with a vertebral body, end plate, and various material and features located within a vertebral body. The plurality of rasps, teeth, or scales are configured to facilitate insertion of the device into the intervertebral work space while not substantially preventing or impeding removal of the device. In embodiments, the teeth or geometry of portions of the tools are adapted to facilitate the removal of at least the outer most cell layers of bone to gain access to vascular bone tissue within the disc space and otherwise clean or clear the work space. For example, various features shown and described in U.S. Pat. No. 7,461,803 to Boerner and U.S. Pat. No. 7,632,276 to Fishbein, which are incorporated by reference herein in their entireties, and variations thereof, may be incorporated into embodiments of the present invention. In one embodiment, a distal end or head of a distraction tool comprises a generally hollow feature wherein peripheral outer surfaces are capable of dislodging, scraping, and/or cutting various materials and directing the materials to an interior hollow portion so that the materials may be removed from the disc space along with the distraction tool.
In various embodiments, the present invention comprises channels or flutes for guiding materials that have been dislodged or scraped away from portions of the intervertebral workspace. For example, a distal end of a spinal distractor tool according to embodiments of the present invention may comprise channels or apertures which direct material that has been scraped by additional features of the tool into a region or volume of the distractor that is adapted for securing and/or temporarily retaining the dislodged material. In further embodiments, additional features are employed to compliment such channels or retaining apertures. For example, in one embodiment, a vacuum pressure is applied through a shaft portion of a distractor tool which facilitates maintaining debris and/or dislodged materials within receiving apertures of the present invention while the device is manipulated or removed from the intervertebral workspace.
In various embodiments, the present invention comprises features and devices for physically sealing, closing, or otherwise containing receiving apertures. For example, receiving apertures or fenestrations which are generally open during distraction procedures may be selectively sealed or closed by a user through the use of features disposed at a proximal end of the device.
The present invention further contemplates a method including the step of distracting the disc space between adjacent vertebral bodies, and in particular, the distracting step may include the step of inserting a distractor having a disc penetrating extension into a disc space between adjacent vertebral bodies and against end plates of the adjacent vertebral bodies. The depth of penetration of the distractor into the disc space is preferably controlled. The method may further include the step of changing disc penetrating extensions of the distractor in accordance with a desired distractor distance between adjacent vertebral bodies.
Incorporated by reference in their entireties are the following U.S. patents and patent applications directed generally to methods and apparatus related to spinal procedures, thus providing written description support for various aspects of the present disclosure. The U.S. patents and pending applications incorporated by reference are as follows: U.S. Pat. No. 7,406,775 to Funk, et al.; U.S. Pat. No. 7,387,643 to Michelson; U.S. Pat. No. 7,341,590 to Ferree; U.S. Pat. No. 7,288,093 to Michelson; U.S. Pat. No. 7,207,992 to Ritland; U.S. Pat. No. 7,077,864 Byrd III, et al.; U.S. Pat. No. 7,025,769 to Ferree; U.S. Pat. No. 6,719,795 to Cornwall, et al.; U.S. Pat. No. 6,364,880 to Michelson; U.S. Pat. No. 6,328,738 to Suddaby; U.S. Pat. No. 6,290,724 to Marino; U.S. Pat. No. 6,113,602 to Sand; U.S. Pat. No. 6,030,401 to Marino; U.S. Pat. No. 5,865,846 to Bryan, et al.; U.S. Pat. No. 5,569,246 to Ojima, et al.; U.S. Pat. No. 5,527,312 to Ray; and 2008/0255564 to Michelson.
A variety of known vacuum pumps and devices may be utilized in combination with aspects of the present invention. By way of example, U.S. Pat. No. 5,282,744 to Meyer, U.S. Pat. No. 4,580,978 to Motola et al., U.S. Pat. No. 4,991,570 to Bullard, U.S. Pat. No. 5,311,640 to Holland, and U.S. Patent Application Publication No. 2007/0172790 to Doucette, Jr. et al., which are incorporated by reference in their entireties herein, generally relate to the field of dentistry. Various features and aspects described in these references may be incorporated into aspects of the present invention.
In various embodiments, a positive pneumatic pressure may be applied to a disc space through portions of a tool 8. For example, air or other gases and/or fluids may be provided to a disc space to blast or clear a surgical work area or disc space. U.S. Pat. No. 6,004,191 to Schur et al., U.S. Pat. No. 4,430,062 to Henrichsen et al., U.S. Pat. Nos. 4,877,399, 6,216,573 to Moutafis et al., U.S. Pat. No. 7,122,017 to Moutafis et al., U.S. Pat. No. 6,960,182 to Moutafis et al., U.S. Pat. No. 5,944,686 to Patterson et al., and U.S. Patent Application Publication No. 2005/0267443 to Staid et al., which are incorporated by reference herein in their entireties relate to various devices and methods for delivering a volume of air or fluid to a desired location. In various embodiments, the present invention comprises delivering force or pressurized air, gas, fluids, and various combinations thereof to a disc space and a distal end of a distraction tool. For example, ambient air, inert gases, oxygen, water, saline, and various combinations thereof may be directed to a disc space through features of the present invention (e.g. channels housed within a distractor). One of skill in the art will recognize that such features may direct such substances to a portion of a disc space (e.g. a disc end plate) and/or to a portion of the tool 8 which has become contaminated with various fluid, tissue, debris etc. (e.g. a distal end).
In various embodiments, an elongate shaft is comprised of one or more flexible materials, thus creating a shaft which is resiliently deformable. For example, shafts of the present invention may comprise helical spring members designed to yield a certain amount under appropriate moments forces yet generally restore themselves to a linear elongate arrangement absent a certain magnitude of force. Alternatively, a shaft may be comprised of elastically deformable plastics allowing for flexible movement away from its axis under external force and return to or approximately to an initial position in the absence of such a force. Thus, embodiments of the present invention contemplate an elongate shaft adapted for receiving and transmitting a compressive force applied by a surgeon, yet provides enough compliance in moment to accommodate various obstructions and prevent or reduce the risk of devices becoming “wedged” or lodged into a disc space. In various embodiments, various polyethylenes, polyvinylchloride, urethanes, PEEK, elastically deformable metals, and other similar materials may comprise flexible elongate shafts of the present invention. In one embodiment, a flexible shaft comprises a biocompatible material (e.g. PEEK). However, as one of ordinary skill in the art will recognize, the shaft is not an implantable device. Thus, in alternative embodiments, the shaft is comprised various surgical grade materials suitable for surgical tools generally.
In various embodiments, the present invention comprises various imaging devices for providing feedback to a user.
It should be understood that the drawings are not necessarily to scale. In certain instances, details that are not necessary for an understanding of the invention or that render other details difficult to perceive may have been omitted from these drawings. It should be understood, of course, that the invention is not limited to the particular embodiments illustrated in the drawings.
In accordance with embodiments of the present disclosure, a distraction tool 8 is provided, the distraction tool 8 having an elongated handle of a predetermined length L. The handle is substantially cylindrical in shape and comprises a head 10 at a distal end configured to generate an opening in tissue, the head portion 10 being offset from the handle portion by an angle α such that the head and the handle are not located in the same plane. Referring specifically to
The handle of the distraction tool 8 is generally cylindrical in shape and has a length L ranging from about 140 cm to about 170 cm, and preferably from about 160 cm to about 165 cm, and has a diameter ranging from about 4 mm to about 5 mm. The distal end of the handle may optionally include features for attachment to other surgical instruments, though this is not necessary for purposes of the present invention. The proximal, or head, end of the distraction tool comprises a head portion 10 having a length ranging from about 15 mm to about 50 mm, a width ranging from about 40 mm to about 55 mm, and a height or thickness ranging from about 6 mm to about 16 mm. Thus, in some embodiments, the head portion is generally rectangular in shape. The head portion includes a distal tip located at the distal terminus of the head portion. In some embodiments, the distal tip is pointed such that the height or thickness of the head portion and/or the width of the head portion is gradually reduced from the head portion to the distal tip, culminating in a pointed edge. The pointed edge is the initial portion of the distraction tool to make contact with the target tissue, and thus facilitates dissection of the target tissue by displacing the tissue as it is moved forward into the tissue. The pointed tip thus makes it easier for the user to move the distraction tool into the target tissue. The head portion 10 of the distraction tool is offset from the handle portion by an angle ranging from approximately 5 to 45 degrees, and preferably from about 15 to 25 degrees.
In some embodiments and referring now to
In various embodiments, the at least one surface comprises teeth, rasps, fins, or ridges, which are adapted to allow for insertion, manipulation, and removal of at least a distal end 10 of the device 8 into an intervertebral space while providing the ability to scrape, dislodge, or remove tissue and material. In various embodiments, portions of a device 8 are further capable of retaining, collecting, and/or trapping at least portions of materials dislodged by the tool 8.
In various embodiments, the present invention comprises features and devices for physically sealing, closing, or otherwise containing receiving apertures. For example, receiving apertures or fenestrations which are generally open during distraction procedures may be selectively sealed or closed by a user through the use of features disposed at a proximal end of the device.
In various embodiments, movable features are provided at distal locations of a distraction tool for selectively grasping and/or containing materials dislodged and/or to be removed from a disc space. For example, a distraction wedge 10 may be comprised of two or more portions connected by one or more hinges. Cables or guide wires may be disposed within an elongate shaft 13 of the device 8, the cables or wires extending to a location proximal a user for selective manipulation of the two or more portions. Distal end features of the present invention may comprise disher style scoops or other similar rotatable and/or translatable members for applying a cutting or shearing force to portions of a disc space.
In various embodiments, a pressure may be applied at locations disposed within apertures 9 at a distal end of the tool 8. Thus, for example, tissue and debris dislodged by textured portions 11 of the tool 8 may either be held within apertures 9 or drawn through portions of the tool 8 and removed from a surgical work space and a tool 8. In alternative embodiments, apertures may be provided on exterior portions of a distal end 10 of the tool 8, wherein the apertures are adapted for transmitting vacuum pressure and capturing debris and tissue to be removed from an intervertebral workspace. Distraction tools 8 of the present invention may comprise hollow or partially hollow shafts 13 for transmitting pressure, air, and fluids to or from a surgical workspace/intervertebral space.
One of skill in the art will recognize that, where provided, a hand valve 24 of the present invention may be disposed at a variety of locations with respect to a distraction tool 8. In one embodiment, a user-operated valve 24 is disposed on a portion of the tool 8 (e.g. a proximal end of the tool) such that suction may be initiated without requiring a user to divert significant attention away from the device 8.
A variety of known vacuum pumps and devices may be utilized in combination with aspects of the present invention. By way of example, U.S. Pat. No. 5,282,744 to Meyer, U.S. Pat. No. 4,580,978 to Motola et al., U.S. Pat. No. 4,991,570 to Bullard, U.S. Pat. No. 5,311,640 to Holland, and U.S. Patent Application Publication No. 2007/0172790 to Doucette, Jr. et al., which are incorporated by reference in their entireties herein, generally relate to the field of dentistry. However, various features and aspects described in these references may be incorporated into aspects of the present invention.
In various embodiments, a positive pressure may be applied to a disc space through portions of a tool 8. For example, air or other gases and/or fluids may be provided to a disc space to blast or clear an area to be cleaned. U.S. Pat. No. 6,004,191 to Schur et al., U.S. Pat. No. 4,430,062 to Henrichsen et al., U.S. Pat. No. 4,877,399, which are incorporated by reference herein in their entireties relate to various devices and methods for delivering a volume of air or fluid to a desired location. In various embodiments, the present invention comprises delivering forced or pressurized air, gas, fluids, and various combinations thereof to a disc space and a distal end of a distraction tool 8. For example, ambient air, inert gases, oxygen, water, saline, and various combinations thereof may be directed to a disc space through features of the present invention (e.g. channels housed within a distractor 8). One of skill in the art will recognize that such features may direct such substances to a portion of a disc space (e.g. a disc end plate) and/or to a portion of the tool 8 which has become contaminated with various fluid, tissue, debris, etc. (e.g. a distal end).
One of ordinary skill in the art will appreciate that embodiments of the present disclosure may have various sizes. The sizes of the various elements of embodiments of the present disclosure may be sized based on various factors including, for example, the anatomy of the patient, the person or other device operating the apparatus, the surgical location, physical features of the implant including, for example, width, length and thickness, and the size of other surgical tool(s) being used.
Embodiments of the present disclosure may be constructed of materials known to provide, or predictably manufactured to provide the various aspects of the present disclosure. These materials may include, for example, stainless steel, titanium alloy, aluminum alloy, chromium alloy, and other metals or metal alloys. These materials may also include, for example, PEEK, carbon fiber, ABS plastic, polyurethane, rubber, latex, synthetic rubber, and other fiber-encased resinous materials, synthetic materials, polymers, and natural materials.
The distraction tools of the present disclosure may be made of any kind of material suitable for surgical use, such as aluminum, iron, titanium, steel, medical grade plastic, surgical stainless steel of the general alloy type of iron, carbon, chromium (12-20%), molybdenum (0.2-3%), and nickel (8-12%); martensitic steel; 316L or 316LVM austenitic steel; and/or 316 surgical steel.
In various embodiments, suction may be applied to a device 8 through a hollow shaft 13 or hollow portion of a shaft. A vacuum pressure may apply a force(s) (indicated by directional arrows 28) capable of withdrawing material from a disc space and/or biasing material that has been dislodged by portions of the tool 8 against or toward a proximal portion of the tool. As used herein, a proximal portion will generally be understood to mean the portion of the tool proximal to a user/surgeon in operation.
In accordance with at least some aspects of at least one embodiment of the present disclosure and referring now to
In various embodiments, one or more of the head 10 and handle 13 portions of a distractor tool 8 are disposable. For example, either the head 10, handle 13, or both are comprised of a material which renders the portion(s) suitable for disposable after one or more procedures and/or uses. In various embodiments, a head portion 10 is provided with rivets, scales, ridges, and/or teeth adapted for removing and/or dislodging intervertebral materials. In various embodiments, such features complicate cleaning of the device. Accordingly, various embodiments contemplate the use of a disposable distractor tool head 10 and thereby substantially reduce, for example, risks associated with cross-contamination between patients and devices. In alternative embodiments, one or more textured portions of a distraction tool 8 comprises a geometry which is adapted to be cleaned by standard cleaning and sterilization procedures. Thus, in certain embodiments, distal ends of distraction tools may be cleaned and/or sterilized without the need for disposal or specialized cleaning procedures.
Referring now to
In various embodiments, a distal end of the tool 8 is selectively rotatable. For example, the tool 8 may include an internal member that is configured to rotate about its longitudinal axis when prompted by the user. In such embodiments, the internal member is also configured to releasably secure embodiments of a distal end portion of the tool. The internal member may be a wire, rod or cable that is sized to fit within the inner diameter of the hollow handle and to rotate freely therein, without interference from the inner walls of the handle. The internal member may have, at its proximal end, a means by which the user may releasably secure the wedge 10. In some embodiments, this means is a thumbwheel or thumbscrew 38 that is secured to the distal end of the internal member such that, when the thumb screw 38 is rotated by the user, the internal member rotates about its longitudinal axis. In these embodiments, it is preferable for the thumb screw 38 to be configured so that it may rotate in both directions.
As shown in
Features 50 of the present invention may be comprised of various different shapes and comprise indentations, protrusions, or various combinations thereof with respect to at least one surface of the head 10. As shown in
In various embodiments, a method for preparing an intervertebral workspace is provided. For example, a method comprising the use of at least one distractor tool is provided wherein the distractor tool comprises at least one portion of one surface of a distal end or wedge having textured features adapted for scouring and/or cleaning portions of a workspace (e.g. an endplate). In various embodiments, methods of the present invention further contemplate the use of additional tools, such as various cannulas adapted for use in minimally invasive spinal surgeries. Tools suitable for use in combination with distractor tools as described herein comprise any number of spinal surgery related tools, including, but not limited to, lighting, imaging, and access tools.
In various embodiments, once a distractor tool is inserted and/or positioned into an intervertebral workspace, a user may translate and/or reciprocate the distractor so as to dislodge various materials to be removed from the workspace. In alternative embodiments, distraction may be performed with only a single insertion motion and/or force and a single removal motion and/or force. In embodiments, a vacuum pressure may be applied to a workspace through a distal end of the tool in a continuous manner. In alternative embodiments, vacuum pressure may be selectively applied by a user to a work space through a distal end of the tool.
In various embodiments, a method is provided wherein a distal end of a distractor tool is selectively positioned at a user-desired angle with respect to a longitudinally extending handle portion before use/insertion into a patient.
In various embodiments, a method of spinal distraction is provided comprising a longitudinally extending handle portion selectively attachable to a distal wedge portion. Thus, the appropriate combination of a handle and a distal wedge portion is selected based on, for example, patient size, age, weight, etc., lighting conditions, and/or user preference. Subsequently, the combination is assembled with the handle portion and distal wedge portion being securely attached to one another. The assembled device is then inserted into an intervertebral space so as to prepare a workspace by expanding an intervertebral space upon entrance and remove materials and tissue upon removal. The assembled device may be repeatedly inserted and retractor to achieve the desired expansion and/or cleaning of the disc space. In embodiments, vacuum pressure may be applied to a work space in order to facilitate cleaning of the disc space and/or removal of various materials, such as those dislodged and/or collected by additional features of the distractor tool.
The foregoing discussion of the disclosure has been presented for purposes of illustration and description. The foregoing is not intended to limit the disclosure to the form or forms disclosed herein. In the foregoing Detailed Description for example, various features of the disclosure are grouped together in one or more embodiments for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed disclosure requires more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive aspects lie in less than all features of a single foregoing disclosed embodiment. Thus, the following claims are hereby incorporated into this Detailed Description, with each claim standing on its own as a separate preferred embodiment of the disclosure.
Moreover, though the present disclosure has included description of one or more embodiments and certain variations and modifications, other variations and modifications are within the scope of the disclosure, e.g. the use of disposable components comprising some or all of the apparatus described herein, as may be within the skill and knowledge of those in the art, after understanding the present disclosure. It is intended to obtain rights which include alternative embodiments to the extent permitted, including alternate, interchangeable and/or equivalent structures, functions, ranges or steps to those claimed, whether or not such alternate, interchangeable and/or equivalent structures, functions, ranges or steps are disclosed herein, and without intending to publicly dedicate any patentable subject matter.
The present application is a continuation of U.S. patent application Ser. No. 15/010,611, filed Jan. 29, 2016 (now U.S. Pat. No. 9,826,988, issued Nov. 28, 2017), which is a continuation of U.S. patent application Ser. No. 13/168,611, filed Jun. 24, 2011 (now U.S. Pat. No. 9,247,943, issued Feb. 2, 2016), which is a continuation-in-part patent application which claims the benefit of priority from commonly owned and U.S. patent application Ser. No. 12/367,487, filed Feb. 6, 2009 (now U.S. Pat. No. 8,088,163, issued Jan. 3, 2012), and U.S. Provisional Patent Application No. 61/358,149, filed Jun. 24, 2010, the entire disclosures of which are hereby expressly incorporated by reference in this disclosure as if set forth fully herein.
Number | Name | Date | Kind |
---|---|---|---|
D30951 | Saint Cyr, Jr. | Jun 1899 | S |
1867624 | Hoffman | Jul 1932 | A |
2520464 | Hubner | Aug 1950 | A |
3697011 | Christensen et al. | Oct 1972 | A |
3741496 | Beller | Jun 1973 | A |
3836092 | Hull | Sep 1974 | A |
3855638 | Pilliar | Dec 1974 | A |
4039156 | Abraham | Aug 1977 | A |
4041939 | Hall | Aug 1977 | A |
4047524 | Hall | Sep 1977 | A |
4206516 | Pilliar | Jun 1980 | A |
4277184 | Solomon | Jul 1981 | A |
4338925 | Miller | Jul 1982 | A |
4430062 | Henrichsen et al. | Feb 1984 | A |
4462402 | Burgio et al. | Jul 1984 | A |
4467478 | Jurgutis | Aug 1984 | A |
4501269 | Bagby | Feb 1985 | A |
4522270 | Kishi | Jun 1985 | A |
4570623 | Ellison et al. | Feb 1986 | A |
4580978 | Motola et al. | Apr 1986 | A |
4592346 | Jurgutis | Jun 1986 | A |
4739750 | Masse et al. | Apr 1988 | A |
4743256 | Brantigan | May 1988 | A |
4863476 | Shepperd | Sep 1989 | A |
4877020 | Vich | Oct 1989 | A |
4877399 | Frank et al. | Oct 1989 | A |
4925924 | Silver et al. | May 1990 | A |
D309499 | Bowman et al. | Jul 1990 | S |
D312309 | Michelson | Nov 1990 | S |
4991570 | Bullard | Feb 1991 | A |
5037422 | Hayhurst | Aug 1991 | A |
5053038 | Sheehan | Oct 1991 | A |
5055104 | Ray | Oct 1991 | A |
5058823 | Emura et al. | Oct 1991 | A |
5122130 | Keller | Jun 1992 | A |
5282744 | Meyer | Feb 1994 | A |
5290295 | Querals et al. | Mar 1994 | A |
5311640 | Holland | May 1994 | A |
5312407 | Carter | May 1994 | A |
5312417 | Wilk | May 1994 | A |
5324307 | Jarrett et al. | Jun 1994 | A |
5329834 | Wong | Jul 1994 | A |
5333812 | Sato | Aug 1994 | A |
D351022 | Saito | Sep 1994 | S |
5354292 | Braeuer et al. | Oct 1994 | A |
5395372 | Holt et al. | Mar 1995 | A |
5425772 | Brantigan | Jun 1995 | A |
D360689 | Giampapa | Jul 1995 | S |
5431658 | Moskovich | Jul 1995 | A |
5443514 | Steffee | Aug 1995 | A |
D364462 | Michelson | Nov 1995 | S |
5520611 | Rao et al. | May 1996 | A |
D370531 | Ash et al. | Jun 1996 | S |
5527312 | Ray | Jun 1996 | A |
D372311 | Koros et al. | Jul 1996 | S |
5531749 | Michelson | Jul 1996 | A |
D372781 | Reif | Aug 1996 | S |
5549607 | Olson et al. | Aug 1996 | A |
5554191 | Lahille et al. | Sep 1996 | A |
5558674 | Heggeness et al. | Sep 1996 | A |
D374283 | Michelson | Oct 1996 | S |
5562661 | Yoshimi et al. | Oct 1996 | A |
5569246 | Ojima et al. | Oct 1996 | A |
5586989 | Bray | Dec 1996 | A |
5595563 | Moisdon | Jan 1997 | A |
5601557 | Hayhurst | Feb 1997 | A |
D378409 | Michelson | Mar 1997 | S |
5611800 | Davis et al. | Mar 1997 | A |
5634925 | Urbanski | Jun 1997 | A |
5653763 | Errico et al. | Aug 1997 | A |
5662655 | Laboureau et al. | Sep 1997 | A |
5665122 | Kambin | Sep 1997 | A |
5683464 | Wagner et al. | Nov 1997 | A |
5688285 | Yamada | Nov 1997 | A |
5697932 | Smith et al. | Dec 1997 | A |
5702449 | McKay | Dec 1997 | A |
5704892 | Adair | Jan 1998 | A |
5741253 | Michelson | Apr 1998 | A |
5752969 | Cunci et al. | May 1998 | A |
5762629 | Kambin | Jun 1998 | A |
5779642 | Nightengale | Jul 1998 | A |
5782919 | Zdeblick et al. | Jul 1998 | A |
5797918 | McGuire et al. | Aug 1998 | A |
5836948 | Zucherman et al. | Nov 1998 | A |
5836958 | Ralph | Nov 1998 | A |
5860973 | Michelson | Jan 1999 | A |
5860977 | Zucherman et al. | Jan 1999 | A |
5865746 | Murugesan et al. | Feb 1999 | A |
5865846 | Bryan et al. | Feb 1999 | A |
5871462 | Yoder et al. | Feb 1999 | A |
5888228 | Knothe et al. | Mar 1999 | A |
5904689 | Jonjic | May 1999 | A |
5904718 | Jefferies | May 1999 | A |
5906616 | Pavlov et al. | May 1999 | A |
5925051 | Mikhail | Jul 1999 | A |
5925056 | Thomas | Jul 1999 | A |
5944658 | Koros et al. | Aug 1999 | A |
5944686 | Patterson et al. | Aug 1999 | A |
5947972 | Gage et al. | Sep 1999 | A |
5976146 | Ogawa et al. | Nov 1999 | A |
5989257 | Tidwell et al. | Nov 1999 | A |
5989289 | Coates et al. | Nov 1999 | A |
5997895 | Narotam et al. | Dec 1999 | A |
6004191 | Schur et al. | Dec 1999 | A |
6004326 | Castro et al. | Dec 1999 | A |
6008433 | Stone | Dec 1999 | A |
6013028 | Jho et al. | Jan 2000 | A |
6019765 | Thornhill et al. | Feb 2000 | A |
6030356 | Carlson et al. | Feb 2000 | A |
6030388 | Yoshimi et al. | Feb 2000 | A |
6030390 | Mehdizadeh | Feb 2000 | A |
6030401 | Marino | Feb 2000 | A |
6033408 | Gage et al. | Mar 2000 | A |
6033438 | Bianchi et al. | Mar 2000 | A |
6045555 | Smith et al. | Apr 2000 | A |
6059829 | Schlapfer et al. | May 2000 | A |
6090143 | Meriwether et al. | Jul 2000 | A |
6096080 | Nicholson et al. | Aug 2000 | A |
6113602 | Sand | Sep 2000 | A |
6120503 | Michelson | Sep 2000 | A |
6123705 | Michelson | Sep 2000 | A |
6136001 | Michelson | Oct 2000 | A |
6142998 | Smith et al. | Nov 2000 | A |
6145998 | Lynch et al. | Nov 2000 | A |
6146420 | McKay | Nov 2000 | A |
6149096 | Hartley | Nov 2000 | A |
6152871 | Foley et al. | Nov 2000 | A |
6159211 | Boriani et al. | Dec 2000 | A |
6159245 | Meriwether et al. | Dec 2000 | A |
6180085 | Achilefu | Jan 2001 | B1 |
6200322 | Branch et al. | Mar 2001 | B1 |
6209886 | Estes et al. | Apr 2001 | B1 |
6216573 | Moutafis et al. | Apr 2001 | B1 |
6224599 | Baynham et al. | May 2001 | B1 |
6224607 | Michelson | May 2001 | B1 |
6235805 | Chang et al. | May 2001 | B1 |
6238397 | Zucherman et al. | May 2001 | B1 |
6241733 | Nicholson et al. | Jun 2001 | B1 |
6241769 | Nicholson et al. | Jun 2001 | B1 |
6245108 | Biscup | Jun 2001 | B1 |
D444878 | Walter | Jul 2001 | S |
D445188 | Walter | Jul 2001 | S |
6258094 | Nicholson et al. | Jul 2001 | B1 |
6258125 | Paul et al. | Jul 2001 | B1 |
6261293 | Nicholson et al. | Jul 2001 | B1 |
6261295 | Nicholson et al. | Jul 2001 | B1 |
6261296 | Aebi et al. | Jul 2001 | B1 |
6290724 | Marino | Sep 2001 | B1 |
6299613 | Ogilvie et al. | Oct 2001 | B1 |
6309395 | Smith et al. | Oct 2001 | B1 |
6325805 | Ogilvie et al. | Dec 2001 | B1 |
6328738 | Suddaby | Dec 2001 | B1 |
6336928 | Guerin et al. | Jan 2002 | B1 |
6342074 | Simpson | Jan 2002 | B1 |
6364880 | Michelson | Apr 2002 | B1 |
6375635 | Moutafis et al. | Apr 2002 | B1 |
6387096 | Hyde, Jr. | May 2002 | B1 |
6409765 | Bianchi et al. | Jun 2002 | B1 |
6416551 | Keller | Jul 2002 | B1 |
6436101 | Hamada | Aug 2002 | B1 |
6451017 | Moutafis et al. | Sep 2002 | B1 |
6454806 | Cohen et al. | Sep 2002 | B1 |
6467556 | Alsruhe | Oct 2002 | B2 |
D467657 | Scribner | Dec 2002 | S |
6500206 | Bryan | Dec 2002 | B1 |
6511493 | Moutafis et al. | Jan 2003 | B1 |
D469871 | Sand | Feb 2003 | S |
6520976 | Gage | Feb 2003 | B1 |
6524318 | Longhini et al. | Feb 2003 | B1 |
6565574 | Michelson | May 2003 | B2 |
6569201 | Moumene et al. | May 2003 | B2 |
6595998 | Johnson et al. | Jul 2003 | B2 |
6613091 | Zdeblick et al. | Sep 2003 | B1 |
6616669 | Ogilvie et al. | Sep 2003 | B2 |
6620356 | Wong et al. | Sep 2003 | B1 |
6641613 | Sennett | Nov 2003 | B2 |
6648915 | Sazy | Nov 2003 | B2 |
6652533 | O'Neil | Nov 2003 | B2 |
6669710 | Moutafis et al. | Dec 2003 | B2 |
6673113 | Ralph et al. | Jan 2004 | B2 |
6679887 | Nicholson et al. | Jan 2004 | B2 |
6695882 | Bianchi et al. | Feb 2004 | B2 |
6699288 | Moret | Mar 2004 | B2 |
6709438 | Dixon et al. | Mar 2004 | B2 |
6719760 | Dorchak et al. | Apr 2004 | B2 |
6719795 | Cornwall et al. | Apr 2004 | B1 |
6723096 | Dorchak et al. | Apr 2004 | B1 |
6723126 | Berry | Apr 2004 | B1 |
6730125 | Lin | May 2004 | B1 |
6743255 | Ferree | Jun 2004 | B2 |
6743257 | Castro | Jun 2004 | B2 |
6746487 | Scifert et al. | Jun 2004 | B2 |
6764491 | Frey et al. | Jul 2004 | B2 |
6770074 | Michelson | Aug 2004 | B2 |
6773437 | Ogilvie et al. | Aug 2004 | B2 |
6773460 | Jackson | Aug 2004 | B2 |
6800093 | Nicholson et al. | Oct 2004 | B2 |
6823871 | Schmieding | Nov 2004 | B2 |
6824565 | Muhanna et al. | Nov 2004 | B2 |
6830574 | Heckele et al. | Dec 2004 | B2 |
6835206 | Jackson | Dec 2004 | B2 |
6852126 | Ahlgren | Feb 2005 | B2 |
6869430 | Balbierz et al. | Mar 2005 | B2 |
6890728 | Dolecek et al. | May 2005 | B2 |
6899712 | Moutafis et al. | May 2005 | B2 |
6923792 | Staid et al. | Aug 2005 | B2 |
6923814 | Hildebrand et al. | Aug 2005 | B1 |
6929646 | Gambale | Aug 2005 | B2 |
6942665 | Gambale | Sep 2005 | B2 |
6960182 | Moutafis et al. | Nov 2005 | B2 |
6962592 | Gatturna et al. | Nov 2005 | B2 |
6969523 | Mattern et al. | Nov 2005 | B1 |
6972035 | Michelson | Dec 2005 | B2 |
6974480 | Messerli et al. | Dec 2005 | B2 |
6991653 | White et al. | Jan 2006 | B2 |
6994728 | Zubok et al. | Feb 2006 | B2 |
6997929 | Manzi et al. | Feb 2006 | B2 |
7004946 | Parker et al. | Feb 2006 | B2 |
7008431 | Simonson | Mar 2006 | B2 |
7014640 | Kemppainen et al. | Mar 2006 | B2 |
7025742 | Rubenstein et al. | Apr 2006 | B2 |
7025769 | Ferree | Apr 2006 | B1 |
7033317 | Pruitt | Apr 2006 | B2 |
7041136 | Goble et al. | May 2006 | B2 |
7041137 | Fulton et al. | May 2006 | B2 |
7066961 | Hichelson | Jun 2006 | B2 |
D524443 | Blain | Jul 2006 | S |
7077864 | Byrd, III et al. | Jul 2006 | B2 |
7094257 | Mujwid et al. | Aug 2006 | B2 |
7122017 | Moutafis et al. | Oct 2006 | B2 |
7128760 | Michelson | Oct 2006 | B2 |
7135043 | Nakahara et al. | Nov 2006 | B2 |
7169182 | Errico et al. | Jan 2007 | B2 |
7182782 | Kirschman | Feb 2007 | B2 |
7204825 | Cimino et al. | Apr 2007 | B2 |
7207992 | Ritland | Apr 2007 | B2 |
D541940 | Blain | May 2007 | S |
7211112 | Baynham et al. | May 2007 | B2 |
7214186 | Ritland | May 2007 | B2 |
7223292 | Messerli et al. | May 2007 | B2 |
7232463 | Falahee | Jun 2007 | B2 |
7238203 | Bagga et al. | Jul 2007 | B2 |
7255703 | Mujwid et al. | Aug 2007 | B2 |
7267691 | Keller et al. | Sep 2007 | B2 |
7273498 | Bianchi et al. | Sep 2007 | B2 |
7288093 | Michelson | Oct 2007 | B2 |
7311713 | Johnson et al. | Dec 2007 | B2 |
7316070 | Green | Jan 2008 | B2 |
7329283 | Estes et al. | Feb 2008 | B2 |
7337538 | Moutafis et al. | Mar 2008 | B2 |
7341590 | Ferree | Mar 2008 | B2 |
7341591 | Grinberg | Mar 2008 | B2 |
7357284 | Jauvin | Apr 2008 | B2 |
7357804 | Binder, Jr. et al. | Apr 2008 | B2 |
7361178 | Hearn et al. | Apr 2008 | B2 |
7364657 | Mandrusov et al. | Apr 2008 | B2 |
7371239 | Dec et al. | May 2008 | B2 |
7377923 | Purcell et al. | May 2008 | B2 |
7387643 | Michelson | Jun 2008 | B2 |
7399041 | Prentner et al. | Jul 2008 | B2 |
D574495 | Petersen | Aug 2008 | S |
7406775 | Funk et al. | Aug 2008 | B2 |
7410334 | McGrew | Aug 2008 | B2 |
7410478 | Yang | Aug 2008 | B2 |
7413065 | Gauthier | Aug 2008 | B2 |
7421772 | Gao et al. | Sep 2008 | B2 |
7429270 | Baumgartner et al. | Sep 2008 | B2 |
D579562 | Anderson et al. | Oct 2008 | S |
7430945 | Gauthier et al. | Oct 2008 | B2 |
7431711 | Moutafis et al. | Oct 2008 | B2 |
7442208 | Mathieu et al. | Oct 2008 | B2 |
7455157 | Kimes et al. | Nov 2008 | B2 |
D582552 | Berberich | Dec 2008 | S |
7461803 | Boerner | Dec 2008 | B2 |
7473255 | McGarity et al. | Jan 2009 | B2 |
7476226 | Weikel et al. | Jan 2009 | B2 |
7478577 | Wheeler | Jan 2009 | B1 |
7481766 | Lee et al. | Jan 2009 | B2 |
7481813 | Purcell | Jan 2009 | B1 |
7485145 | Purcell | Feb 2009 | B2 |
D589626 | Petersen | Mar 2009 | S |
7501073 | Wen et al. | Mar 2009 | B2 |
7503933 | Michelson | Mar 2009 | B2 |
7503934 | Eisermann et al. | Mar 2009 | B2 |
7503936 | Trieu | Mar 2009 | B2 |
D590943 | Petersen | Apr 2009 | S |
D590945 | Berberich | Apr 2009 | S |
7513901 | Scifert et al. | Apr 2009 | B2 |
D593202 | Petersen | May 2009 | S |
7531003 | Reindel | May 2009 | B2 |
7534265 | Boyd | May 2009 | B1 |
7534270 | Ball | May 2009 | B2 |
D594119 | Berberich et al. | Jun 2009 | S |
7553320 | Molz, IV et al. | Jun 2009 | B2 |
D597669 | Petersen | Aug 2009 | S |
D598096 | Petersen | Aug 2009 | S |
D599015 | Petersen | Aug 2009 | S |
7578820 | Moore et al. | Aug 2009 | B2 |
D600806 | Horton et al. | Sep 2009 | S |
D601251 | Horton et al. | Sep 2009 | S |
7582058 | Miles et al. | Sep 2009 | B1 |
7582107 | Trail et al. | Sep 2009 | B2 |
7595043 | Hedrick et al. | Sep 2009 | B2 |
D603502 | Petersen | Nov 2009 | S |
7615078 | White et al. | Nov 2009 | B2 |
7618423 | Valentine et al. | Nov 2009 | B1 |
7625374 | Branch et al. | Dec 2009 | B2 |
7632276 | Fishbein | Dec 2009 | B2 |
7632281 | Errico et al. | Dec 2009 | B2 |
D608001 | Reardon et al. | Jan 2010 | S |
7655027 | Michelson | Feb 2010 | B2 |
7658766 | Melkent et al. | Feb 2010 | B2 |
D611147 | Hanson et al. | Mar 2010 | S |
7671014 | Beals et al. | Mar 2010 | B2 |
7674265 | Smith et al. | Mar 2010 | B2 |
7674297 | Falahee | Mar 2010 | B2 |
7677418 | Henniges et al. | Mar 2010 | B2 |
7686805 | Michelson | Mar 2010 | B2 |
7691133 | Partin et al. | Apr 2010 | B2 |
7693562 | Marino et al. | Apr 2010 | B2 |
7699852 | Frankel et al. | Apr 2010 | B2 |
D615653 | Horton | May 2010 | S |
7708761 | Petersen | May 2010 | B2 |
7717685 | Moutafis et al. | May 2010 | B2 |
7722530 | Davison | May 2010 | B2 |
7722613 | Sutterlin et al. | May 2010 | B2 |
7723291 | Beals et al. | May 2010 | B2 |
7728868 | Razzaque et al. | Jun 2010 | B2 |
7730563 | Sklar et al. | Jun 2010 | B1 |
7734327 | Colquhoun | Jun 2010 | B2 |
7740634 | Orbay et al. | Jun 2010 | B2 |
7740661 | Baratz et al. | Jun 2010 | B2 |
7744555 | DiMauro et al. | Jun 2010 | B2 |
7744637 | Johnson et al. | Jun 2010 | B2 |
7744973 | Schoenle et al. | Jun 2010 | B2 |
D620108 | Eitenmueller et al. | Jul 2010 | S |
7749231 | Bonvallet et al. | Jul 2010 | B2 |
7749253 | Zucherman et al. | Jul 2010 | B2 |
7749255 | Johnson et al. | Jul 2010 | B2 |
7749269 | Peterman et al. | Jul 2010 | B2 |
7749273 | Cauthen et al. | Jul 2010 | B2 |
7749274 | Razian | Jul 2010 | B2 |
7749276 | Fitz | Jul 2010 | B2 |
7749279 | Twomey et al. | Jul 2010 | B2 |
7749555 | Zanella et al. | Jul 2010 | B2 |
7751865 | Jascob et al. | Jul 2010 | B2 |
7753911 | Ray et al. | Jul 2010 | B2 |
7753912 | Raymond et al. | Jul 2010 | B2 |
7753914 | Ruhling et al. | Jul 2010 | B2 |
7753938 | Aschmann et al. | Jul 2010 | B2 |
7753940 | Veldman et al. | Jul 2010 | B2 |
7753962 | Melder | Jul 2010 | B2 |
7758501 | Frasier et al. | Jul 2010 | B2 |
7758616 | LeHuec et al. | Jul 2010 | B2 |
7758617 | Lott et al. | Jul 2010 | B2 |
7758644 | Trieu | Jul 2010 | B2 |
7758648 | Castlemen et al. | Jul 2010 | B2 |
7763025 | Assell et al. | Jul 2010 | B2 |
7763035 | Melkent et al. | Jul 2010 | B2 |
7763055 | Foley | Jul 2010 | B2 |
7763078 | Peterman et al. | Jul 2010 | B2 |
7763080 | Southworth | Jul 2010 | B2 |
D621509 | Lovell | Aug 2010 | S |
D622395 | Iott et al. | Aug 2010 | S |
D622843 | Horton | Aug 2010 | S |
D622851 | Horton | Aug 2010 | S |
7766914 | McCormack et al. | Aug 2010 | B2 |
7766918 | Allard et al. | Aug 2010 | B2 |
7766930 | DiPoto et al. | Aug 2010 | B2 |
7766940 | Kwak et al. | Aug 2010 | B2 |
7766967 | Francis | Aug 2010 | B2 |
7766969 | Justin et al. | Aug 2010 | B2 |
7769422 | DiSilvestro et al. | Aug 2010 | B2 |
7771143 | Bharadwaj et al. | Aug 2010 | B2 |
7771473 | Thramann | Aug 2010 | B2 |
7771475 | Michelson | Aug 2010 | B2 |
7771476 | Justis et al. | Aug 2010 | B2 |
7771479 | Humphreys et al. | Aug 2010 | B2 |
7776040 | Markworth et al. | Aug 2010 | B2 |
7776046 | Boyd et al. | Aug 2010 | B2 |
7776047 | Fanger et al. | Aug 2010 | B2 |
7776049 | Curran et al. | Aug 2010 | B1 |
7776075 | Bruneau et al. | Aug 2010 | B2 |
7776090 | Winslow et al. | Aug 2010 | B2 |
7776091 | Mastrorio et al. | Aug 2010 | B2 |
7776094 | McKinley et al. | Aug 2010 | B2 |
7776095 | Peterman et al. | Aug 2010 | B2 |
7776594 | Bays et al. | Aug 2010 | B2 |
7780707 | Johnson et al. | Aug 2010 | B2 |
7780734 | Johnson et al. | Aug 2010 | B2 |
D623748 | Horton et al. | Sep 2010 | S |
D623749 | Horton et al. | Sep 2010 | S |
7794396 | Gattani et al. | Sep 2010 | B2 |
7794501 | Edie et al. | Sep 2010 | B2 |
7799034 | Johnson et al. | Sep 2010 | B2 |
7799036 | Davison et al. | Sep 2010 | B2 |
7799053 | Haid et al. | Sep 2010 | B2 |
7799054 | Kwak et al. | Sep 2010 | B2 |
7799055 | Lim | Sep 2010 | B2 |
7799056 | Sankaran | Sep 2010 | B2 |
7799076 | Sybert et al. | Sep 2010 | B2 |
7799078 | Embry et al. | Sep 2010 | B2 |
7799083 | Smith et al. | Sep 2010 | B2 |
7803159 | Perez-Cruet et al. | Sep 2010 | B2 |
7806901 | Stad et al. | Oct 2010 | B2 |
7811327 | Hansell et al. | Oct 2010 | B2 |
7811329 | Ankney et al. | Oct 2010 | B2 |
7815681 | Ferguson | Oct 2010 | B2 |
7819801 | Miles et al. | Oct 2010 | B2 |
7819921 | Grotz | Oct 2010 | B2 |
D627460 | Horton | Nov 2010 | S |
D627468 | Richter et al. | Nov 2010 | S |
7824328 | Gattani et al. | Nov 2010 | B2 |
7824332 | Fakhrai | Nov 2010 | B2 |
7824410 | Simonson | Nov 2010 | B2 |
7824703 | Scifert et al. | Nov 2010 | B2 |
7828804 | Li et al. | Nov 2010 | B2 |
7828845 | Estes et al. | Nov 2010 | B2 |
7828849 | Lim | Nov 2010 | B2 |
7837713 | Petersen | Nov 2010 | B2 |
7837732 | Zucherman et al. | Nov 2010 | B2 |
D628694 | Donnez | Dec 2010 | S |
D629896 | Horton | Dec 2010 | S |
7846210 | Perez-Cruet et al. | Dec 2010 | B2 |
7850733 | Baynham et al. | Dec 2010 | B2 |
7850735 | Eisermann et al. | Dec 2010 | B2 |
7850736 | Heinz et al. | Dec 2010 | B2 |
D631156 | Halder et al. | Jan 2011 | S |
7867277 | Tohmeh | Jan 2011 | B1 |
7875078 | Wysocki et al. | Jan 2011 | B2 |
D631967 | Horton | Feb 2011 | S |
7892261 | Bonutti | Feb 2011 | B2 |
7897164 | Scifert | Mar 2011 | B2 |
7897564 | Beals et al. | Mar 2011 | B2 |
7905840 | Pimenta et al. | Mar 2011 | B2 |
7905886 | Curran et al. | Mar 2011 | B1 |
7918891 | Curran et al. | Apr 2011 | B1 |
7922766 | Grob et al. | Apr 2011 | B2 |
7927361 | Oliver et al. | Apr 2011 | B2 |
D637721 | Horton | May 2011 | S |
7935124 | Frey et al. | May 2011 | B2 |
7938857 | Garcia-Bengochea et al. | May 2011 | B2 |
7939092 | McKay et al. | May 2011 | B2 |
7951107 | Staid et al. | May 2011 | B2 |
7964208 | Spagnoli et al. | Jun 2011 | B2 |
D641872 | Solingen et al. | Jul 2011 | S |
D641873 | Solingen et al. | Jul 2011 | S |
D641874 | Solingen et al. | Jul 2011 | S |
D642268 | Qureshi | Jul 2011 | S |
7985256 | Grotz et al. | Jul 2011 | B2 |
7985526 | Sweeney et al. | Jul 2011 | B2 |
D643921 | Davila | Aug 2011 | S |
D647202 | Scifert | Oct 2011 | S |
D650481 | Gottlieb et al. | Dec 2011 | S |
8075623 | Johnson et al. | Dec 2011 | B2 |
8080521 | Beals et al. | Dec 2011 | B2 |
8088163 | Kleiner | Jan 2012 | B1 |
D653757 | Binder | Feb 2012 | S |
8123755 | Johnson et al. | Feb 2012 | B2 |
D655414 | Cuschieri et al. | Mar 2012 | S |
D656610 | Kleiner | Mar 2012 | S |
8142437 | McLean et al. | Mar 2012 | B2 |
8148326 | Beals et al. | Apr 2012 | B2 |
8162990 | Potash et al. | Apr 2012 | B2 |
D660428 | Kohl | May 2012 | S |
8167887 | McLean | May 2012 | B2 |
8197544 | Manzi et al. | Jun 2012 | B1 |
8198238 | Beals et al. | Jun 2012 | B2 |
8202274 | McLean | Jun 2012 | B2 |
8206395 | McLean et al. | Jun 2012 | B2 |
8206398 | Johnson et al. | Jun 2012 | B2 |
8246572 | Cantor et al. | Aug 2012 | B2 |
D667542 | Kleiner | Sep 2012 | S |
8273129 | Baynham et al. | Sep 2012 | B2 |
8277510 | Kleiner | Oct 2012 | B2 |
8282683 | McLaughlin et al. | Oct 2012 | B2 |
8292960 | Kleiner | Oct 2012 | B2 |
8293232 | Beals et al. | Oct 2012 | B2 |
8303659 | Errico et al. | Nov 2012 | B2 |
8317802 | Manzi et al. | Nov 2012 | B1 |
8337531 | Johnson et al. | Dec 2012 | B2 |
8337532 | McLean et al. | Dec 2012 | B1 |
8337562 | Landry et al. | Dec 2012 | B2 |
D674900 | Janice et al. | Jan 2013 | S |
8343193 | Johnson et al. | Jan 2013 | B2 |
8349014 | Barreiro et al. | Jan 2013 | B2 |
8361152 | McCormack et al. | Jan 2013 | B2 |
8366748 | Kleiner | Feb 2013 | B2 |
8372120 | James | Feb 2013 | B2 |
D677791 | Danacioglu et al. | Mar 2013 | S |
8394108 | McLean et al. | Mar 2013 | B2 |
8394129 | Morgenstern Lopez et al. | Mar 2013 | B2 |
D681205 | Farris et al. | Apr 2013 | S |
8414622 | Potash | Apr 2013 | B2 |
8430885 | Manzi et al. | Apr 2013 | B2 |
8439929 | Sharratt et al. | May 2013 | B1 |
8454621 | DeRidder et al. | Jun 2013 | B2 |
8454664 | McLean | Jun 2013 | B2 |
8475500 | Potash | Jul 2013 | B2 |
8506635 | Palmatier et al. | Aug 2013 | B2 |
8512347 | McCormack et al. | Aug 2013 | B2 |
8512383 | McLean | Aug 2013 | B2 |
8518087 | Lopez et al. | Aug 2013 | B2 |
8523906 | McLean et al. | Sep 2013 | B2 |
8529627 | Baynham | Sep 2013 | B2 |
8535353 | Johnson et al. | Sep 2013 | B2 |
D692133 | Steinwachs et al. | Oct 2013 | S |
8556979 | Glerum et al. | Oct 2013 | B2 |
8562654 | McLean et al. | Oct 2013 | B2 |
8562685 | Ullrich, Jr. et al. | Oct 2013 | B2 |
8574299 | Barreiro et al. | Nov 2013 | B2 |
8585761 | Theofilos | Nov 2013 | B2 |
8591585 | McLaughlin et al. | Nov 2013 | B2 |
D696399 | Kleiner | Dec 2013 | S |
8597333 | Morgenstern Lopez et al. | Dec 2013 | B2 |
8623054 | McCormack et al. | Jan 2014 | B2 |
8628576 | Triplett et al. | Jan 2014 | B2 |
D700322 | Kleiner | Feb 2014 | S |
D700332 | Tyber | Feb 2014 | S |
8641739 | McLean et al. | Feb 2014 | B2 |
8657826 | McLean et al. | Feb 2014 | B2 |
8663281 | McLean et al. | Mar 2014 | B2 |
8685031 | Kleiner | Apr 2014 | B2 |
8709086 | Glerum | Apr 2014 | B2 |
8709088 | Kleiner et al. | Apr 2014 | B2 |
8715351 | Pinto | May 2014 | B1 |
8727975 | Pfabe et al. | May 2014 | B1 |
8753345 | McCormack et al. | Jun 2014 | B2 |
8753347 | McCormack et al. | Jun 2014 | B2 |
8753377 | McCormack et al. | Jun 2014 | B2 |
8758443 | Ullrich, Jr. et al. | Jun 2014 | B2 |
D708323 | Reyes et al. | Jul 2014 | S |
D708747 | Curran et al. | Jul 2014 | S |
8771360 | Jimenez et al. | Jul 2014 | B2 |
8778025 | Ragab et al. | Jul 2014 | B2 |
8778027 | Medina | Jul 2014 | B2 |
8795366 | Varela | Aug 2014 | B2 |
8808304 | Weiman et al. | Aug 2014 | B2 |
8808305 | Kleiner | Aug 2014 | B2 |
8808383 | Kwak et al. | Aug 2014 | B2 |
8814940 | Curran et al. | Aug 2014 | B2 |
8821396 | Miles et al. | Sep 2014 | B1 |
8828019 | Raymond et al. | Sep 2014 | B1 |
8828062 | McCormack et al. | Sep 2014 | B2 |
8834472 | McCormack et al. | Sep 2014 | B2 |
8840622 | Vellido et al. | Sep 2014 | B1 |
8840668 | Donahoe et al. | Sep 2014 | B1 |
8845640 | McLean et al. | Sep 2014 | B2 |
8845727 | Gottlieb et al. | Sep 2014 | B2 |
8845731 | Weiman | Sep 2014 | B2 |
8845732 | Weiman | Sep 2014 | B2 |
8845734 | Weiman | Sep 2014 | B2 |
D714933 | Kawamura | Oct 2014 | S |
8852242 | Morgenstern Lopez et al. | Oct 2014 | B2 |
8852243 | Morgenstern Lopez et al. | Oct 2014 | B2 |
8852244 | Simonson | Oct 2014 | B2 |
8852279 | Weiman | Oct 2014 | B2 |
8852281 | Phelps | Oct 2014 | B2 |
8852282 | Farley et al. | Oct 2014 | B2 |
8858598 | Seifert et al. | Oct 2014 | B2 |
8864830 | Malandain | Oct 2014 | B2 |
8870882 | Kleiner | Oct 2014 | B2 |
8900313 | Barreiro et al. | Dec 2014 | B2 |
8906028 | Kleiner | Dec 2014 | B2 |
8920507 | Malandain | Dec 2014 | B2 |
D721808 | Oi | Jan 2015 | S |
8932295 | Greenhalgh | Jan 2015 | B1 |
8945137 | Greenhalgh et al. | Feb 2015 | B1 |
D723682 | Kleiner | Mar 2015 | S |
D724213 | Tyber | Mar 2015 | S |
8974464 | Johnson et al. | Mar 2015 | B2 |
8992622 | Ullrich, Jr. et al. | Mar 2015 | B2 |
9039767 | Raymond et al. | May 2015 | B2 |
9186193 | Kleiner et al. | May 2015 | B2 |
9060877 | Kleiner | Jun 2015 | B2 |
D735336 | Lovell | Jul 2015 | S |
9084686 | McLean et al. | Jul 2015 | B1 |
9095446 | Landry et al. | Aug 2015 | B2 |
9095447 | Barreiro et al. | Aug 2015 | B2 |
9101488 | Malandain | Aug 2015 | B2 |
9107766 | McLean et al. | Aug 2015 | B1 |
9113962 | McLean et al. | Aug 2015 | B2 |
9114026 | McLean et al. | Aug 2015 | B1 |
9149302 | McLean et al. | Oct 2015 | B2 |
9173694 | Kleiner | Nov 2015 | B2 |
9174147 | Hoogenakker et al. | Nov 2015 | B2 |
9216094 | McLean et al. | Dec 2015 | B2 |
9226777 | Potash et al. | Jan 2016 | B2 |
D750249 | Grimberg et al. | Feb 2016 | S |
9247943 | Kleiner | Feb 2016 | B1 |
9295500 | Marigowda | Mar 2016 | B2 |
9358134 | Malandain | Jun 2016 | B2 |
9381094 | Barreiro et al. | Jul 2016 | B2 |
9427264 | Kleiner | Aug 2016 | B2 |
9439692 | Schlesinger et al. | Sep 2016 | B1 |
9439782 | Kleiner | Sep 2016 | B2 |
9439783 | McLean et al. | Sep 2016 | B2 |
9445921 | McLean | Sep 2016 | B2 |
9456830 | Greenhalgh | Oct 2016 | B2 |
9480578 | Pinto | Nov 2016 | B2 |
9498200 | Pfabe et al. | Nov 2016 | B2 |
9498347 | McLean | Nov 2016 | B2 |
9498351 | Vigliotti et al. | Nov 2016 | B2 |
9517140 | McLean et al. | Dec 2016 | B2 |
9517141 | McLean et al. | Dec 2016 | B2 |
9517142 | Pinto et al. | Dec 2016 | B2 |
9545250 | Plabe et al. | Jan 2017 | B2 |
9545279 | James et al. | Jan 2017 | B2 |
9545313 | Raymond et al. | Jan 2017 | B2 |
9545318 | Johnson et al. | Jan 2017 | B2 |
9610175 | Barreiro et al. | Apr 2017 | B2 |
9629668 | McLean et al. | Apr 2017 | B2 |
9629729 | Grimberg et al. | Apr 2017 | B2 |
9655660 | McLean et al. | May 2017 | B2 |
9655743 | Johnson et al. | May 2017 | B2 |
9655747 | Glerum et al. | May 2017 | B2 |
9668881 | Greenhalgh et al. | Jun 2017 | B1 |
9681889 | Greenhalgh et al. | Jun 2017 | B1 |
9687360 | Baynham et al. | Jun 2017 | B2 |
9707094 | Protopsaltis et al. | Jul 2017 | B2 |
9717403 | Kleiner et al. | Aug 2017 | B2 |
D797290 | Kleiner | Sep 2017 | S |
9763700 | Gregory | Sep 2017 | B1 |
9826988 | Kleiner | Nov 2017 | B2 |
9861395 | Potash et al. | Jan 2018 | B2 |
9980737 | Thommen et al. | May 2018 | B2 |
9993353 | Sandhu | Jun 2018 | B2 |
20020010472 | Kuslich et al. | Jan 2002 | A1 |
20020049448 | Sand et al. | Apr 2002 | A1 |
20020058947 | Hochschuler et al. | May 2002 | A1 |
20020099377 | Zucherman et al. | Jul 2002 | A1 |
20020116006 | Cohen | Aug 2002 | A1 |
20030009169 | Young et al. | Jan 2003 | A1 |
20030023306 | Liu et al. | Jan 2003 | A1 |
20030083748 | Lee et al. | May 2003 | A1 |
20030125739 | Bagga et al. | Jul 2003 | A1 |
20030149482 | Michelson | Aug 2003 | A1 |
20030171812 | Grunberg et al. | Sep 2003 | A1 |
20030229358 | Errico et al. | Dec 2003 | A1 |
20040002713 | Olson et al. | Jan 2004 | A1 |
20040024466 | Heerklotz | Feb 2004 | A1 |
20040073314 | White et al. | Apr 2004 | A1 |
20040087956 | Weikel et al. | May 2004 | A1 |
20040133211 | Raskin et al. | Jul 2004 | A1 |
20040133217 | Watschke | Jul 2004 | A1 |
20040143330 | Sazy | Jul 2004 | A1 |
20040148027 | Errico et al. | Jul 2004 | A1 |
20040153158 | Errico et al. | Aug 2004 | A1 |
20040162616 | Simonton et al. | Aug 2004 | A1 |
20040167532 | Olson, Jr. et al. | Aug 2004 | A1 |
20040176853 | Sennett et al. | Sep 2004 | A1 |
20040215201 | Lieberman | Oct 2004 | A1 |
20040230211 | Moutafis et al. | Nov 2004 | A1 |
20050070900 | Serhan et al. | Mar 2005 | A1 |
20050070912 | Voellmicke | Mar 2005 | A1 |
20050080443 | Fallin et al. | Apr 2005 | A1 |
20050096601 | Doyle | May 2005 | A1 |
20050112091 | DiMauro et al. | May 2005 | A1 |
20050118550 | Turri | Jun 2005 | A1 |
20050124993 | Chappuis | Jun 2005 | A1 |
20050124994 | Berger et al. | Jun 2005 | A1 |
20050149035 | Pimenta et al. | Jul 2005 | A1 |
20050149192 | Zucherman et al. | Jul 2005 | A1 |
20050159765 | Moutafis et al. | Jul 2005 | A1 |
20050165405 | Tsou | Jul 2005 | A1 |
20050216002 | Simonson | Sep 2005 | A1 |
20050216018 | Sennett | Sep 2005 | A1 |
20050251146 | Martz et al. | Nov 2005 | A1 |
20050251257 | Mitchell et al. | Nov 2005 | A1 |
20050261781 | Sennett et al. | Nov 2005 | A1 |
20050278026 | Gordon et al. | Dec 2005 | A1 |
20050283150 | Moutafis et al. | Dec 2005 | A1 |
20060004367 | Alamin et al. | Jan 2006 | A1 |
20060015184 | Winterbottom et al. | Jan 2006 | A1 |
20060058585 | Oberlaender et al. | Mar 2006 | A1 |
20060058807 | Landry et al. | Mar 2006 | A1 |
20060100304 | Vresilovic et al. | May 2006 | A1 |
20060100705 | Puno et al. | May 2006 | A1 |
20060111779 | Petersen | May 2006 | A1 |
20060111780 | Petersen | May 2006 | A1 |
20060116770 | White et al. | Jun 2006 | A1 |
20060122597 | Jones et al. | Jun 2006 | A1 |
20060142858 | Colleran et al. | Jun 2006 | A1 |
20060154366 | Brown et al. | Jul 2006 | A1 |
20060155170 | Hanson et al. | Jul 2006 | A1 |
20060167461 | Hawkins et al. | Jul 2006 | A1 |
20060190081 | Kraus | Aug 2006 | A1 |
20060229550 | Staid et al. | Oct 2006 | A1 |
20060247650 | Yerby et al. | Nov 2006 | A1 |
20060247791 | McKay et al. | Nov 2006 | A1 |
20060264808 | Staid et al. | Nov 2006 | A1 |
20060264964 | Scifert et al. | Nov 2006 | A1 |
20070003598 | Trieu | Jan 2007 | A1 |
20070010824 | Malandain et al. | Jan 2007 | A1 |
20070016195 | Winslow et al. | Jan 2007 | A1 |
20070043376 | Leatherbury et al. | Feb 2007 | A1 |
20070043442 | Abernathie | Feb 2007 | A1 |
20070067034 | Chirico et al. | Mar 2007 | A1 |
20070073110 | Larson et al. | Mar 2007 | A1 |
20070073294 | Chin et al. | Mar 2007 | A1 |
20070088007 | Ng | Apr 2007 | A1 |
20070093850 | Harris et al. | Apr 2007 | A1 |
20070123985 | Errico et al. | May 2007 | A1 |
20070172790 | Doucette, Jr. et al. | Jul 2007 | A1 |
20070185496 | Beckman et al. | Aug 2007 | A1 |
20070208423 | Messerli et al. | Sep 2007 | A1 |
20070213596 | Hamada | Sep 2007 | A1 |
20070213717 | Trieu | Sep 2007 | A1 |
20070213718 | Trieu | Sep 2007 | A1 |
20070213822 | Trieu | Sep 2007 | A1 |
20070213826 | Smith et al. | Sep 2007 | A1 |
20070225219 | Boden et al. | Sep 2007 | A1 |
20070225811 | Scifert et al. | Sep 2007 | A1 |
20070242869 | Rochester | Oct 2007 | A1 |
20070250166 | McKay | Oct 2007 | A1 |
20070264300 | Scifert et al. | Nov 2007 | A1 |
20070265632 | Scifert et al. | Nov 2007 | A1 |
20070270951 | Davis et al. | Nov 2007 | A1 |
20070276406 | Mahoney et al. | Nov 2007 | A1 |
20070288007 | Burkus et al. | Dec 2007 | A1 |
20070293948 | Bagga et al. | Dec 2007 | A1 |
20080003255 | Kerr et al. | Jan 2008 | A1 |
20080009929 | Harris et al. | Jan 2008 | A1 |
20080033440 | Moskowitz et al. | Feb 2008 | A1 |
20080058606 | Miles et al. | Mar 2008 | A1 |
20080071284 | Lechmann et al. | Mar 2008 | A1 |
20080086142 | Kohm et al. | Apr 2008 | A1 |
20080125856 | Perez-Cruet et al. | May 2008 | A1 |
20080147191 | Lopez et al. | Jun 2008 | A1 |
20080154375 | Serhan et al. | Jun 2008 | A1 |
20080154377 | Voellmicke | Jun 2008 | A1 |
20080154381 | Parrish | Jun 2008 | A1 |
20080161924 | Viker | Jul 2008 | A1 |
20080172127 | Perez-Cruet et al. | Jul 2008 | A1 |
20080177294 | O'Neil | Jul 2008 | A1 |
20080195058 | Moutafis et al. | Aug 2008 | A1 |
20080195101 | Lechot | Aug 2008 | A1 |
20080228225 | Trautwein et al. | Sep 2008 | A1 |
20080243126 | Gutierrez et al. | Oct 2008 | A1 |
20080249569 | Waugh et al. | Oct 2008 | A1 |
20080255564 | Michelson | Oct 2008 | A1 |
20080255666 | Fisher et al. | Oct 2008 | A1 |
20080260598 | Gross et al. | Oct 2008 | A1 |
20080269904 | Voorhies | Oct 2008 | A1 |
20080288071 | Biyani et al. | Nov 2008 | A1 |
20080300598 | Barreiro et al. | Dec 2008 | A1 |
20090043312 | Koulisis | Feb 2009 | A1 |
20090076440 | Moutafis et al. | Mar 2009 | A1 |
20090076556 | McGarity et al. | Mar 2009 | A1 |
20090088765 | Butler et al. | Apr 2009 | A1 |
20090098184 | Govil et al. | Apr 2009 | A1 |
20090099660 | Scifert et al. | Apr 2009 | A1 |
20090105718 | Zhang et al. | Apr 2009 | A1 |
20090124860 | Miles et al. | May 2009 | A1 |
20090124980 | Chen | May 2009 | A1 |
20090125066 | Krau et al. | May 2009 | A1 |
20090142385 | Gross et al. | Jun 2009 | A1 |
20090182429 | Humphreys et al. | Jul 2009 | A1 |
20090187194 | Hamada | Jul 2009 | A1 |
20090192350 | Meja | Jul 2009 | A1 |
20090192403 | Gharib et al. | Jul 2009 | A1 |
20090198241 | Phan | Aug 2009 | A1 |
20090198243 | Melsheimer | Aug 2009 | A1 |
20090198245 | Phan | Aug 2009 | A1 |
20090198337 | Phan | Aug 2009 | A1 |
20090198338 | Phan | Aug 2009 | A1 |
20090198339 | Kleiner et al. | Aug 2009 | A1 |
20090203967 | Branch et al. | Aug 2009 | A1 |
20090204148 | Lenke | Aug 2009 | A1 |
20090204159 | Justis et al. | Aug 2009 | A1 |
20090204220 | Trieu | Aug 2009 | A1 |
20090222011 | Lehuec et al. | Sep 2009 | A1 |
20090228107 | Michelson | Sep 2009 | A1 |
20090234455 | Moskowitz et al. | Sep 2009 | A1 |
20090246244 | McKay et al. | Oct 2009 | A1 |
20090248163 | King et al. | Oct 2009 | A1 |
20090259108 | Miles et al. | Oct 2009 | A1 |
20090264892 | Beyar et al. | Oct 2009 | A1 |
20090275995 | Truckai et al. | Nov 2009 | A1 |
20090281551 | Frey | Nov 2009 | A1 |
20090292361 | Lopez | Nov 2009 | A1 |
20090299477 | Clayton et al. | Dec 2009 | A1 |
20090306671 | McCormack et al. | Dec 2009 | A1 |
20090306692 | Barrington et al. | Dec 2009 | A1 |
20100004752 | White et al. | Jan 2010 | A1 |
20100010367 | Foley et al. | Jan 2010 | A1 |
20100010524 | Barrington et al. | Jan 2010 | A1 |
20100016903 | Matityahu et al. | Jan 2010 | A1 |
20100016972 | Jansen et al. | Jan 2010 | A1 |
20100016973 | de Villiers et al. | Jan 2010 | A1 |
20100021518 | Scifert et al. | Jan 2010 | A1 |
20100030065 | Farr et al. | Feb 2010 | A1 |
20100036226 | Marino et al. | Feb 2010 | A9 |
20100036442 | Lauryssen et al. | Feb 2010 | A1 |
20100042221 | Boyd | Feb 2010 | A1 |
20100057208 | Dryer | Mar 2010 | A1 |
20100063516 | Parmer et al. | Mar 2010 | A1 |
20100063554 | Branch et al. | Mar 2010 | A1 |
20100076335 | Gharib et al. | Mar 2010 | A1 |
20100076445 | Pagano | Mar 2010 | A1 |
20100076446 | Gorek | Mar 2010 | A1 |
20100082036 | Reiley et al. | Apr 2010 | A1 |
20100087828 | Krueger et al. | Apr 2010 | A1 |
20100087875 | McGahan et al. | Apr 2010 | A1 |
20100100141 | de Villiers et al. | Apr 2010 | A1 |
20100105986 | Miles et al. | Apr 2010 | A1 |
20100105987 | Miles et al. | Apr 2010 | A1 |
20100112029 | Scifert | May 2010 | A1 |
20100114147 | Biyani | May 2010 | A1 |
20100121365 | O'Sullivan et al. | May 2010 | A1 |
20100121453 | Peterman | May 2010 | A1 |
20100125333 | Zdeblick et al. | May 2010 | A1 |
20100125338 | Fitz | May 2010 | A1 |
20100131020 | Heinz et al. | May 2010 | A1 |
20100137690 | Miles et al. | Jun 2010 | A1 |
20100137923 | Greenhalgh et al. | Jun 2010 | A1 |
20100145390 | McCarthy et al. | Jun 2010 | A1 |
20100145452 | Blaylock et al. | Jun 2010 | A1 |
20100145461 | Landry et al. | Jun 2010 | A1 |
20100152853 | Kirschman | Jun 2010 | A1 |
20100160923 | Sand et al. | Jun 2010 | A1 |
20100160982 | Justis et al. | Jun 2010 | A1 |
20100161062 | Foley et al. | Jun 2010 | A1 |
20100161074 | McKay | Jun 2010 | A1 |
20100168755 | Reiley et al. | Jul 2010 | A1 |
20100168862 | Edie et al. | Jul 2010 | A1 |
20100174326 | Selover et al. | Jul 2010 | A1 |
20100185286 | Allard | Jul 2010 | A1 |
20100185287 | Allard | Jul 2010 | A1 |
20100185288 | Carls | Jul 2010 | A1 |
20100191241 | McCormack et al. | Jul 2010 | A1 |
20100191334 | Keller | Jul 2010 | A1 |
20100191337 | Zamani et al. | Jul 2010 | A1 |
20100198140 | Lawson | Aug 2010 | A1 |
20100199483 | Justis et al. | Aug 2010 | A1 |
20100204798 | Gerbec et al. | Aug 2010 | A1 |
20100217398 | Keller | Aug 2010 | A1 |
20100222784 | Schwab et al. | Sep 2010 | A1 |
20100222824 | Simonson | Sep 2010 | A1 |
20100228294 | LeHuec et al. | Sep 2010 | A1 |
20100228351 | Ankney et al. | Sep 2010 | A1 |
20100234848 | Sutterlin et al. | Sep 2010 | A1 |
20100234957 | Zdeblick et al. | Sep 2010 | A1 |
20100249934 | Melkent | Sep 2010 | A1 |
20100256767 | Melkent | Oct 2010 | A1 |
20100256768 | Lim et al. | Oct 2010 | A1 |
20100262241 | Eisermann et al. | Oct 2010 | A1 |
20100262245 | Alfaro et al. | Oct 2010 | A1 |
20100266689 | Simonton et al. | Oct 2010 | A1 |
20100280622 | McKinley | Nov 2010 | A1 |
20100286778 | Eisermann et al. | Nov 2010 | A1 |
20100286779 | Thibodeau | Nov 2010 | A1 |
20100286784 | Curran et al. | Nov 2010 | A1 |
20100298938 | Humphreys et al. | Nov 2010 | A1 |
20100305575 | Wilkinson et al. | Dec 2010 | A1 |
20100312103 | Gorek et al. | Dec 2010 | A1 |
20100312290 | McKinley et al. | Dec 2010 | A1 |
20100312347 | Arramon et al. | Dec 2010 | A1 |
20100331847 | Wilkinson et al. | Dec 2010 | A1 |
20100331891 | Culbert et al. | Dec 2010 | A1 |
20110014587 | Spagnoli et al. | Jan 2011 | A1 |
20110015638 | Pischl et al. | Jan 2011 | A1 |
20110015748 | Molz, IV et al. | Jan 2011 | A1 |
20110020768 | Spagnoli et al. | Jan 2011 | A1 |
20110021427 | Amsden et al. | Jan 2011 | A1 |
20110028393 | Vickers et al. | Feb 2011 | A1 |
20110054538 | Zehavi et al. | Mar 2011 | A1 |
20110071527 | Nelson | Mar 2011 | A1 |
20110093005 | Strokosz et al. | Apr 2011 | A1 |
20110093074 | Glerum et al. | Apr 2011 | A1 |
20110106162 | Ballard et al. | May 2011 | A1 |
20110144687 | Kleiner | Jun 2011 | A1 |
20110160777 | Spagnoli et al. | Jun 2011 | A1 |
20110184412 | Scifert et al. | Jul 2011 | A1 |
20110208226 | Fatone et al. | Aug 2011 | A1 |
20110213372 | Keefer | Sep 2011 | A1 |
20110230970 | Lynn et al. | Sep 2011 | A1 |
20110257478 | Kleiner et al. | Oct 2011 | A1 |
20120022603 | Kirschman | Jan 2012 | A1 |
20120022651 | Akyuz et al. | Jan 2012 | A1 |
20120029635 | Schoenhoeffer et al. | Feb 2012 | A1 |
20120035668 | Manninen et al. | Feb 2012 | A1 |
20120035729 | Glerum et al. | Feb 2012 | A1 |
20120065613 | Pepper et al. | Mar 2012 | A1 |
20120065687 | Ballard et al. | Mar 2012 | A1 |
20120071981 | Farley et al. | Mar 2012 | A1 |
20120078315 | Sweeney | Mar 2012 | A1 |
20120089185 | Gabelberger | Apr 2012 | A1 |
20120123546 | Medina | May 2012 | A1 |
20120158146 | Glerum et al. | Jun 2012 | A1 |
20120197311 | Kirschman | Aug 2012 | A1 |
20120215316 | Mohr et al. | Aug 2012 | A1 |
20120259335 | Scifert et al. | Oct 2012 | A1 |
20130006364 | McCormack et al. | Jan 2013 | A1 |
20130006365 | Pepper et al. | Jan 2013 | A1 |
20130006366 | Farley et al. | Jan 2013 | A1 |
20130073041 | Scifert et al. | Mar 2013 | A1 |
20130110169 | Hynes et al. | May 2013 | A1 |
20130158664 | Palmatier et al. | Jun 2013 | A1 |
20130178940 | Farley | Jul 2013 | A1 |
20140012383 | Triplett et al. | Jan 2014 | A1 |
20140088712 | Gage | Mar 2014 | A1 |
20140100657 | McCormack et al. | Apr 2014 | A1 |
20140156006 | Bannigan et al. | Jun 2014 | A1 |
20140172103 | O'Neil et al. | Jun 2014 | A1 |
20140172106 | To et al. | Jun 2014 | A1 |
20140207239 | Barreiro | Jul 2014 | A1 |
20140228955 | Weiman | Aug 2014 | A1 |
20140236296 | Wagner et al. | Aug 2014 | A1 |
20140236297 | Iott et al. | Aug 2014 | A1 |
20140236298 | Pinto | Aug 2014 | A1 |
20140257405 | Zappacosta et al. | Sep 2014 | A1 |
20140257490 | Himmelberger et al. | Sep 2014 | A1 |
20140276581 | Lou et al. | Sep 2014 | A1 |
20140276896 | Harper | Sep 2014 | A1 |
20140277497 | Bennett et al. | Sep 2014 | A1 |
20140287055 | Kunjachan | Sep 2014 | A1 |
20140288652 | Boehm et al. | Sep 2014 | A1 |
20140296985 | Balasubramanian et al. | Oct 2014 | A1 |
20140303675 | Mishra | Oct 2014 | A1 |
20140303731 | Glerum | Oct 2014 | A1 |
20140303732 | Rhoda et al. | Oct 2014 | A1 |
20140309268 | Arnou | Oct 2014 | A1 |
20140309548 | Merz et al. | Oct 2014 | A1 |
20140309697 | Iott et al. | Oct 2014 | A1 |
20140309714 | Mercanzini et al. | Oct 2014 | A1 |
20140367846 | Nakagawa et al. | Dec 2014 | A1 |
20140371721 | Anderson et al. | Dec 2014 | A1 |
20160228261 | Emery et al. | Aug 2016 | A1 |
20160296344 | Greenhalgh et al. | Oct 2016 | A1 |
20160374825 | Kleiner | Dec 2016 | A1 |
20170027713 | Kleiner | Feb 2017 | A1 |
20170224397 | Grimberg | Aug 2017 | A1 |
20170238984 | Kleiner | Aug 2017 | A1 |
20170354514 | Greenhalgh et al. | Dec 2017 | A1 |
Number | Date | Country |
---|---|---|
2790946 | Sep 2000 | FR |
H09-327468 | Dec 1997 | JP |
2002-052331 | Feb 2002 | JP |
2009-534140 | Sep 2009 | JP |
2009-535115 | Oct 2009 | JP |
WO 9522402 | Aug 1995 | WO |
WO 9908627 | Feb 1999 | WO |
WO 0217801 | Mar 2002 | WO |
WO 2005037149 | Apr 2005 | WO |
WO 2005071190 | Aug 2005 | WO |
WO 2007122006 | Nov 2007 | WO |
WO 2007127666 | Nov 2007 | WO |
WO 2012031267 | Mar 2012 | WO |
WO 2012145048 | Oct 2012 | WO |
Entry |
---|
“BAK® /Proximity™ (BP®) Cage”, Zimmer Website, as early as Oct. 23, 2007, available at www.zimmer.com/z/ctl/op/global/action/1/id/7930/template/MP/prcat/M6/prod/y, printed on Jun. 8, 2009, 1 page. |
“BAK® Vista® Radiolucent Interbody Fusion System”, Zimmer Website, as early as Oct. 25, 2005, available at www.zimmerindia.com/z/ctl/op/global/action/1/id/7809/template/MP/prcat/M6/prod/y, printed on Jun. 8, 2009, pp. 1-2. |
“Facet Joint Syndrome,” The Cleveland Clinic Foundation, copyright 1995-2008, printed Nov. 19, 2008, available at www.my.clevelandclinic.org/disorders/facet_joint_syndrome/hic_facet_joint_syndrome.aspx, 2 pages. |
“Screws, Cages or Both”, Spine Universe Website, as early as Aug. 18, 2002, available at www.spineuniverse.com/displayarticle.php/article1363.html, printed on Jun. 8, 2009, pp. 1-13. |
“University of Maryland Spine Program: A Patient's Guide to Anterior Lumbar Interbody Fusion with Intervertebral Cages”, University of Maryland Medical Center website, as early as 2003, available at www.umm.edu/spinecenter/education/anterior_lumbar_interbody_fusion_with_intervertebral_cages.htm, printed on Jun. 8, 2009, pp. 1-4. |
“Vertebral column,” from Wikipedia, the free encyclopedia, printed May 19, 2009, retrieved from www.en.wikipedia.org/wiki/Vertebral_column, 6 pages. |
“Zygapophysial joint,” from Wikipedia, the free encyclopedia, printed May 19, 2009, retrieved from www.en.wikipedia.org/wiki/Zygapophysial_joint, 2 pages. |
Ehrenberg, “The 3-D Printing Revolution,” Science News, Mar. 9, 2013, pp. 20-25. |
Newton, “EOS Teams with Medical Implant Designer to Advance 3D Printing in Medicine,” Graphic Speak, 2012, 2 pages. |
Ray, “Facet Joint Disorders and Back Pain,” published on Spine-Health, Dec. 10, 2002, available at www.spine-health.com/conditions/arthritis/facet-joint-disorders-and-back-pain, 1 page. |
Staehler, “Spine Surgery for a Cervical Herniated Disc,” published on Spine-Health, Jun. 12, 2002, available at www.spine-health.com/conditions/herniated-disc/spine-surgery-a-cervical-herniated-disc, 2 pages. |
Staehler, “Summary of Cervical Herniated Disc Treatment Options,” published on Spine-Health, Jun. 12, 2002, available at www.spine-health.com/conditions/herniated-disc/summary-cervical-herniated-disc-treatment-options, 1 page. |
Ullrich, “Anterior Cervical Spinal Fusion Surgery,” published on Spine-Health, Oct. 7, 2005, available at www.spine-health.com/treatment/back-surgery/anterior-cervical-spinal-fusion-surgery, 2 pages. |
Ullrich, “Cervical Spinal Instrumentation,” published on Spine-Health, Oct. 7, 2005, available at www.spine-health.com/treatment/back-surgery/cervical-spinal-instrumentation, 2 pages. |
Wascher, “Anterior cervical decompression and spine fusion procedure,” published on Spine-Health, Aug. 29, 2001, available at www.spine-health.com/treatment/spinal-fusion/anterior-cervical-decompression-and-spine-fusion-procedure, 2 pages. |
International Search Report for International (PCT) Patent Application No. PCT/US2009/033488, dated Mar. 25, 2009, 2 pages. |
Written Opinion for International (PCT) Patent Application No. PCT/US2009/033488, dated Mar. 25, 2009, 9 pages. |
Official Action for U.S. Appl. No. 12/367,487, dated Aug. 3, 2011 10 pages. |
Notice of Allowance for U.S. Appl. No. 13/277,272, dated Jun. 11, 2012 8 pages. |
Official Action for U.S. Appl. No. 13/473,366, dated Jul. 18, 2012 8 pages. |
Notice of Allowance for U.S. Appl. No. 13/473,366, dated Sep. 4, 2012, 5 pages. |
Official Action for U.S. Appl. No. 13/632,956 dated Mar. 29, 2013, 9 pages. |
Official Action for U.S. Appl. No. 13/632,956 dated Aug. 1, 2013, 12 pages. |
Official Action for U.S. Appl. No. 13/632,956 dated Dec. 24, 2013, 11 pages. |
Notice of Allowance for U.S. Appl. No. 14/461,682 dated May 4, 2016, 6 pages. |
Official Action for U.S. Appl. No. 15/261,287 dated Jun. 14, 2017, 6 pages, Restriction Requirement. |
Official Action for U.S. Appl. No. 15/261,287 dated Sep. 1, 2017, 7 pages. |
Notice of Allowance for U.S. Appl. No. 29/393,737, dated Jan. 11, 2012 9 pages. |
Notice of Allowance for U.S. Appl. No. 29/415,847, dated Jul. 17, 2012 10 pages. |
Notice of Allowance for U.S. Appl. No. 29/433,403, dated Aug. 7, 2013 9 pages. |
Official Action for U.S. Appl. No. 14/887,598, dated Jul. 15, 2016 8 pages. |
Official Action for U.S. Appl. No. 13/168,611 dated Apr. 15, 2013, 7 pages. |
Official Action for U.S. Appl. No. 13/168,611 dated Aug. 15, 2013, 12 pages. |
Official Action for U.S. Appl. No. 13/168,611 dated May 23, 2014, 10 pages. |
Final Action for U.S. Appl. No. 13/168,611 dated Oct. 6, 2014, 10 pages. |
Official Action for U.S. Appl. No. 13/168,611 dated Apr. 13, 2015, 11 pages. |
Final Action for U.S. Appl. No. 13/168,611 dated Jun. 25, 2015, 9 pages. |
Official Action for U.S. Appl. No. 13/168,611 dated Sep. 8, 2015, 4 pages. |
Notice of Allowance for U.S. Appl. No. 13/168,611 dated Sep. 28, 2015, 12 pages. |
Official Action for U.S. Appl. No. 15/010,611 dated May 16, 2017, 9 pages. |
Notice of Allowance for U.S. Appl. No. 13/010,611 dated Jul. 26, 2017, 5 pages. |
“Graft Delivery Devices,” Nordson Medical, Aug. 2015, 8 pages. |
“Rapid Graft Delivery System,” Seaspine, 2017, 2 pages. |
“StaXX XD Expandable Device,” SpineWave, 2014, retrieved at http://www.spinewave.com/products/xd_us.html, 1 page. |
Extended European Search Report for European Patent Application No. 18153790.3, dated Jun. 14, 2018, 11 pages. |
Number | Date | Country | |
---|---|---|---|
20180064451 A1 | Mar 2018 | US |
Number | Date | Country | |
---|---|---|---|
61358149 | Jun 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15010611 | Jan 2016 | US |
Child | 15810810 | US | |
Parent | 13168611 | Jun 2011 | US |
Child | 15010611 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12367487 | Feb 2009 | US |
Child | 13168611 | US |