The present invention relates to gas turbine combustor technology generally and to an air flow arrangement that redirects compressor discharge air to combustor burners through an axially-extending, annular passage radially between a combustor liner and a surrounding flow sleeve with enhanced cooling of the combustor liner and reduced pressure drop.
In certain gas turbine combustors, a plurality of openings is provided about a flow sleeve surrounding the combustor liner for injecting air in a generally radial direction through the flow sleeve into an annular passage radially between the flow sleeve and the combustor liner for impingement cooling the liner. The air is radially injected generally normal to a free stream of impingement cooling air flowing within the flow sleeve, originating in a similar axially-connected annular passage radially between a transition duct (which carries the combustion gases from the combustor liner to the turbine first stage) and a surrounding impingement sleeve. This redirected compressor discharge air mixes with fuel at the aft end of the combustor and the fuel/air mixture is then combusted within the liner.
The impingement cooling air injected in the radial direction through the flow sleeve openings and into the free stream has a momentum exchange with the axially flowing air and must be accelerated by the axially flowing free stream air until the cross flowing air reaches the free stream velocity. This process causes an undesirable pressure drop in the flow to the combustor. In order to reduce the pressure drop, the air supply configuration has been altered to introduce the compressor discharge air into the passage substantially in the same axial direction as the air already flowing in the stream. This arrangement, however, results in the injecting flow tending to be sucked onto the outer wall of the passage, i.e., the inner wall of the flow sleeve, a manifestation of the so-called Coanda effect which reduces cooling efficiency.
It would therefore be desirable to inject air other than radially into the flow sleeve passage, but in such a way that the Coanda effect is eliminated or at least minimized, and cooling of the liner is enhanced.
In accordance with one exemplary but nonlimiting aspect of the invention, there is provided a turbine combustor liner assembly comprising a combustor liner having upstream and downstream ends; a transition duct attached to the downstream end of the combustor liner; a flow sleeve surrounding the combustor liner and establishing a first annular flow passage radially between the combustor liner and the flow sleeve; and a first annular inlet to the first annular flow passage at an aft end of the flow sleeve, the first annular inlet provided with a first plurality of flow vanes arranged circumferentially about the first annular flow passage to swirl air entering the first annular inlet about the combustor liner.
In another exemplary but nonlimiting aspect, the invention provides a turbine combustor liner assembly comprising a combustor liner having upstream and downstream ends; a transition duct attached to the downstream end of the liner; a first flow sleeve surrounding the combustor liner with a first radial flow passage therebetween; a first annular inlet to the first radial flow passage at an aft end of the flow sleeve, provided with a plurality of circumferentially spaced, angled flow vanes arranged to swirl air entering the first radial flow passage via the first annular inlet; an impingement sleeve surrounding the transition duct establishing a second annular flow passage radially between the transition duct and the impingement sleeve and communicating with the first annular flow passage; a second annular inlet to the first annular flow passage upstream of the first annular inlet relative to the direction of flow; the second annular inlet provided with a second plurality of flow vanes arranged circumferentially about the combustor liner to swirl air entering the first annular flow passage through the second annular inlet, the second plurality of flow vanes extending radially between the combustor liner and the impingement sleeve.
In still another exemplary but nonlimiting aspect of the invention, a turbine combustor liner assembly comprising a combustor liner having upstream and downstream ends; a transition duct attached to the downstream end of the liner; a first flow sleeve surrounding the combustor liner with a first radial flow passage therebetween; a first annular inlet to the first radial flow passage at an aft end of the flow sleeve, provided with a plurality of circumferentially spaced, angled flow vanes arranged to swirl air entering the first radial flow passage via the first annular inlet; an impingement sleeve surrounding the transition duct establishing a second annular flow passage radially between the transition duct and the impingement sleeve and communicating with the first annular flow passage; a second annular inlet to the first annular flow passage upstream of the first annular inlet relative to the direction of flow; the second annular inlet provided with a second plurality of flow vanes arranged circumferentially about the first annular flow passage to swirl air entering the first annular flow passage through the second annular inlet; wherein the first plurality of flow vanes extend radially between and are engaged with the flow sleeve and an annular coupling attaching the flow sleeve to an impingement sleeve surrounding the transition duct; wherein the second plurality of flow vanes extend radially between the combustor liner and the impingement sleeve; and wherein each of the first and second pluralities of flow vanes comprises a leading end portion and a trailing end portion, the leading end portion located upstream of the trailing end portion relative to a direction of flow into the first annular flow passage.
The invention will now be described in detail in connection with the drawings identified below.
Referring now to
As illustrated in
In another arrangement (not shown), air inlet arrangements have been provided that introduce air into the annular passage 28 in a direction generally parallel to the air flowing in the annular passage. This arrangement, as already noted, results in the injecting flow tending to be sucked onto the outer wall of the passage, i.e., onto the inner surface of the flow sleeve, an undesired manifestation of the so-called Coanda effect which negatively impacts impingement cooling of the liner 14.
Referring now to
The combustor liner 32 is surrounded by a flow sleeve 38 (with no cooling holes as in the flow sleeve 16) and the transition piece 40 is surrounded by an impingement sleeve 42. The flow sleeve 38 and impingement sleeve 42 are connected by an annular coupling 44 best seen in
The forward end 50 of the coupling 44 is attached to the aft end 52 of the flow sleeve by means of a plurality of circumferentially-spaced struts 54 which, in the exemplary but nonlimiting embodiment, are formed as air flow vanes having the shape (in plan) illustrated in
At the same time, vanes 60 (also shown schematically) of a similar configuration are interposed between the forward end 62 of the impingement sleeve 42 and the combustor liner adjacent the hula seal 58. These vanes have a similar shape and thus swirling effect on the air flowing axially from the passage 61 between the impingement sleeve 42 and the transition piece 40 and into the passage 56.
In those instances where all of the supporting struts between the coupling 44 and flow sleeve 38 are in fact flow vanes 54, the flow vanes are fixed (e.g., welded), with no individual adjustment capability. In those instances, however, where the flow vanes are combined (for example, alternated) with fixed, radial struts, the flow vanes 54 may be individually or collectively adjustable about radially extending pivot pins 64, as shown in phantom in
It will also be appreciated that the combustion gases in the liner will swirl in a given direction, creating hot spots in the liner wall as a function of that gas flow. With this invention, the adjustable flow vanes 54 allow the cooling air to be flowed angularly in a swirling direction opposite the swirling direction of the gases within the liner, thus enhancing heat transfer while cooling the hot spots.
With further reference to
As shown in
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2916878 | Wirt | Dec 1959 | A |
3840332 | Smith | Oct 1974 | A |
4211069 | Kalbfuss | Jul 1980 | A |
4362500 | Eriksson et al. | Dec 1982 | A |
4628687 | Strom | Dec 1986 | A |
4719748 | Davis et al. | Jan 1988 | A |
4872312 | Iizuka et al. | Oct 1989 | A |
4916906 | Vogt | Apr 1990 | A |
5033263 | Shekleton et al. | Jul 1991 | A |
5085039 | Shekleton | Feb 1992 | A |
6098397 | Glezer et al. | Aug 2000 | A |
6412268 | Cromer et al. | Jul 2002 | B1 |
6446438 | Kraft et al. | Sep 2002 | B1 |
7082766 | Widener et al. | Aug 2006 | B1 |
7707835 | Lipinski et al. | May 2010 | B2 |
8245513 | Huth et al. | Aug 2012 | B2 |
20030010014 | Bland et al. | Jan 2003 | A1 |
20060283189 | Lipinski | Dec 2006 | A1 |
20070062198 | Huth et al. | Mar 2007 | A1 |
20100170258 | Chila et al. | Jul 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20110214429 A1 | Sep 2011 | US |