Embodiments of the invention relate generally to an angular momentum propulsion apparatus, and more particularly, to an angular momentum propulsion apparatus constructed to impart motion on an object, such as a land, air, or space vehicle, and a method of controlling directional motion thereof.
With ever-increasing fuel prices, much research and development in recent years has been directed to improving vehicle fuel efficiency and reducing fuel consumption through the development of new technologies for hybrid-powered and all-electric vehicles. Further, while these new vehicle technologies may reduce fuel consumption for land and air vehicles, these technologies are generally inapplicable to space vehicles, which operate in the absence of air and a variation of gravity. The unique operating environment of space vehicles also imposes certain operating and design constraints on these vehicles. For example, a space vehicle cannot be refueled in a similar manner as a land or air vehicle after a space vehicle is launched out of the atmosphere. As such, the operating lifespan of a space vehicle is limited by the amount of fuel that the space vehicle can hold at the time of launch. Also, due to the harsh operating conditions of space and the difficulties (or, in many cases, impossibilities) associated with in-field repair and maintenance, it is desirable for the components of a space vehicle to be rugged and have a minimal number of complex electronic and mechanical components.
In order to address these issues, a number of technologies have been developed for land, air and space vehicles to achieve vehicle propulsion and directional control with improved efficiency. For example, gyroscopic devices have been incorporated in aircraft to sense or measure a change in orientation of the vehicle during operation. These stabilization systems operate based on the inertial property that a spinning gyroscope causes the spin axis of the gyroscope to resist change. When the gyroscope device senses an undesired change in vehicle orientation, the independent propulsion motors and associated steering controls of the vehicle operate to correct the orientation of the vehicle.
Attempts have also been made to apply gyroscopic principles to achieve linear translation of a vehicle from a translation of rotary motion to linear motion using components such as flywheels. These systems operate on the principle of gyroscopic precession, which states that a gyroscope will rotate about an axis that is at right angles to a force applied to the spin axis of the rotating object. While these systems may achieve some unidirectional motion, they are constructed using multiple gyroscopic devices that include a complex mechanical construction and that must be controlled in a precise synchronized manner in order to prevent undesirable cancellation of the processional force during operation. Further, such devices do not permit control of the direction of linear motion of the device.
Therefore, it would be desirable to design an apparatus and method that achieves vehicle propulsion in an efficient manner using gyroscopic principles to minimize the use of combustive fuels to propel the vehicle. It would further be desirable for such an apparatus to have a simplified control system and simplified overall construction that minimizes manufacturing costs.
According to one aspect of the invention, a propulsion apparatus includes a support structure and a first tube assembly coupled to the support structure. The first tube assembly includes a first curved portion, a second curved portion coupled to the first curved portion by a pair of angled joints, and a pump configured to pump a fluid through the first and second curved portions of the first tube assembly. The propulsion apparatus further includes a motor coupled to the support structure and a control system coupled to the motor and the pump and configured to propel the propulsion apparatus by simultaneously controlling a rotation of the support structure and a flow of the fluid within the first tube assembly.
In accordance with another aspect of the invention, a method of propelling a vehicle includes pumping a fluid through a plurality of tube assemblies, each tube assembly having a pair of joints dividing the tube assembly into a first curved section and a second curved section, wherein the first curved section is oriented at an angle to the second curved section. The method further includes propelling the vehicle in a direction by simultaneously controlling rotation of support structures coupled to the plurality of tube assemblies, and controlling a rate of flow of the fluid within the plurality of tube assemblies.
In accordance with yet another aspect of the invention, a vehicle includes a vehicle body, a mounting platform positioned within the vehicle body, and a plurality of propulsion apparatuses. Each propulsion apparatus includes a rotatable plate coupled to the mounting platform and a plurality of tube assemblies coupled to the rotatable plate. Each tube assembly of the plurality of tube assemblies includes a first curved portion and a second curved portion oriented at an angle to the first curved portion, a fluid disposed within the first and second curved portions and a pump configured to pump the fluid through the first and second curved portions. The vehicle further includes at least one motor coupled to the plurality of propulsion apparatuses and configured to cause rotation of the rotating plates and a propulsion control system configured to affect a motion of the vehicle by regulating a speed of the rotation of the plurality of rotating plates and a rate of flow of the fluid in the plurality of tube assemblies.
Various other features and advantages will be made apparent from the following detailed description and the drawings.
The drawings illustrate preferred embodiments presently contemplated for carrying out the invention.
In the drawings:
Referring to
In the embodiment illustrated in
Tube assemblies 16, 18 are positioned on rotating plate 12 to be centered about a central rotational axis 51 of rotating plate 12. In the dual tube assembly embodiment illustrated in
First curved portion 22 and second curved portion 26 of tube assembly 16 are fluidically connected to one another at a pair of angled joints 30 to permit a fluid 40 to flow in a continuous loop through tube assembly 16. Likewise, a pair of angled joints 32 fluidically couple first curved portion 24 and second curved portion 28 of tube assembly 18 to permit a fluid 42 to flow in a continuous loop through tube assembly 18. As shown in
As shown in
A liquid pump 44 is positioned within tube assembly 16 and configured to pump fluid 40 through second curved portion 26 and first curved portion 22 in a continuous loop. Likewise, a liquid pump 46 is positioned within tube assembly 18 and configured to pump fluid 42 in a continuous loop through first curved portion 24 and second curved portion 28. An accumulator 48, 50 is also positioned within each tube assembly 16, 18 to permit for expansion and contraction of respective fluid 40, 42. According to various embodiments, fluid 40 and fluid 42 are liquids that remain in fluid form within the typical operation conditions of propulsion apparatus 10.
While
Propulsion apparatus 10 also includes a motor 52 configured to control the rotation of rotating plate 12 about central axis 51. In one embodiment of the invention, motor 52 includes a gear assembly 53 that is configured to intermesh with a corresponding gear assembly 55 coupled to or formed on rotating plate 12. It is contemplated that motor 52 is not limited to a single speed, but may be operated to rotate rotating plate 12 at a variable range of speeds and in clockwise and counterclockwise directions.
In one embodiment of the invention, first contact 60, second contact 64, and ground contact 68 are each disposed on an electrical hub 70. As shown in
In one embodiment, propulsion apparatus 10 includes a controller or control system 54, schematically illustrated in
Movement of propulsion apparatus 10 is accomplished by operating pumps 44, 46 to pump fluid through tube assemblies 16, 18 while simultaneously operating motor 52 of propulsion apparatus 10 to rotate rotating plate 12 about central axis 51. During the rotation, each fluid 40, 42 exerts a pull force (P) that acts against the inner wall of its respective tube assembly 16, 18, creating a resultant force in the direction of arrow 72 that acts to propel propulsion apparatus 10 in a given direction. The magnitude of the resultant force (F) may be selectively controlled by adjusting the velocity of fluid 40, 42 through tube assemblies 16, 18 and the rotational speed of rotating plate 12.
Referring now to
In this embodiment of the invention, propulsion apparatus 74 includes a plurality of hollow tube assemblies 80, 82, 84, 86 mounted on a top surface 88 of rotating plate 76. While
As can be seen in
Tube assemblies 80-84 are arranged in a paired arrangement within propulsion apparatus 74, with tube assembly 82 and tube assembly 86 aligned with a first axis 91 and tube assembly 80 and 84 aligned with a second axis 93. In the embodiment of
A liquid pump 124 is positioned within tube assembly 80 and configured to pump fluid 116 through first and second curved portions 90, 98 in a continuous loop. Similarly, a liquid pump 126 is positioned within tube assembly 82 and configured to pump fluid 118 through first and second curved portions 92, 100. Likewise, a liquid pump 128 is positioned within tube assembly 84 and configured to pump fluid 120 through first and second curved portions 94, 102. In addition, a liquid pump 130 is positioned within tube assembly 86 and configured to pump fluid 122 through first and second curved portions 96, 104. An accumulator 132, 134, 136, 138 is also positioned within each tube assembly 80, 82, 84, 86 to permit for expansion and contraction of fluid 116, 118, 120, 122. According to various embodiments, fluids 116, 118, 120, 122 are liquids that remain in fluid form within the typical operation conditions of propulsion apparatus 74.
While
Additionally,
As shown in
Propulsion apparatus 74 also includes a motor 131 coupled to rotating plate 76 and configured to cause plate 76 to rotate about central axis 89 at a variable range of speeds. Similar to propulsion apparatus 10, motor 131 include a gear assembly that is configured to intermesh with a corresponding gear assembly of rotating plate 76. In addition, propulsion apparatus 74 includes a controller or control system control system 140, schematically illustrated in
Movement of propulsion apparatus 74 is accomplished by pumping fluid 116-122 through tube assemblies 80-86 while simultaneously rotating plate 76 about central axis 89. As plate 76 rotates, fluids 116-122 exert an outward-facing force (P) acting against its respective tube assembly 80-86. Together, fluids 116-122 generate a resultant force (F) acting in the direction of arrow 144. The magnitude of the resultant force (F) may be selectively controlled by adjusting the flow rate of fluids 116, 118, 120, 122 through tube assemblies 80, 82, 84, 86 and/or by adjusting the rotation speed of the rotating plate 76.
Now referring to
In the embodiment shown, each propulsion apparatuses 172-178 are configured in a similar manner as propulsion apparatus 10 of
A control system 179 is provided within vehicle body 182 and is operationally coupled to each propulsion apparatus 172-178 via control lines 181. Control system 179 independently operates each propulsion apparatus 172-178 in order to control the steering and speed of vehicle 170. By independently controlling the rotational speed and/or fluid flow rate of each propulsion apparatus 172, 174, 176, 178, control system 179 can regulate whether the propulsion apparatuses 172-178 produce the same or different resultant forces.
In one embodiment, propulsion apparatuses 172, 176 may be controlled to rotated in an opposite direction as propulsion apparatuses 174, 178 for torque cancellation. According to one non-limiting example, motors 52 of rotating disks 12 of propulsion apparatuses 172, 176 may be rotated in a clockwise direction to cause counterclockwise rotation of respective rotating disks 12, while motors 52 of rotating disks 12 of propulsion apparatuses 174, 178 may be rotated in a counterclockwise direction to cause clockwise rotation of respective rotating disks 12. In such an embodiment, fluid is pumped through propulsion apparatuses 172, 176 in a clockwise direction, while fluid is pumped through propulsion apparatuses 174, 178 in a counterclockwise direction.
The steering of vehicle 170 may be controlled by causing propulsion apparatuses 172-178 to produce different resultant forces. For example, the fluid within propulsion appartuses 172-178 may be pumped at different flow rates for trim control in embodiments where vehicle 170 is an aircraft. The speed of vehicle 170 may be controlled by adjusting the magnitude of net force generated by all of the propulsion apparatuses 172-178.
For example, when propulsion apparatuses 172-178 are controlled to generate the same resultant forces, the net resultant force acting on vehicle 170 would produce a vertical lift. Increasing or decreasing the rotation and/or fluid flow rate of propulsion apparatuses 172-178 would change the speed of that lift. However, if propulsion apparatuses 174, 176 (located on the right side of vehicle mounting platform 180) were operated to generate a larger resultant force than that of propulsion apparatuses 172, 178 (located on the left side of vehicle mounting platform 180), vehicle 170 would tilt to the left and proceed in that direction. As a result, by operating each propulsion apparatus 172, 174, 176, 178 independently, vehicle 170 can controlled to move up, down, left, right, forward, backward, or any combination thereof.
In the illustrated embodiment, each propulsion apparatus 172-178 includes its own individual motor 52 which may be controlled to independently regulate the speed of each propulsion apparatus 172-178. In alternative embodiments, a single motor may be provided to control rotation of all four propulsion apparatuses 172-178. In such an embodiment, steering control may be provided by independently regulating the rate of fluid flow within each propulsion apparatus 172-178.
Vehicle 170 may be a land, air, or space vehicle, according to alternative embodiments. Where vehicle 170 is a land vehicle, vehicle 170 may further include a set of wheels (not shown) coupled to vehicle body 182. In such an embodiment, vehicle mounting platform 180 is oriented within vehicle body 182 such that propulsion apparatuses 172-178 may be controlled to generate a net resultant force to propel the vehicle 170 forwards and backwards and to steer the vehicle 170. Backwards control may be affected by reversing the rotation of propulsion apparatus 172-178.
Accordingly, embodiments of the propulsion apparatus disclosed herein are constructed and operated in such a manner so as to generate a propulsive force that may be used to propel an air or space vehicle in a desired direction. The propulsion apparatus combines the novel “bent” circular tube configuration of the tube assembly, the selective control of the rotating plate, and the selective control of fluid flow within the tube assembly. Operation in this manner generates a propulsive force as a result of the angular momentum of fluid flowing through the tube apparatus of the propulsion apparatus that generally resists changes in direction, thereby leveraging gyroscopic principles to achieve propulsion in a controlled and efficient manner.
A technical contribution for the disclosed method and apparatus is that it provides for a controller-implemented technique for propelling a vehicle.
Therefore, according to one embodiment of the invention, a propulsion apparatus includes a support structure and a first tube assembly coupled to the support structure. The first tube assembly includes a first curved portion, a second curved portion coupled to the first curved portion by a pair of angled joints, and a pump configured to pump a fluid through the first and second curved portions of the first tube assembly. The propulsion apparatus further includes a motor coupled to the support structure and a control system coupled to the motor and the pump and configured to propel the propulsion apparatus by simultaneously controlling a rotation of the support structure and a flow of the fluid within the first tube assembly.
According to another embodiment of the invention, a method of propelling a vehicle includes pumping a fluid through a plurality of tube assemblies, each tube assembly having a pair of joints dividing the tube assembly into a first curved section and a second curved section, wherein the first curved section is oriented at an angle to the second curved section. The method further includes propelling the vehicle in a direction by simultaneously controlling rotation of support structures coupled to the plurality of tube assemblies, and controlling a rate of flow of the fluid within the plurality of tube assemblies.
According to yet another embodiment of the invention, a vehicle includes a vehicle body, a mounting platform positioned within the vehicle body, and a plurality of propulsion apparatuses. Each propulsion apparatus includes a rotatable plate coupled to the mounting platform and a plurality of tube assemblies coupled to the rotatable plate. Each tube assembly of the plurality of tube assemblies includes a first curved portion and a second curved portion oriented at an angle to the first curved portion, a fluid disposed within the first and second curved portions and a pump configured to pump the fluid through the first and second curved portions. The vehicle further includes at least one motor coupled to the plurality of propulsion apparatuses and configured to cause rotation of the rotating plates and a propulsion control system configured to affect a motion of the vehicle by regulating a speed of the rotation of the plurality of rotating plates and a rate of flow of the fluid in the plurality of tube assemblies.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
The present application is a continuation-in-part of, and claims priority to, U.S. non-provisional application Ser. No. 14/190,349, filed Feb. 26, 2014, the disclosure of which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 14190349 | Feb 2014 | US |
Child | 14299223 | US |