The presently disclosed embodiments are directed to the field of printing technology, and more specifically, to electrostatic printing.
Electrostatic printing is a printing technology in which electrostatic forces are used to form the image in powder or ink directly. Usually, ink is metered into an anilox, or gravure, roller such that the cells, or grooves, are partially filled. Ink refers to any material which is to be placed on a final substrate, and may include liquids, powders, and solid. To form an image, the ink is electrostatically pulled out of the cells in an image-wise fashion. Typically, metering rollers are used to meter the amount of ink applied to an anilox roller. An anilox roller includes a cylindrical surface with millions of very fine hollows, shaped as cells or grooves. Anilox and gravure are terms both referring to cylinders with small cells/grooves on the surface and may be used interchangeably. Technically, the term anilox is used more in flexographic printing and gravure is used in gravure printing. The gravure cells may usually be patterned in an image while the anilox cells may not be. Ink to be metered is filled in the cells. Doctor blades or wiping blades are usually used to clean the lands of the anilox roller. In doctor blade mode, doctor blades may be placed in an angle more than 90 degrees with respect to the blade moving direction. In wiping blade mode, wiping blades may be placed in angles less than 90 degrees with respect to the blade moving direction.
Existing technologies for electrostatic printing using anilox rollers have a number of drawbacks. Traditional cleaning using doctor blades may leave the cells full which leads to the problem of high background printing. The blades may be adjusted, but blades have inherent problems, including particle trapping, non-uniformity, speed limitations and cell pattern restrictions. For example, in a single blade system, there is an inherent conflict between the metering and cleaning requirements of the blade, as it needs to be soft enough to go into the cells or grooves, but hard or stiff enough to effectively wipe off residue ink from the lands. Another technique used a wiping blade mode, but this mode works only at slow speeds, as higher speeds increase the hydrodynamic pressure significantly.
One disclosed feature of the embodiments is a method and apparatus to meter ink for electrographic printing. An ink loading mechanism having an anilox roller fills ink from an ink supply into cells in the anilox roller with a plurality of valleys and lands that form the cells. The ink loading mechanism causes the valleys to be full or nearly full with the ink. The anilox roller rotates in a first direction. A blanket roller rotationally engaged with the anilox roller pulls the ink out of the cells and causes the valleys to be partially filled. The blanket roller rotates in a second direction. A first cleaning blade cleans the tops of the lands of the cells.
One disclosed feature of the embodiments is a method and apparatus to meter ink for electrographic printing. An ink loading mechanism having an anilox roller fills ink from an ink supply into cells in the anilox roller having a plurality of valleys and lands forming the cells. The ink loading mechanism causes the valleys to be full or nearly full with the ink. The anilox roller rotates in a first direction. A soft blade positioned slightly below surface of the lands removes ink from the cells and causes the valleys to be partially filled as the anilox roller rotates. A hard blade positioned at the surface of the lands cleans ink residue on the surface of the lands as the anilox roller rotates.
Embodiments may best be understood by referring to the following description and accompanying drawings that are used to illustrate various embodiments. In the drawings.
One disclosed feature of the embodiments is a method and apparatus to meter ink for electrographic printing. An ink loading mechanism having an anilox roller fills ink from an ink supply into cells in the anilox roller with a plurality of valleys and lands that form the cells. The ink loading mechanism causes the valleys to be full or nearly full with the ink. The anilox roller rotates in a first direction. A blanket roller rotationally engaged with the anilox roller pulls the ink out of the cells and causes the valleys to be partially filled. The blanket roller rotates in a second direction. A first cleaning blade cleans tops of the lands of the cells.
One disclosed feature of the embodiments is a method and apparatus to meter ink for electrographic printing. An ink loading mechanism having an anilox roller fills ink from an ink supply into cells in the anilox roller having a plurality of valleys and lands forming the cells. The ink loading mechanism causes the valleys to be full or nearly full with the ink. The anilox roller rotates in a first direction. A soft blade positioned slightly below surface of the lands removes ink from the cells and causes the valleys to be partially filled as the anilox roller rotates. A hard blade positioned at the surface of the lands cleans residue of ink on the surface of the lands as the anilox roller rotates.
One disclosed feature of the embodiments may be described as a process which is usually depicted as a flowchart, a flow diagram, a structure diagram, or a block diagram. Although a flowchart may describe the operations as a sequential process, many of the operations can be performed in parallel or concurrently. In addition, the order of the operations may be re-arranged. A process is terminated when its operations are completed. A process may correspond to a method, a program, a procedure, a method of manufacturing or fabrication, etc. One embodiment may be described by a schematic drawing depicting a physical structure. It is understood that the schematic drawing illustrates the basic concept and may not be scaled or depict the structure in exact proportions.
One disclosed feature of the embodiments uses a blanket roller to meter the ink so that the cells in the gravure of the anilox roller are partially filled. Ink is first delivered to the cells using conventional flexography/gravure means, resulting in cells which are full or nearly full. A blanket roller is then used to pull ink out of the cells, leaving the cells partially filled. Pressure, speed ratio, surface energy coating, and electric field may be used to control the amount of ink pulled out of the cells. Reverse or forward roll metering may be used. A cleaning system may be used to clean the ink off the blanket roller and recycle it into the original ink supply. An optional cleaning blade may be used to clean the top of the lands of any residue ink. The cleaning blade may be a standard blade.
One main advantage of filling the ink partially full is that electrostatic forces may be used to pull or withdraw ink out of the partially full cells during the image printing phase. Such a printing process may print viscous ink, such as flexographic ink, digitally while the pixels of the image may be addressed with the charge image generation systems used in standard laser printers. The system may print inks with higher pigment and binder concentrations than inks printed by inkjet, providing advantages such as larger substrate latitude, higher optical densities, and more robust inks. These inks use only heat, drying, or ultraviolet light to fix to the substrate as they do not require high pressure or temperature fusers found in toner systems. Other advantages may include higher speed and more robust metering and less mechanical precision required to tune the metering.
The ink loading unit or mechanism 110 and the blanket roller 130 form a metering unit in the electrographic printing system. The ink loading mechanism 110 may be a conventional ink loading mechanism. It may include an anilox roller 120, a doctor blade 116 and a containment blade 118. The combined components of the doctor blade 116, the ink supply 112, and the containment blade 118 may be referred to as a chamber blade system.
The anilox roller 120 may be a conventional anilox roller which has a gravure with a plurality of valleys or grooves such as valley 124 and lands such as land 126. The valleys 124 and the lands 126 form the cells 122. The valley 124 is used to contain ink 114 obtained from an ink supply 112. The filling of the cells 122 with the ink 114 may be done with conventional techniques such as a chamber blade system as shown in
The blanket roller 130 is rotationally engaged with the anilox roller 120 to withdraw, extract, or pull the ink out of the cells 122 causing the valleys 124 to be partially filled. The ink in the fully or nearly full cells 122 adheres to the surface of the blanket roller 130. As the blanket roller 130 rotates, the adhered ink may be pulled out reducing the ink amount in the full or nearly full cells 122. The ink volume or the depth in the valleys 124 may be reduced approximately by half of the original fill level. An example of a half full or nearly half full cell 122 may be a half full or nearly half full cell 174. The half full or nearly half full cell 174 may contain ink residue or satellites that form on the lands of the cell 172. The blanket roller 130 rotates in a second direction. The second direction may be the same as the first direction of the anilox roller 120, or the reverse or opposite direction of the anilox roller 120 (e.g., clockwise as shown in
The blanket roller 130 may need to be cleaned so that a fresh surface may be used to meter and pull out ink. A blanket roller cleaner 150 may be used to clean the ink off the blanket roller 130 and recycle the ink into the ink supply 112.
The cleaning blade 140 cleans tops of the lands 126 of the cells 122 to remove any ink residue remaining on tops of the lands 126. The cleaning blade 140 may be positioned subsequent to the action of the blanket roller 130 in either doctor or wiping mode. After the cleaning, the cell 174 may become cleaned as a cleaned half full cell 176. The cleaning done by the cleaning blade 140 may use a standard blading mode. Achieving the mechanical response of the blade for high speed may be now easier as the blade does not have to be soft to penetrate into the cells 122 (e.g., into the valleys 124). Accordingly, this technique reduces the burden on the metering blade to enable a more reliable metering system than the conventional system. The satellites may also be cleaned by another means such as another roller.
The image forming unit 180 may be coupled to the ink loading mechanism 110 to form an image 188 using the ink from the cleaned cells 176. The image forming unit 180 may include a photoreceptor drum or belt 182 having a photoreceptor rotationally engaged with the anilox roller 120, a charge image generator 184 coupled to the photoreceptor drum or belt 182 to image-wise charge the photoreceptor, and a substrate 186 in contact or nearly in contact (in proximity) [ec1]with the photoreceptor drum or belt 182 to receive the image as the photoreceptor drum or belt 182 rotates. The charge image generator 184 may be made by any of known methods to generate a charge image, including a blanket charging with scorotron followed by an image-wise discharging scanning laser or light emitting diode bar array, or a direct write system such as an addressable array of small charge emitters (e.g., iconography).
The amount of ink to be pulled out from the full or nearly full cells 172 may be controlled, tuned, or varied to provide a desired performance. There may be a number of techniques to do this. In the first technique, a speed controller 160 coupled to the blanket roller 130 is used to adjust speed of rotation of the blanket roller 130. In the second technique, an electric field generator 190 may be used to apply an electric field 192 across the gap or depth between the lowest points of the ink meniscus in the valley 124 and the land 126 of the cell 122 during the transfer of the ink from the full or nearly full cell 172 to the blanket roller 130. This may be implemented through an electrical bias applied between the blanket roller 130 and the anilox roller 120. In the third technique, the direction of movement or rotation of the blanket roller 130 may be changed to be the same or in reverse direction with that of the anilox roller 120. This may be illustrated in
To prevent or reduce the amount of ink residue or satellite ink formations on the land 126, the surface or the top of the land 126 may be coated with a low energy surface coating 510. The low energy surface coating 510 may have any one of the following characteristics: covalently bonded monolayer, low surface energy, and thermally and mechanically stable.
The fountain roller 610 applies the ink 630 from the ink container or supply 620 to fill the cells in the anilox roller 120. The full or nearly full cells are represented by the cell 172. The blanket roller 130 is rotationally engaged with the anilox roller 120 in the same rotational direction to pull the ink from the full or nearly full cells. The blanket roller blade 132 removes the ink from the blanket roller 130 so that the ink may be recycled into the ink container 620. After the action of the blanket roller 130, the cells become half full or nearly half full as represented by the cell 174. The cleaning blade 140 cleans the ink residue on the lands of the cells and provides the cleaned half full or nearly half full cells as represented by the cleaned half full or nearly half full cell 176. In one embodiment, more than one cleaning blade 140 may be used to aid in the metering. The photoreceptor drum 182 transfers the ink via an image pattern writing procedure to form the image 188 on the surface of the substrate 186.
The integrated roller 710 includes a gravure with an integrated photoreceptor. In the roller 710, the gravure, which has cells or grooves for holding the ink, has an integrated photoreceptor as part of its land structure 711. The photoreceptor holds a charge pattern which modulates the ink meniscus image-wise so that only ink in cells near charge are developed onto a final substrate with a charge image 712. The substrate 730 may be electrically biased with the bias roller 720 to aid image development. One advantage of this system is that no separate photoreceptor cleaning system is needed and the metering system serves the same function as in the system 600. In addition, there is only one ink transfer, so more ink may be delivered to the substrate 730.
At time t1, the soft blade 810 is about to touch the land to move toward the ink. At time t2, the soft blade 810 touches the land. Since it is soft, it is compressed as it moves through the land toward the ink. At time t3, the soft blade 810 expands below the level L1, sweeps through the ink, and wipes out some ink, leaving the cell partially full. Since the soft blade 810 has a limited maximum pressure that it can apply, it may leave some residue or satellites 310 on the surface of the land. The residue or satellite 310 may be cleaned by the hard blade 820 in a cleaning mode.
At time t4, the hard blade 820 is at the level L1 of the land surface. As it moves through the land surface, it does not significantly penetrate into the cells. At time t5, it moves to the land surface and wipes out the residue or satellites 310 resulting in a cleaned land surface 176.
The graph represents a simulation of the flow volume as a function of the speed ratio based on film rupture models by Coyne and Elrod. The speed ratio is the ratio between the speed of the web and the speed of the roll. The positive values of the speed ratio represent the forward metering while the negative values represent the reverse metering. The graph shows a linear relationship between the flow volume and the speed ratio. In addition, the direction of the rotation may have effect on the flow volume.
Upon START, the process 1200 fills ink from an ink supply to cells in an anilox roller in an ink loading mechanism (Block 1210). The anilox roller has a plurality of valleys and lands forming the cells. The valleys are full or nearly full with the ink. The anilox roller rotates in a first direction.
Next, the process 1200 pulls the ink out of the cells by a blanket roller rotationally engaged with the anilox roller to cause the valleys to be partially filled (Block 1220). The blanket roller rotates in a second direction. The second direction may be the same or different direction as the first direction.
Then, the process 1200 cleans tops of the lands of the cells by a first cleaning blade (Block 1230). The process 1200 is then terminated. The process 1200 may have additional operations as described above. For example, these operations may include cleaning the ink off the blanket roller by a blanket roller cleaner, recycling the ink into the ink supply, forming an image using the ink from the cells by an image forming unit (e.g., charging photoreceptor that may be located within a photoreceptor drum or belt or integrated into the lands, receiving the image on a substrate), adjusting speed of rotation of the blanket roller, cleaning tops of the lands by a second cleaning blade, and generating an electric field across gaps of the cells.
Upon START, the process 1300 fills ink from an ink supply to cells in an anilox roller in an ink loading mechanism (Block 1310). The anilox roller has a plurality of valleys and lands forming the cells. The valleys are full or nearly full with the ink. The anilox roller rotates in a first direction.
Next, the process 1300 positions a soft blade slightly below surface of the lands to remove the ink from the cells and cause the valleys to be partially filled as the anilox roller rotates (Block 1320). The positioning of the soft blade is at a distance below the surface of the lands sufficient for the removal of the ink so that the valleys are partially filled.
Then, the process 1300 positions a hard blade at the surface of the lands to clean any residue of ink oft on the surface of the lands as the anilox roller rotates (Block 1330). The process 1300 is then terminated. The process 1300 may have additional operations as described above. For example, these operations may include recycling the ink into the ink supply, forming an image using the ink from the cells by an image forming unit (e.g., charging photoreceptor that may be integrated into the lands, receiving the image on a substrate), etc.
It will be appreciated that various of the above-disclosed and other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. Various presently unforeseen or unanticipated alternatives, modifications, variations, or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3801315 | Gundlach et al. | Apr 1974 | A |
4043657 | Karnik | Aug 1977 | A |
4625643 | Davis | Dec 1986 | A |
5370052 | Reslow | Dec 1994 | A |
5983797 | Secor | Nov 1999 | A |
6309049 | Salmon | Oct 2001 | B1 |
6367380 | Whelan | Apr 2002 | B1 |
6578478 | Doppler | Jun 2003 | B2 |
8087771 | Thayer et al. | Jan 2012 | B2 |
8119315 | Heuft et al. | Feb 2012 | B1 |
20080017055 | Howard et al. | Jan 2008 | A1 |
20110067590 | Chow et al. | Mar 2011 | A1 |
Entry |
---|
Lindblad, N.R., “The metering of ink the grooves of a gravure roll”, J. Imaging Technology, vol. 14, issue 5, p. 140-143, 1988. |
Coyle, Dennis, “Chapter 3: Roll Coating” Modern Coating and Drying Technology, E. Cohen (editor), p. 63-116, 1992. |
Number | Date | Country | |
---|---|---|---|
20110067589 A1 | Mar 2011 | US |