The present invention relates to the field of containers. More specifically, the present invention relates to an animal-resistant container configured to selectively restrict access therein.
Food and food-containing refuse generated by humans often attracts the attention of animals in areas adjacent to animal habitats. Animals, such as bears, have a keen sense of smell and can easily detect food which has been discarded in containers left outdoors such as refuse bins and storage lockers. Once food has been discovered in such areas, the animals often return to these outdoor containers in the hope of finding additional food.
Animals in pursuit of a readily available source of food are problematic to human populated areas. For example, animals sometimes enter homes, garages, or even vehicles in search of food. Some animals, and bears in particular, can do significant property damage due to their size and strength. Furthermore, animals entering human inhabited areas can become injured or killed by moving vehicles, electrical lines, and other human accoutrements. Still further, these animals can lose their wariness towards humans, making them a potential threat to humans. Indeed, allowing bears to get into the garbage is one of the leading causes of bear-human encounters. Thus, to protect people, property, and the animals themselves, it is desirable to inhibit animals from accessing containers in which refuse and food are stored.
Various attempts have been made to prevent animals from getting into outdoor refuse containers and food storage lockers. For example, refuse containers are sometimes stored inside sturdy locked buildings, in roofed chain link enclosures, and so forth. Unfortunately, food refuse in an enclosure still gives off orders that attract bears and other wildlife. Thus, it is critical that such an enclosure be locked and that the enclosure is sufficiently sturdy to dissuade a persistent intruder.
In addition, or alternatively, refuse containers may be outfitted with a latch system to prevent an animal from opening the container. These latch systems can be problematic, however, because they can be difficult for a user to manipulate. Furthermore, these latch systems typically require the user to unlatch and subsequently re-engage the latch after use. If the latch is not re-engaged the container is not protected from animal access. Additionally, some latch systems can still be opened by animals through luck, persistence, or cleverness.
Another approach is to build the container using heavy, reinforcing components designed to inhibit animals from physically damaging the container in order to gain access. These reinforcing components can make the container undesirably heavy and unwieldy to move. In addition, these heavy, reinforcing components can cause premature damage, such as failure of the container hinges after repeated use.
In an effort to control costs associated with refuse collection, many municipalities are implementing “fully-automated collection” techniques. Fully-automated collection involves the use of a truck with an automated, mechanical gripping arm to lift a specially-designed container from the curbside, dump the container contents into the truck, and return the container to the curbside. Such a system typically requires only one person to operate because the truck driver controls the gripping arm from the cab of the truck. In contrast, traditional collection systems require one or two laborers and a driver to collect refuse.
Fully-automated collection relies on the cooperation of the residents to place the refuse containers in the proper location and position for collection. Unless the resident places the refuse container in the proper location at the moment that the truck approaches, a container without a latch system is vulnerable to animals while the container awaits refuse collection. A container with a latch system is also problematic because when the container is placed in the proper location, it must be unlatched so that the contents of the container will be successfully emptied. Accordingly, a container with a disengaged latch system is also vulnerable to animals while the container awaits refuse collection. Alternatively, the refuse vehicle operator may exit the truck to disengage the latch system. However, such a procedure is undesirably inconvenient and time consuming. A container using heavy, reinforcing components may be difficult for a resident to place in the proper location and may not conform with the size, shape, and weight requirements needed to safely function with the automated, mechanical arm.
Accordingly, what is needed is an animal-resistant container that is easy to use, mechanically robust, and is compatible with fully-automated collection systems.
A more complete understanding of the present invention may be derived by referring to the detailed description and claims when considered in connection with the Figures, wherein like reference numbers refer to similar items throughout the Figures, and:
Embodiments of the invention include an animal-resistant container, and more particularly, an animal-resistant refuse container. Such a refuse container is useful for receiving and holding garbage, trash, recyclable items, and the like. The refuse container includes a latch system configured to inhibit an animal, and especially large animals such as bears, peccaries, and the like, from accessing the contents of the container. The latch system automatically engages so that a user need not deliberately re-engage the latch after placing refuse in the container. Furthermore, the latch system can be unlatched by an automated, mechanical arm of a refuse truck so that the contents of the container can be emptied during automated collection. Additionally, upon detection of tilting or tipping of the container, the latch system will remain engaged to prevent an animal intruder from access into the container. Although the animal-resistant system is directed towards inhibiting access of animals to a refuse container used for automated collection, embodiments of the invention may be applied to inhibiting access of animals in general to containers.
In an embodiment, animal-resistant container 20 includes two latch mechanisms 30 and, correspondingly, two latch receptacles 32. Each of latch mechanisms 30 and the corresponding latch receptacles 32 are spaced apart from one another and are located at an exterior front surface 33 of body 22 of container 20, for example, at opposing front corners of exterior front surface 33. Each latch mechanism 30 functions cooperatively with its corresponding latch receptacle 32 so that lid 26 is secured to body 22 to inhibit intrusion into animal-resistant container 20, as will be discussed in greater detail below. In addition, latch mechanisms 30 can be reliably actuated by the gripping arm of an automated collection refuse pickup vehicle to disengage them from latch receptacles 32, as will also be discussed in greater detail below.
Referring to
The walls of body 22 can be provided with ribs 40 (visible in
Body 22 further includes a circumferential rim 44 encircling opening 36, and passages 46 are formed in body 22 during the rotational molding manufacturing process. At least a portion of latch mechanism 30 is housed in each passage 46, as will be discussed in greater detail below. Passages 46 function to protect latch mechanism 30 from an animal intruder and from inclement weather conditions.
In an embodiment, an interior cavity 48 is formed in circumferential rim 44 and is filled with a foam material 50. Foam material 50 provides reinforcement at circumferential rim 44 in order to withstand damage from teeth and claws of an animal intruder. In an embodiment, an existing or evolving “in-mold foaming process,” also referred to as a rotational foam molding process, may be implemented to form circumferential rim 44 having interior cavity 48 filled with foam material 50.
In-mold foaming processes have been developed by modifying the conventional rotational molding process. These techniques allow for creating a foam layer or core in the interior of hollow moldings (that would otherwise remain hollow) in an uninterrupted manufacturing cycle and while utilizing ordinary rotational molding equipment. In-mold foaming processes offer the capacity to deliver reinforced, large-sized, complex-shaped, single-piece, foamed plastic articles that can satisfy severe service requirements and achieve improved strength-to-weight ratios.
One evolving rotational in-mold foaming process entails a one-step process in which powder (e.g., polyethylene) for the walls of body 22 and foam pellets (e.g., polyethylene mixed with a blowing agent) are loaded into the mold before the mold is closed. During the rotational molding process, the foam of the pellets fills interior cavity 48 and the powder forms the walls of body 22. Foam material 50 creates a network within interior cavity 48 that reinforces circumferential rim 44. Although, a one-step rotational in-mold foaming technique is generally described, alternative processes may be performed to create interior cavity 48 filled with foam material 50 using conventional foaming agents following rotational molding of body 22.
The illustrated configuration of body 22 having circumferential rim 44 filled with foam material is particularly suited for use at locations in which grizzly bears may be presented. However, other locations may be visited by brown bears, peccaries, dogs, or these other locations may be subject to frequently windy conditions. In such locations, a locking container may be advantageous, but need not require the additional strength. Accordingly, when the additional strength provided by foam filled circumferential rim 44 is not required, body 20 need not include the foam filled circumferential rim 44, so that costs associated with manufacturing body 22 can be reduced.
Referring to
Lid 26 may be slightly convex or dome-shaped. This convex shape produces a cavity 52 in the underside of lid 26 that is surrounded by a circumferential lip 54 of lid 26. Latch receptacles 32 are housed in cavity 52 and may be secured in lid 26 using any of a variety of bracket and/or fastener configurations 53. Alternatively, latch receptacles 32 may be integrally formed in lid 26 during rotational molding of lid 26. When lid 26 is closed on body 22, latch receptacles 32 are protected from animal intruders, as well as inclement weather conditions. In an embodiment, each latch receptacle 32 is a generally U-shaped structure to which a latch element (discussed below) of latch mechanism 30 attaches. In alternative embodiments, latch elements 32 may take on various shapes (e.g., ring-shaped) and sizes to mate or otherwise attach with the particular latch element of latch mechanism 30.
Referring now to
Latch mechanism 30 includes a paddle arm 56 vertically aligned with body 22 of container 20. Paddle arm 56 has as first end 58, a second end 60, and an intermediate portion 62 lying between first and second ends 58 and 60. In
First end 58 of paddle arm 56 is pivotally coupled with exterior front surface 33 of body 22. For example, first end 58 may be located between a pair of ribs 40 (as shown in FIG. 1). A pivot pin 66 is directed through second end 58 and is secured to the pair of ribs 40. Alternatively, body 22 may include a bracket 68 (as shown in
A spring member 74 is coupled between exterior front surface 33 of body 22 and intermediate portion 62 of paddle arm 56. In an embodiment, spring member 74 is a compression spring that offers resistance to force 72 applied to paddle arm 56. This spring force is represented by an arrow 76. Accordingly, paddle arm 56 is a spring-loaded structure that is urged outwardly from exterior front surface 33 of body 22 by spring force 76 imposed by spring member 74.
Hook element 78 is coupled to second end 60 of paddle arm 56. More particularly, hook element 78 is located between forks 80 formed in second end 60 of paddle arm 56. In addition, a tilt sensor 82 is located between forks 80.
As particularly illustrated in
As particularly illustrated in
Referring to
However, animal-resistant container 20 can also move away from its upright position when a large animal, such as a bear, peccary, and the like, knocks it over in an attempt to get to refuse 38 (
Tilt sensor 82 includes a housing 102 formed from a first housing section 104 and a second housing section 106 coupled together via at least one fastener 108. Housing 102 is formed from two sections 104 and 106 so that an interior of tilt sensor 82 may be accessed. In
Housing 102 includes an arcuate channel 110 extending approximately transverse to a longitudinal dimension 112 of housing 102. Additionally, tilt sensor 82 includes a ball 114 configured to roll in arcuate channel 110. Arcuate channel 110 exhibits the shape of an inverted arch with the approximate center of channel 110 being at a bottom 116 of arcuate channel 110. When container 20 is upright, the shape of arcuate channel 110 compels ball 114 to roll to a centered position, i.e., bottom 116, in arcuate channel 110. Similarly, ball 114 rolls to an uncentered position away from bottom 116 when container 20 is tilted or tipped. As illustrated, housing 102 may additionally include a passage 118 extending between arcuate channel 110 and an exterior of housing 102. Passage 118 can facilitate the drainage of moisture, from rain, snow, condensation, and so forth, out of arcuate channel 110 should this moisture get into channel 110. A filter 119 may optionally be installed in passage 118 to prevent dust from entering arcuate channel 110 that might otherwise adversely affect the operation of tilt sensor 82.
Referring to
With reference back to
Referring now to
Hook element 78 and tilt sensor 82 are housed in passage 46 formed in body 22 of container 20. Paddle arm 56 extends outside of and below passage 46 along exterior front surface 33 of body 22. Ball 114 of tilt sensor 82 is centered at bottom 116 of arcuate channel 110. Bumper 120 formed in base end 81 of hook element 78 overlies, but does not come into contact with ball 114 when hook element 78 is engaged with latch receptacle 32. In an embodiment, hook element 78 includes a forwardly extending stop 122 that limits pivotal movement 96 of hook element 78 about pivot pin 88.
It should be recalled that spring member 90 (
Referring to
Animal-resistant container 20 is compatible with fully-automated collection systems. Container 20 preferably includes two latch mechanisms 30 and corresponding latch receptacles 32 adapted to face refuse pickup vehicle 128. During refuse collection, gripping arm 126 is remotely controlled by the driver of refuse pickup vehicle 128 and is manipulated to encircle and clamp onto body 22 of container 20, and subsequently lift container 20. This clamping operation results in a manual depression of each paddle arm 56 toward exterior front surface 33 of body 20 with sufficient force 72 to release each latch mechanism 30 from its corresponding latch receptacle 32 in order to enable access to refuse 38 (
Both paddles arms 56 are actuated concurrently by gripping arm 126 to concurrently release each latch mechanism 30 from its corresponding latch receptacle 32. An individual human user of container 20 can also access interior volume 34 by manually depressing both paddles arms 56. Manual depression of only one paddle arm 56 may release one latch mechanism 30 but will not release the other latch mechanism 30. This dual latch and release configuration prevents an animal intruder from gaining access to interior volume 34 by actuating only one paddle arm 56. Paddle arms 56 may optionally operate with a spring lock system (not shown) that allows the individual to unlatch and retain each latch mechanism 30 in an unlatched position temporarily while the individual places refuse 38 (
Although not visible, container 20 may further include an emergency release mechanism attached to each hook element 78. An emergency release mechanism may be provided so that should a child become accidentally trapped inside container 20, that child could escape from container 20. For example, an emergency release mechanism may be a light cable tethered to hook end 79 of each hook element 78 that is accessible from the inside of container 20. A trapped individual could simply pull on the cable to release hook elements 78 from latch receptacles 32 and thereby affect his or her escape.
As shown in
When both hook elements 78 are disengaged from both latch receptacles 32, lid 26 (
Referring now to
It should be recalled from the discussion associated with
In response to the movement of ball 114 spring force 98 imposed on hook element 78 from spring member 90 (
It should be observed that when hook element 78 pivots forward, bumper 120 extends further into arcuate channel 110. With the presence of bumper 120 in arcuate channel, ball 114 cannot roll back to bottom 116 of arcuate channel 110 until container 20 is moved back into the upright position and both latch elements 78 are manually manipulated. Thus, latch elements 78 will remain engaged with corresponding latch receptacles 32 until human intervention thereby preventing a persistent animal intruder from gaining access.
In summary, the present invention teaches an animal-resistant container useful for receiving and holding garbage, trash, recyclable items, and the like. The animal-resistant container is manufactured utilizing a rotational molding process to achieve cost effective production, as well as, a high durability, corrosion resistant, and light weight finished product. The container can include reinforcing ribs and a foam reinforced circumferential rim for additional strength. The animal-resistant container further includes a latch system configured to inhibit an animal, and especially large animals such as bears, peccaries, and the like, from accessing the contents of the container. The latch system includes two latch mechanisms secured in the container body and two corresponding latch receptacles formed in the container lid. The latch mechanisms engage with the latch receptacles to secure the lid to the body. Additionally, the latch mechanisms automatically engage with the latch receptacles so that a user need not deliberately re-engage the latches after placing refuse in the container. The latch mechanisms can be actuated by an automated, mechanical gripping arm of a refuse pickup vehicle so that the contents of the container can be emptied during automated collection. A tilt sensor detects tilting or tipping movement of the container, and the latch mechanisms are prevented from actuation upon detection of this tilting movement so that an animal intruder cannot tip over the container and subsequently gain entry into the container.
Although the preferred embodiments of the invention have been illustrated and described in detail, it will be readily apparent to those skilled in the art that various modifications may be made therein without departing from the spirit of the invention or from the scope of the appended claims. For example, various tilt sensors may be adapted to detect tipping movement of the container and subsequently communicate this information to the latch mechanisms so that the latch mechanisms cannot disengage from the latch receptacles.
Number | Name | Date | Kind |
---|---|---|---|
1564593 | Lawrence | Dec 1925 | A |
4182530 | Hodge | Jan 1980 | A |
4863053 | Oberg | Sep 1989 | A |
5007786 | Bingman | Apr 1991 | A |
5230393 | Mezey | Jul 1993 | A |
5505576 | Sizemore et al. | Apr 1996 | A |
5638977 | Bianchi | Jun 1997 | A |
5776405 | Prout et al. | Jul 1998 | A |
5922267 | Brescia et al. | Jul 1999 | A |
6547289 | Greenheck et al. | Apr 2003 | B1 |
6550824 | Ramsauer | Apr 2003 | B1 |
6550827 | Tsujino | Apr 2003 | B1 |
6612625 | Barber et al. | Sep 2003 | B1 |
6644906 | Bayne | Nov 2003 | B2 |
6808080 | Spiers et al. | Oct 2004 | B2 |
7038585 | Hall et al. | May 2006 | B2 |
7048347 | Liu | May 2006 | B1 |
7128233 | Hogan | Oct 2006 | B2 |
7128515 | Arrez et al. | Oct 2006 | B2 |
7277009 | Hall et al. | Oct 2007 | B2 |
7559735 | Pruteanu et al. | Jul 2009 | B2 |
7681752 | Moore | Mar 2010 | B2 |
7871233 | Arrez et al. | Jan 2011 | B2 |
8056943 | Scheffy et al. | Nov 2011 | B2 |
20020030595 | Kasik | Mar 2002 | A1 |
Entry |
---|
Bear-Resistant Containers, http://www.bearaware.bc.ca/bear-resistant-bins.html, downloaded Jun. 24, 2010. |
Number | Date | Country | |
---|---|---|---|
20120006838 A1 | Jan 2012 | US |