1. Field of the Invention
The present invention relates generally to artificial flowers, and more specifically to an animated artificial flower device which, upon partial immersion in a liquid, simulates natural flowering actions and reveals a surprise object.
2. Description of the Related Art
Artificial flowers are commonly used as indoor decorative accessories. Natural flowers, whether planted, potted, or cut for use in a vase, also have wide appeal as an enhancement to all sorts of environments. Natural flowers share many of the advantages of artificial flowers, and, if cared for appropriately, are capable of growing and blooming in a pleasing way. Many thousands of people enjoy receiving flowers in one form or another on a daily basis throughout the world.
In view of the circumstances noted above, an aspect of at least one of the embodiments disclosed herein is to provide an animated artificial flower device that has the appearance of a long-stem cut flower and that can simulate growth and blooming when placed in water or other liquid. In some embodiments, the artificial flower can provide a gradual or controlled presentation of a blooming flower and can be reusable. Moreover, in some embodiments, the artificial flower device can enable the presentation of a gift or surprise concealed within the closed flower.
In accordance with one embodiment, an animated artificial flower device is provided. The device comprises a stem, a sleeve movably coupled to the stem, and a piston movably disposed within a piston chamber in the stem and operatively coupled to the sleeve, the piston biased downwardly, said piston chamber configured to receive an impeding agent therein. A plurality of simulated petals define a corolla, the petals moveable between a closed state and an opened state, the petals operatively coupled to the piston. The piston is configured to move downwardly relative to the stem upon exposure of the impending agent to a liquid that diminishes the effective size of the impeding agent, the movement of the piston actuating the movement of the petals toward the opened state, said downward movement of the piston actuating a downward movement of the sleeve relative to the stem to thereby simulate flower growth.
In accordance with another embodiment, an animated artificial flower device is provided. The device comprises a stem having a base, a sleeve movably coupled to the stem, and a plurality of simulated petals defining a corolla, the petals moveable between a closed state and an opened state, the petals operatively coupled to the sleeve. The device also comprises means for transmitting a force between the stem and the plurality of petals to move the petals into the opened or closed state, said means actuatable via exposure of at least a portion of the stem to a liquid so that the liquid enters the stem via apertures in the stem base, wherein said exposure of the stem to the liquid actuates a downward movement of the sleeve relative to the stem to thereby simulate flower growth.
In accordance with another embodiment, a method for operating an animated artificial flower having a stem and a plurality of simulated petals operably coupled to the stem, the petals configured to overlap with each other and movable between a closed state and an opened state is provided. The method comprises exposing an impeding agent in the stem to a liquid, the impeding agent being adjacent a piston movably disposed within the stem of the artificial flower so as to change the effective size of the impeding agent to thereby gradually move the piston downwardly relative to the stem, and actuating a presentation platform operatively coupled to the stem to move upwardly relative to the stem as the piston moves downwardly.
These and other features, aspects and advantages of the present invention will now be described in connection with a preferred embodiment of the invention, in reference to the accompanying drawings. The illustrated embodiment, however, is merely an example and is not intended to limit the invention. The drawings include the following 24 figures, in which like numerals indicate like parts.
Introduction
Artificial flowers, though available in a large assortment of types and forms, are almost universally static. The ubiquity of static artificial flowers, despite some being quite attractive, has made them familiar fixtures upon which little attention is focused. They can beautify a setting or evoke feelings of tranquility, but they do not deliver a dynamic or captivating interactive experience. Certainly, an observer has no expectation of animation therefrom in the form of realistic growth or blooming.
As noted above, natural flowers have certain advantages with respect to artificial flowers. For example, if cared for appropriately, natural flowers are capable of growing and blooming in a pleasing way. However, because such vitality progresses very slowly, it is difficult to observe. Furthermore, the beauty of natural flowers quickly fades. Because they are so commonplace, natural flowers, like static artificial flowers, are generally not objects of sustained or exceptional interest.
Even though many people enjoy receiving flowers, their delight typically peaks at the initial presentation and quickly passes. The flowers are soon forgotten. There is no expectation of later discovery of additional excitement originating therewith.
There exists a continuing human need for objects that delight and enchant by their ability to transcend expectations. An artificial flower that gradually grows, blooms and delicately reveals a surprise gift from within its corolla satisfies such a need, and more so if the recipient is invited to participate by providing the type of care and handling normally given a natural flower. The experience can be further enhanced if the actions of the flower are rendered by a mechanism that is not readily apparent or easily understood.
There exist conventional artificial flowers that simulate blooming, present a surprise gift, or use water as an actuating component. These are typically driven by relatively large machinery appending the stem, usually concealed in a flower pot or other base. In addition to the inconvenience posed by the size and weight of many of these bases, the users of such artificial flowers cannot enjoy the degree of mystery and wonder that can entertain users of an animated artificial flower having no base machinery. Indeed, some bases simply cannot hide their mode of operation, such as when the application of manual or electric force is required. Manual actuation of animation in an artificial flower device, even in the absence of a large base is generally undesirable where a realistic or more intriguing experience by the recipient is intended.
A large attached base also precludes the distinct advantage of being able to present the device as a long-stemmed cut flower. The care and handling of an animated artificial flower in a manner not unlike that given a natural flower involves a recipient in a rewarding adventure that adds to the satisfaction of the experience. Particularly, actuation of the animation activities of the artificial flower by nothing more than the placement of its stem in a container of water is advantageous. Certain conventional animated artificial flowers are incapable of providing this experience because water must be applied into or through the exposed center of its corolla, whereupon it quickly opens. For this reason, it is also impractical for such devices to conceal a surprise gift.
The slow and gradual ascent of a surprise gift from within an opening corolla is a feature that transforms an animated artificial flower from a pleasant toy to a more refined and stylish instrument capable of making an elegant presentation. Reusability in such a device adds still more to its value. It further defies expectations and excites the imagination that such a device could be prepared for reuse by refilling a small chamber within the stem with a common ingredient, such as granulated sugar.
Accordingly, disclosed herein are various embodiments of animated artificial flower devices that can faithfully recreate the general appearance of a long-stemmed cut flower and that simulate gradual growth and blooming when exposed to a liquid, such as water. In certain embodiments, the flower can additionally, alternatively or optionally lift a surprise object from within its corolla. In certain embodiments, the flower is advantageously reusable. Certain embodiments provide these features in addition to other unique and novel features.
Terminology
By being labeled with terms commonly understood to identify parts of a natural flower, some of the component parts of the embodiments are suggested to resemble, but are not limited to, some of the visual aspects and mechanical attributes of such parts of a natural flower. For example, except when modified by the word “natural”, the term “petal” identifies a component part of the embodiments which can resemble a natural petal. Furthermore, except when modified by the word “natural”, the term “flower” identifies one or more of the several example embodiments disclosed herein. Continuing the example, the terms “natural petal” or “natural growing flower” identify matter having a biological origin.
The words “open” and “closed,” when used in connection with the words “petal” and “corolla” in phrases such as “closing the petals,” “an opening force to the petals,” “to open the corolla” and “closed-corolla,” indicate a state of or phase in the development of animation in the petals or corolla. The word “open” indicates the petals or corolla in a state generally resembling a mature natural flower at the peak of anthesis, the petals projected outwardly at or toward their maximum extension. The word “closed” indicates the petals or corolla in a state generally resembling a maturing natural flower immediately prior to the start of anthesis, the petals drawn together inwardly at or toward their minimum extension. The terminology includes the words specifically mentioned above and their derivatives.
The words “open” and “closed,” when used herein throughout the specification and appended claims in connection with the word “flower” in phrases such as “the flower in a closed state,” “to open the flower,” “the flower is thereby closed” and “the opened flower,” indicate a starting (e.g., “closed”) or ending (e.g., “open”) state in the development of animation in the flower and is not limiting. The terminology includes the words specifically mentioned above and their derivatives.
Many of the component parts of the embodiments described herein are shown in a simplified form to facilitate understanding. During the process of manufacturing and assembling these embodiments, the use of adhesive materials and methods individually or in combination, such as glues, epoxies, solvent based adhesives, rivets, nuts, bolts, snap fits, press fits, locking features, screw threads, ultrasonic welding, and the like, to join multiple subunits of a component part shown or described as a single, integrally formed unit, can be used. Conversely, adjoining component parts, each shown or described as separate or independent units, can optionally be manufactured and assembled as one single, integrally formed unit.
Unless otherwise specified, certain terminology is used to indicate an adherence, link or association between two or more component parts for convenience only and is not limiting. The words “connect,” “attach,” “bond,” “fasten,” “join,” “affix” and “secure,” their derivatives and words of similar meaning designate adherence, whether durable, transitory, fixed or movable, or otherwise. This could be accomplished using a variety of different techniques, such as the use of: an adhesive material or method (some examples of which are listed in the preceding paragraph); and/or a mechanical link between two or more discrete component parts with or without the intermediate use of additional component parts, whether referenced or not; and/or an intrinsic association between two or more sections of a single, integrally formed component part that is one unit; and/or a combination of the above.
Component parts described and/or labeled as a “cable” or a “line” are typically a type of flexible thread or cord, but can also be a rigid rod or shaft, or can comprise other properties. The cable or line can comprise, but is not limited to, materials such as stainless steel, steel, brass, silk, nylon, polyester, polyethylene, polypropylene, polyvinyl chloride, acrylonitrile butadiene styrene, and the like. The cable or line can be monofilament or multifilament, rigid or flexible, elastic or unyielding, coarse or fine, plated, unplated, coated, uncoated, uniform, a combination or composite of various materials, and the like.
The words “right,” “left,” “front,” “rear,” “lower” and “upper” designate directions in the drawings to which the reference is made, or in the referenced embodiments when positioned as suggested by the drawings and descriptions thereof. The words “vertical” and “horizontal” designate, respectively, a general alignment to the upper/lower direction and a general perpendicularity thereto. The words “inwardly” and “outwardly” designate all directions toward and away from, respectively, the geometric center of the applicable parts or embodiments, and unless otherwise noted, apply to a generally horizontal plane. The terminology includes the words specifically mentioned above, their derivatives and words of similar meaning.
Unless otherwise noted, the meanings of words which designate or describe geometric figures, shapes and structures, such as, “round,” “tube,” “circle,” “square,” “rectangle,” “ellipse,” “cylinder,” “sphere,” “cube,” “torus,” “globe,” “encircle,” “diameter,” “cone,” “radius” and “circumference,” include their literal meaning, as well as figures, shapes and structures that can be imperfect, irregular, asymmetric or embellished. The terminology includes words which designate or describe geometric figures, shapes and structures, their derivatives and words of similar meaning.
References are made herein to an “impeding agent”. An impeding agent is a substantially solid or rigid material which can occupy a volume to block or impede motion of a member within the volume, and, by an exposure to a select liquid, dissolve, chemically react, effervesce, disintegrate, soften, collapse, break down, or otherwise change from the solid state or rigid structure thereof to a state or structure which allows the motion of the member within the volume. One function of an impeding agent is to block animation of a mechanism prior to an exposure of the impeding agent to the select liquid, whereupon, following an exposure of the impeding agent to the select liquid, as the impeding agent gradually loses its solid state or rigid structure, the action of the mechanism proceeds at a rate commensurate to a reduction in the effective size, either by solid volume or rigid shape, of the impeding agent.
The impeding agent can be a single one-piece unit or a measure of a loose material in a fine particulate, medium granular or coarse pellet form. The impeding agent can also be a combination of a one-piece unit and a measure of material, and can also comprise other forms. The one-piece unit can be homogenous, hollow, a rigid foam, a porous aggregate of dissimilar particles held together by a soluble binder, or can comprise other physical structure or structures. The impeding agent can comprise varying materials and/or densities to provide non-linear performance. The impeding agent can fully fill the volume or narrowly occupy the volume by only contacting the moving member at one end and an opposing wall of the volume at another end. The impeding agent can comprise forms such as a rolled tube, extruded rod, molded plug, beads, tablets, powder, grains, and the like. The impeding agent can comprise sugar, as it is readily available, safe, and dissolves at a reasonable rate. Of course, the impeding agent can comprise other ingredients, alone or in combination, such as soap, table salt, soluble paper, paper, soluble plastics (such as polyvinyl alcohol and polyvinylpyrolidone), gelatin, candy, flavored drink mix, and the like. For example, certain embodiments are usable to disperse a flavored drink mix into a pitcher of water for human consumption.
The impeding agent can comprise combinations of substances which chemically react when exposed to a select liquid. For example, a dry mixture of an acid and base, such as citric acid and sodium bicarbonate, when exposed to water, can effervesce, forming gas and other byproducts. A disintegrant, such as starch, cellulose, cross-linked polyvinyl pyrrolidone, sodium starch glycolate, and sodium carboxymethyl cellulosemethycellulose, can be employed to accelerate dissolution. A paper tube can be so formed and placed within the volume as to gradually soften and collapse, partially disintegrate or fully dissolve upon exposure to a select liquid. Insoluble remains and byproducts can be readily accommodated with small modifications in the design and method presented herein, for example, by providing an additional space therefor within the volume and by providing for the manual removal of the insoluble remains and byproducts from the volume after use.
The impeding agent can comprise two or more layers, the layers differing by properties such as material composition, material density, physical structure and structural rigidity. One layer can be partially or fully coated by, glazed by, packaged within or otherwise enclosed by another layer. Each layer can respond differently to an exposure by a select liquid. One layer can dissolve, chemically react, effervesce, disintegrate, soften, collapse, break down, or otherwise change from its solid state or rigid structure more quickly or readily than another layer. For example, a paper or soluble plastic tube can be a container for other soluble substances in a granular form, providing a convenient packaging and a way to delay the start of actuation. The combination impeding agent comprising the tube enclosure and soluble granules enclosed therein can be inserted into the volume as one unit. The tube enclosure can fully impede the development of motion within the volume for a set time during exposure to a select liquid until the tube dissolves, disintegrates or softens, collapses and/or breaks down, whereupon the motion of the member within the volume proceeds and is regulated by the dissolution of the granular contents previously enclosed within the tube.
The collapse of such an enclosure and the release of the contents thereof, the enclosure having a substantially smaller diameter than the volume, can provide a relatively rapid step function in the initial motion of the member within the volume. In addition to paper or plastic, soluble coatings or glazings comprising types of substances such as sugars, starches, proteins, fibers, gums, and varnishes, alone or in combination, can also be used to form an outer layer. The rigid structure of the impeding agent is maintained during the initial softening, disintegration or dissolution of the enclosing material during exposure to a select liquid, allowing little or no progress in the motion of the member within the volume. Upon the collapse, substantial disintegration or dissolution of the enclosing material, the rigid structure is lost and the motion of the member within the volume progresses while the previously enclosed material dissolves. Actuation of animation in the artificial flower can follow an exposure to a select liquid by a delay time set by design.
The meaning of the term “dissolve” shall be expanded to include chemically react, effervesce, disintegrate, soften, collapse, break down, or otherwise change from a solid state or rigid structure to a state or structure ineffective at providing a blocking or impeding function, and shall be understood in accordance with the specific impeding agent being contemplated. The derivatives of the term “dissolve,” including “solution,” “dissolution” and “dissolvable,” shall receive a comparably expanded understanding.
The term “select liquid” refers to a liquid in which the impeding agent being contemplated is soluble, or capable of chemically reacting, effervescing, disintegrating, softening, collapsing, breaking down, or otherwise being changed from a solid state or a rigid structure to a state or structure ineffective at providing a blocking or impeding function. The select liquid can comprise water or a solution thereof. The select liquid can also comprise non-aqueous liquids, such as oils or alcohols.
References are made herein to a “surprise object” or “surprise gift”. The terms are used interchangeably. The surprise object or surprise gift is an article having tangible substance that can be provided by the flower or manually associated to the flower by a user for any intent or purpose. The surprise object or surprise gift can be removable or can be durably attached to the flower, can comprise a mounting adapter, removable covering, openable container or other enclosure or housing, and is not limited and does not exclude any article or number of articles or combination of articles. For example, the surprise object or surprise gift can comprise a doll, figurine, animated fairy, toy animal, pieces of chocolate or candy, photograph, written message, invitation, airline tickets, coupon, container of perfume, air freshener gel, car key, watch, engagement ring, pair of earrings, and the like. In certain embodiments, the surprise object or surprise gift, mounting adapter and/or enclosure independently or interconnectedly can comprise an electric battery, switch, and/or electronic circuit and/or mechanical apparatus, to provide features such as illumination, sound generation, moving parts, release of a fragrant substance, and the like.
As shown in the accompanying drawings, certain embodiments provide animation and the presentation of a surprise gift in an artificial flower device. In one embodiment, the device closely resembles a long-stemmed cut flower. A spring and piston driven mechanism actuated by placement of the stem into a select liquid is used to simulate natural flowering and/or other actions. Further information on artificial flower devices can be found in U.S. patent application Ser. No. 12/139,193, filed Jun. 13, 2008 and titled Animated Artificial Flower, and U.S. Provisional Patent Application No. 60/934,405, filed Jun. 13, 2007, the entire contents of both of which are hereby incorporated by reference and should be considered a part of this specification.
With continued reference to
As shown in
The petal spring 20 preferably biases the corresponding petal shoe 18 so that it pivots outwardly, to thereby move the corresponding petal 2 into the opened state. When in the opened state, the petals 2 can contact (e.g., lightly contact) the cover filler 17, as shown, for example, in
With continued reference to
The screen 36 is shown, for example in
As best shown in
With continued reference to
With continued reference to
As shown in
The lock portion 6c of the piston pin track 6a can allow for substantial rotation of the sleeve 10 relative to the stem 6, as shown in
With continued reference to
In one embodiment, the contact between the wheels 64 and the inner surface 38d of the cam 38 and the contact between the wheels 60 and the shaft 48a of the presentation platform 48 can be aided by materials and surface treatments that provide a high degree of friction and grip. Furthermore, in one embodiment, the notches 14e can be angled downwardly towards the opening thereof so that the descending inner surface 38d adds force directed outwardly on the axle 62, increasing the grip of the wheels 64 on the inner surface 38d.
With continued reference to
Upon the sudden loss of an opposing force by the piston 42 against the one or more brakes 52, which may occur during an inadvertent release of the sleeve 10 during a manual retraction thereof while the piston chamber 46 is empty, the piston 42 can be pushed away from the cam 38 by the bias force of the one or more brake springs 56 transmitted through the corresponding brakes 52. As the brake 52 pivots downwardly, the brake 52 jams into the downwardly extended shaft 48a of the presentation platform 48 and stops any motion thereof. The downward force on the cam 38 provided by the piston spring 40, which also forces the presentation platform 48 upwardly, adds to the binding force of the brakes 52 on the shaft 48a. This preferably stops all motion in the animated artificial flower 100 until the piston 42 is lifted upwardly against the brakes 52 with sufficient force to pivot the brakes 52 up and away from the shaft 48a.
The petals 2 can have a plurality of sizes and positions. Each petal shoe 18 can also be sized and shaped for the attached petal 2, setting the petal 2 at the appropriate distance from the center of the animated artificial flower 100 to provide overlap in the petals 2. The pivotal position of the petal shoe 18 can be determined by the pivotal position of the corresponding lifter 28 as transmitted by the petal rod 26. As discussed above, the petal spring 20 between each petal shoe 18 and the upper cover 14 biases the related petal 2 in an open position and applies an inwardly directed force on the related petal rod 26 and lifter 28. In another embodiment, the petals 2 may be so configured by weight distribution that they open by the force of gravity instead of by using petal springs 20. The petals 2 can be shaped with a greater horizontal radius (i.e., less curvature) towards their lower ends to allow a close spacing and overlap of the petals 2 when opened.
When the animated artificial flower 100 is in the open position, as shown in
The lifters 28 can be differentiated into groups by, for example, position. As shown in
When the animated artificial flower is in the closed position, the lifters 28 normally press against the cam 38, as shown in
In the illustrated embodiment, as the top surface of the cam 38 moves downwardly past each elevation of lifters 28, the lifters 28 pivot inwardly (e.g., as a result of the bias force applied by the petal spring 20), as shown in
In the illustrated embodiment, the lifters 28 are shown having a uniform size. Optionally, the lifters 28 can have varying sizes, varying at least by the distance from the axis of the pivotal connection to the tip of the lifter 28 which contacts the cam 38. Such lifters 28 of varying size can be used to provide a variation in the rate of opening of the petals 2.
In one embodiment, the slidable engagement between the shaft 48a of the presentation platform 48 and the aperture 14f through the central downward protrusion 14d of the upper cover 14 can be smooth, providing for a linear ascent of the presentation platform 48. In another embodiment (not shown), the aperture 14f and the shaft 48a can be threaded with mating helical screw threads to provide rotation to the presentation platform 48 as it ascends.
With continued reference to
In one embodiment, to prepare the animated artificial flower 100 for operation, the user may first hold the opened flower 100 in one hand by a lower portion 16a of the lower cover 16. With the other hand, the user can take the sleeve 10 and push it upwardly to a first stop (i.e., where the piston pin 44 is at the upper end of the vertical portion 6b of the piston pin track 6a) and then twist it to a final stop (i.e., where the piston pin 44 is at the closed end of the lock portion 6c of the piston pin track 6a), as shown in
Animation activities of the closed and loaded flower 100 may then be actuated by exposing the piston chamber 46 to a select liquid. For example, the animated artificial flower 100 can be placed into a container containing the select liquid so that the stem 6 is at least partially submerged in the select liquid. In another embodiment, the animated artificial flower 100 can be placed into the container, which is thereafter at least partially filled with the select liquid so that at least a portion of the stem 6 is immersed in the liquid. Preferably, the container bearing the select liquid has a narrow upper opening to prop the animated artificial flower 100 in a roughly vertical position so it will not tip over. Additionally, the container should preferably be shallow enough to allow the animated artificial flower 100 to rest on its lowest point. The degree of initial positional instability can be adjusted by extending the outside diameter and/or length of the sleeve 10 such that the closed flower may stand generally or fully upright without any additional support, and/or the ratio of the diameter of wheel 60 to wheel 64 can be reduced so that the length of the shaft 48a can be reduced.
The select liquid infiltrates the piston chamber 46 through the stem base 8 and screen 36. This changes the effective size of the impeding agent 47. For example, where the impeding agent 47 is a dissolvable material, exposure of the impeding agent to the select liquid will dissolve the impeding agent. As the effective size of the impeding agent in the piston chamber 46 gradually diminishes, the piston spring 40 can expand until it forces the piston 42 into contact with the stem base 8 (see
In the illustrated embodiment, during the animation activity of the animated artificial flower 100 and before presenting simulated growth, the animated artificial flower 100 can manifest a small gradual reduction in total height and a vertical straightening for dramatic effect as the downwardly protruded shaft 48a of the presentation platform 48 is withdrawn upwardly through the stem base 8 and into the stem 6 by the upward motion of the presentation platform 48.
As the presentation platform 48 ascends, the sleeve 10 descends, as discussed above. As the lower end of the sleeve 10 descends beyond a lower end 48b (see
The simulated growth can continue during the other animation activities (e.g., opening of the corolla 4, lifting of the presentation platform 48) of the animated artificial flower 100. During simulated growth, the animated artificial flower 100 continually manifests a gradual rotary oscillation of preferably a few degrees about a central vertical axis thereof as a result of the movement of the piston pin 44 within the undulating generally vertical portion 6b of the piston pin track 6a in the stem 6, as discussed above.
In the illustrated embodiment, the petals 2 of the corolla 4 are organized into three groups of three petals 2 each, with inner petals 2a, middle petals 2b and outer petals 2c. Of course, other numbers of petals 2 and groups may be used and can be differentiated by size and position. In this embodiment, the middle petals 2b can be situated at a greater distance from the center of the animated artificial flower 100 than the inner petals 2a, and each middle petal 2b can overlap with at least one side edge a side edge of an inner petal 2a. Outer petals 2c can be situated at a greater distance from the center of the animated artificial flower 100 than the middle petals 2b and each outer petal 2c can overlap a side edge of a middle petal 2b and a side edge of an inner petal 2a.
As the simulated growth of the animated artificial flower 100 continues, the petals 2 start to open. The outer petals 2c open first. While the outer petals 2c are opening, the middle petals 2b start opening followed by the inner petals 2a. In the illustrated embodiment, from the start of animation activities and before each petal 2 opens, each petal 2 can gradually vibrate between the closed position and a slight opening thereof, due to the interaction of the lifters 28 with the circumferential grooves 38c of the cam 38, as discussed above. The vibration of the outer petals 2c, middle petals 2b and inner petals 2a can occur at differing phases of a similar frequency.
A cavity 34 is defined within the closed corolla 4 and can at least partially conceal a surprise object (e.g. a gift) when the corolla 4 is closed. The surprise object can be coupled to the presentation platform 48 and revealed rising through the center of the corolla 4 as the petals 2 open. In the illustrated embodiment, the rate and extent of ascent of the presentation platform 48 is greater than the rate and extent of descent of the sleeve 10. In another embodiment, the rate and extent of ascent of the presentation platform 48 is equal to the rate and extent of descent of the sleeve 10 (e.g., where the wheels 60 and 64 have the same diameter). In still another embodiment, the rate and extent of ascent of the presentation platform 48 is less than the rate and extent of descent of the sleeve 10 (e.g., where the wheels 64 have a larger diameter than the wheels 60).
In one embodiment, the animated artificial flower 100 can advantageously be reused, by refilling the piston chamber 46 with an impeding agent, such as in the manner described above.
In the drawings and illustrations referenced herein, the embodiments are not necessarily drawn to scale, but rather are drawn to enable clear visualization of the component parts while imparting the general appearance of a natural flower. Natural flowers exist in a great variety of types and proportions. Some have short stocky stems. Some can have asymmetric petals, petals that vary widely in shape, only one petal or even petals not readily recognizable as such. Though the term “corolla” is commonly used to describe a plurality of petals, in a flower having one petal, one petal will constitute a corolla.
The drawings in this specification do not limit the invention to only those embodiments that generally resemble the illustrations. For example, the embodiments can be enhanced for additional realism or variety by altering the shapes and proportions of the component parts, or by attaching additional petals, sepals, petioles, leaves, nodes, branches, thorns or the like to the stem, perianth or other parts of the embodiments. Such additional components can be added alone or in combination. The inclusion of some such enhancing features in some of the embodiments herein by drawing and description is illustrative only and not limiting.
Moreover, the invention is not limited to embodiments that are intended to convey the beauty of natural flowers, or faithfully replicate the appearance or proportions thereof. An artificial flower can resemble a natural flower in a general sense without closely resembling a particular species of natural flower. It is contemplated that the various embodiments disclosed herein can be crafted as works of creative art to appear unlike existing natural flowers, or can include unnatural cartoonish features and fantastic embellishments, including a decorative base or stand.
Certain embodiments, though referred to herein throughout the specification and appended claims by the term “flower”, bear little or no resemblance to a natural flower. Likewise, certain components, though identified herein throughout the specification and appended claims by a label that also identifies a part of a natural flower, can take other forms or serve other functions. For example, when practiced for use as a child's toy, the embodiments of the invention disclosed herein can resemble a bivalve mollusk, dinosaur, octopus, boat, mermaid, or the like. In such embodiments, the petal can resemble a shell of the bivalve, jaw of the dinosaur, tentacle of the octopus, sail of the boat, tail of the mermaid, or the like. The stem can resemble a siphon or foot of the bivalve, body of the dinosaur, head and visceral mass of the octopus, hull of the boat, body of the mermaid, or the like. Such embodiments can be operated fully or partially submerged, and the advancing motion of the piston can be employed in a mechanical apparatus, for example, as a manner of propulsion. Thus, the invention is not limited to use in artificial flowers as commonly understood.
The use of a flat type, helically coiled type, compression type, expansion type, spiral wound or other type of resilient spring in the embodiments herein is not limiting. A specification of a specific resilient spring type shall be understood as one option only and does not exclude other options. Other spring types or resilient member types can be used in alternative positions and configurations to provide similar functional benefits.
The use of an inner stem slidably disposed within a stem to present flower growth and opening is not limiting. A specification of an attachment of, for example, a corolla to an inner stem shall be understood as one option, and does not exclude other options. For example, instead of an inner stem, an “outer stem” or other alternative configuration of stem sections can be used to provide similar functional benefits as those associated with the embodiments disclosed herein.
The terms “manual” and “manipulation”, refers generally to external interaction with certain embodiments or the component parts thereof. Steps or directions that specify manual handling or manipulation describe one application of an external force by, for example, a human hand, but that force can be provided alternatively or additionally by a tool, automated machine or otherwise.
The term “automatic” describes actions and steps which occur without a generally concurrent input of a commensurate mechanical force provided by manual handling or manipulation. A motion, development, change or occurrence shall be deemed automatic when it proceeds without a generally concurrent input of manual handling or manipulation, the force thereof commensurate in magnitude with the force required to perform the motion, development, change or occurrence. A motion, development, change or occurrence is not automatic if the energy used for the performance thereof is, in full or in large part, provided by concurrent manual handling or manipulation. But manual handling or manipulation can provoke or trigger the actuation of an automatic motion, development, change or occurrence. For example, a motion, development, change or occurrence is automatic if the energy used for the performance thereof is, in full or in large part, drawn from an internal source, such as a battery or resilient spring, which are capable of storing the energy required to produce the desired motion, development, change or occurrence for a substantial time.
Terminology such as, “place,” “placement,” “immersion” and “partial immersion,” used in connection with terminology such as, “container,” “vase,” “water,” “liquid” and “select liquid” refers a use of the embodiments in a manner resembling the handling that is customarily given a natural cut flower, such as the placement of an embodiment of the invention into a container of a select liquid to immerse at least the lower portion thereof. In certain uses, an embodiment is placed into an empty container into which a select liquid is subsequently added. In alternative embodiments, actuation is accomplished by other techniques for exposing the impeding agent or impellent to the select liquid. Such alternatives include, but are not limited to the use of vapor, fog, a spray, sprinkle, shower, flow, stream or partial or full submersion, such as by vase, cup, faucet, sink, hose, rainfall, river, lake, irrigation, water pistol, bowl, pitcher, washing machine, bathtub, swimming pool, or the like.
Conclusion
While the foregoing detailed description discloses several embodiments of the present invention, it should be understood that this disclosure is illustrative only and is not limiting of the present invention. It should be appreciated that the specific configurations and operations disclosed can differ from those described above, and that the methods described herein can be used in contexts other than artificial flowers.
Although these inventions have been disclosed in the context of a certain preferred embodiments and examples, it will be understood by those skilled in the art that the present inventions extend beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the inventions and obvious modifications and equivalents thereof. In addition, while a number of variations of the inventions have been shown and described in detail, other modifications, which are within the scope of the inventions, will be readily apparent to those of skill in the art based upon this disclosure. It is also contemplated that various combinations or subcombinations of the specific features and aspects of the embodiments may be made and still fall within one or more of the inventions. For example, steps of the method(s) disclosed herein can be performed in an order other than that disclosed in the illustrated embodiments, and additional, fewer, or different steps may be performed and still fall within the scope of the inventions. Accordingly, it should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying modes of the disclosed inventions. Thus, it is intended that the scope of the present inventions herein disclosed should not be limited by the particular disclosed embodiments described above.
This application claims the benefit of U.S. Provisional Patent Application No. 60/936,158, filed Jun. 16, 2007, the entire disclosure of which is hereby incorporated by reference herein and should be considered a part of this specification.
Number | Name | Date | Kind |
---|---|---|---|
530870 | Wenger | Dec 1894 | A |
1916988 | Pieschke | Jul 1933 | A |
3460426 | Jensen | Aug 1969 | A |
3471964 | Cherry et al. | Oct 1969 | A |
3811990 | Stoff | May 1974 | A |
4552339 | Werners et al. | Nov 1985 | A |
4910647 | Gong | Mar 1990 | A |
4983890 | Satoh et al. | Jan 1991 | A |
5056249 | Sakurai | Oct 1991 | A |
5144880 | Schmit | Sep 1992 | A |
5147265 | Pauls et al. | Sep 1992 | A |
5389030 | Chapkis | Feb 1995 | A |
5522758 | Liu et al. | Jun 1996 | A |
5713664 | Harilela | Feb 1998 | A |
5776561 | Lindauer | Jul 1998 | A |
5946835 | Boyd | Sep 1999 | A |
5947582 | Huang | Sep 1999 | A |
6001019 | Al-Bannai | Dec 1999 | A |
6036559 | Arnold et al. | Mar 2000 | A |
6389718 | Joo | May 2002 | B1 |
6726572 | Versen | Apr 2004 | B1 |
20040111935 | Tipay | Jun 2004 | A1 |
20050084413 | Stanley, III | Apr 2005 | A1 |
20060254098 | Fu | Nov 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20080311316 A1 | Dec 2008 | US |
Number | Date | Country | |
---|---|---|---|
60936158 | Jun 2007 | US |