The technology of this application relates generally to a child's toy and more specifically but not exclusively to an animatronic duck shaped toy.
An animatronic toy is typically a plastic figure in the shape of an animal, person or fictional character, which has internal gears and controllers that move parts of the toy to mimic organic movements. Animatronic toys have existed since at least the mid-1980s with the introduction of toys such as Teddy Ruxpin™, a bear whose mouth and eyes moved while he read stories that were played from an audio tape cassette deck built into its back, and others.
Animatronic toys have a potential use not only for play, but also in a healthcare setting. It is well known that pet therapy can provide comfort and emotional support to people of all ages. The movement and interaction of an animatronic toy simulating an animal, can provide a similar form of therapy to those who do not otherwise have access to pet therapy.
Conventional toys of this nature find it difficult to mimic lifelike movements in a believable way.
It may be advantageous to create an animatronic toy with substantially lifelike movements.
Many advantages will be determined and are attained by one or more embodiments of the technology, which in a broad sense provides an animatronic toy with naturalistic lifelike movement to simulate an animal such as duck. The duck may execute various choreographed movements to enable both calming and joyful interactions with a user. For example, the duck may tilt its head forward and open its mouth, or the duck may tilt its head left or right or the duck may turn its head right or left while leaning its body in the opposite direction.
In one or more embodiments a doll that performs automated movements is provided. The doll may include an outer shell that forms a shape of the doll. The outer shell may be separated into a head section and a body section, such that the head and body sections are connected through at least one internal connection. Further, at least one of the head and the body may be movable relative to the other; The doll further includes movable body parts, and at least one body part is located at least partially within the body section and at least one body part is located at least partially within the head section. At least two motors are disposed within the outer shell. At least one of the of motors is mounted so that it can simultaneously drive various ones of the automated movements of the doll and at least one of the motors may be mounted to drive a single movement of the doll. A set of gears associated may be with each of the motors. The gears act to step down an output speed of the motor. The doll includes a cam mechanism associated with each of the motors and a follower associated with at least one of the cam mechanisms. A cam mechanisms included a groove. The groove acts as a guide path for the associated follower. The doll also includes at least one controller associated with at least one of the motors, wherein the controller provides the automated movements of the body parts by starting and stopping the motor.
In one or more embodiments an animatronic duck is provided which includes automated moving parts. The duck may include a base section which includes feet and at least one leg. The base section may house a body support element, which has a top and a shaft support. An axle/shaft may be supported in the shaft support and a cam follower may be supported by the axle. The cam follower rotates about an axis of the axle. The duck also includes an outer shell that forms a shape of the duck. The outer shell may be separated into a head section and a body section. The head and body sections are connected through at least one internal connection. A motor may be connected to the cam follower. A set of gears may be meshed to the motor. A horizontal cam mechanism may be associated with the set of gears. The cam mechanism may have a groove, which acts as a guide path for the follower. The duck includes a head turning gear horizontally meshed with the set of gears and a neck assembly joined with the head turning gear. The internal connection may be connected to the neck assembly such that when the motor operates the head section turns relative to the body section and the body section tilts relative to the base.
The technology will next be described in connection with certain illustrated embodiments and practices. However, it will be clear to those skilled in the art that various modifications, additions and subtractions can be made without departing from the spirit or scope of the claims.
For a better understanding of the technology, reference is made to the following description, taken in conjunction with any accompanying drawings in which:
The technology will next be described in connection with certain illustrated embodiments and practices. However, it will be clear to those skilled in the art that various modifications, additions, and subtractions can be made without departing from the spirit or scope of the claims.
One or more embodiments of the technology provides, in a broad sense, an animatronic doll. A doll such as an animatronic duck is provided which may include, among other things, a speaker, various input devices, a movable beak, a tongue within the moveable beak, wings and feet. The duck may perform various conjoined or individual movements such as a tilting of the head forward while opening the beak, turning the head to the right or left while the body tilts in the opposite direction, or tilting the head right or left. The duck may also provide sounds in conjunction with the movements or separate from the movements.
Discussion of an embodiment, one or more embodiments, an aspect, one or more aspects, a feature, one or more features, a configuration or one or more configurations, an instance or one or more instances is intended be inclusive of both the singular and the plural depending upon which provides the broadest scope without running afoul of the existing art and any such statement is in no way intended to be limiting in nature. Technology described in relation to one or more of these terms is not necessarily limited only to use in that embodiment, aspect, feature, configuration or instance and may be employed with other embodiments, aspects, features, configurations and/or instances where appropriate.
For purposes of this disclosure “doll” means an animatronic scaled figure which has the shape of a person, animal or creature. The doll may be completely animatronic, or a combination of animatronic and manually movable parts. While the disclosure may refer to a duck shaped doll or simply a duck, the technology is not so limited. This reference is made for ease of explanation only and is not intended to be limiting as far as the shape or size of the doll. Disclosure related to the duck may be applied or related equally to other dolls that have a similar shape.
For purposes of this disclosure “sensor” means one or more photodetectors, capacitive sensors, radio frequency (rf) sensors, cameras, microphones, Bluetooth Low Energy (BLE) detectors, WiFi detectors, ProSe detectors, LTE-D detectors or accelerometers.
As discussed above, one of the movements that duck 100 may perform includes tilting the body to one side or the other relative to the center 250. This motion, which will be explained with reference to
Leg 320 may include a hollow middle which houses body support 805. The top of body support 805 may include a shaft support for shaft 810. Shaft 810 may be configured to rotate or it may be configured to be locked in place. Shaft 810 may also be placed through a hole in cam follower 800 to support cam follower 800. If shaft 810 is configured to rotate then cam follower 800 may be secured to shaft 800 or shaft 800 may be part of can follower 800. If shaft 810 does not rotate then cam follower 800 may rest on shaft 800 such that can follower 800 may rotate about shaft 810. Biasing spring 815 may also be connected to shaft 810 or it may be connected to body support 805. Either way, biasing spring 815 is configured to contact cam follower 800 to ensure a controlled smooth movement when cam follower 800 moves.
As indicated above, various movements may be conjoined. Two such movements may include tilting of the body with turning the head. To that end, motor 820 may also be employed to rotate the head to the left or to the right. A head turning gear 840 is also meshed with the set of gears 825 and thus as gears 825 rotate they rotate head turning gear 840, which in turn rotates the neck assembly 845. Neck assembly 845 is connected to neck housing 850, which is connected to neck cover 260. Neck cover 260 is connected to neck linkages 310/315, which connect the head to the body. Thus, as the head turning gear 840 rotates, it rotates the head.
In one or more embodiments, duck 100 may tilt its head forward.
One or more embodiments provides the ability for the duck 100 to tilt its head to the left or right. In such an embodiment, a side head tilt motor 940 may be secured on top of neck assembly 915. Side head tilt motor 940 may be electrically connected to the batteries via a processor or via other circuit logic. Side head tilt motor 940 is meshed with a set of gears, which are configured to step down the speed of the side head tilt motor to provide smooth lifelike movement. The gears may be connected to or be in contact with head cam 930, which in turn may be connected to the housing for the head 220 such that when the gears rotate they rotate head cam which in turn tilts the head to one side or the other.
In any or all of the above embodiments, a cam (e.g. cam 865 in
Having thus described preferred embodiments of the technology, advantages can be appreciated. Variations from the described embodiments exist without departing from a scope of one or more claims. It is seen that an animatronic doll provided. Although specific embodiments have been disclosed herein in detail, this has been done for purposes of illustration only, and is not intended to be limiting with respect to the scope of the claims, which follow. It is contemplated by the inventors that various substitutions, alterations, and modifications may be made without departing from the spirit and scope of the technology as defined by the claims. For example, different and/or additional individual or conjoined movements may be included. The combination of conjoined movements may be modified, etc. Other aspects, advantages, and modifications are considered within the scope of the following claims. The claims presented are representative of the technology disclosed herein. Other, unclaimed technology is also contemplated. The inventors reserve the right to pursue such technology in later claims.
Insofar as embodiments described above are implemented, at least in part, using a computer system, it will be appreciated that a computer program for implementing at least part of the described methods and/or the described systems is envisaged as an aspect of the technology. The computer system may be any suitable apparatus, system or device, electronic, optical, or a combination thereof. For example, the computer system may be a programmable data processing apparatus, a computer, a Digital Signal Processor, an optical computer or a microprocessor. The computer program may be embodied as source code and undergo compilation for implementation on a computer, or may be embodied as object code, for example.
It is also conceivable that some or all of the functionality ascribed to the computer program or computer system aforementioned may be implemented in hardware, for example by one or more application specific integrated circuits and/or optical elements. Suitably, the computer program can be stored on a carrier medium in computer usable form, which is also envisaged as an aspect of the invention. For example, the carrier medium may be solid-state memory, optical or magneto-optical memory such as a readable and/or writable disk for example a compact disk (CD) or a digital versatile disk (DVD), or magnetic memory such as disk or tape, and the computer system can utilize the program to configure it for operation. The computer program may also be supplied from a remote source embodied in a carrier medium such as an electronic signal, including a radio frequency carrier wave or an optical carrier wave.
It is accordingly intended that all matter contained in the above description or shown in the accompanying drawings be interpreted as illustrative rather than in a limiting sense. It is also to be understood that the following claims are intended to cover the generic and specific features of the technology as described herein, and all statements of the scope of the technology which, as a matter of language, might be said to fall there between.