The invention is an ankle derotation and subtalar stabilization system that incorporates a pivoting adjustable-tension oblique tether strap that is anchored to both a forefoot component and leg component, and that is contiguous with pivoting adjustable-tension derotation strap that passes behind the leg and that is secured to a leg component. The system restrains oppositely directed rotation between the foot and the leg, and can actually alter the normal biomechanical relationship in a manner that produces foot rotation in a direction opposite to that which is normally coupled with leg rotation, without restriction of upward and downward foot movement. The primary application for the system is restraint of excessive subtalar joint inversion, leg external rotation, and anterolateral rotary displacement of the talus, but it can also be configured to restrain subtalar eversion and leg internal rotation through its incorporation into the structure of an ankle orthosis or shoe.
Not applicable.
The invention relates to control of excessive and abnormal displacements of the talocrural and subtalar joints of the ankle during physical activity, for the purposes of prevention of injury, protection of previously injured ligaments, or compensation for chronic instability.
An exceedingly wide variety of ankle orthosis designs have been developed, which have different closure mechanisms, strap configurations, and material characteristics. Prior art has recognized that restraint of abnormal ankle displacement requires orthosis elements that are firmly secured to both the leg and the foot, but the none of the linkage mechanisms between the leg and the foot segments described in the prior art effectively restrain excessive subtalar joint motion or combined rotary and translational displacement of talus, while simultaneously permitting unrestrained upward and downward movement of the foot in the sagittal plane. A review of the biomechanical function of the leg, ankle, and foot is essential for understanding of the mechanism by which a new and original pivoting strap system design provides an optimal level of ankle stability when incorporated into the structure of an ankle orthosis or shoe.
Movements of body segments have traditionally been defined by assuming that the proximal segment (closest to the body torso) remains stationary, while the non-weightbearing distal segment (furthest from the body torso) changes its position in space. The movements of the distal segment are defined in terms of cardinal planes, which correspond to the three dimensions of space and are perpendicular to one another. Isolated upward and downward movements of the foot in the sagittal plane (respectively termed dorsiflexion and plantar flexion) are associated with rotation around a horizontal axis that is perpendicular to the long axis of the foot. Isolated inward and outward tilting movements of the sole of the foot in the frontal plane (respectively termed supination and pronation) are associated with rotation around a horizontal axis that is aligned with the long axis of the foot. Isolated inward and outward displacements of the long axis of the foot in the transverse plane (respectively termed adduction and abduction) are associated with rotation around a vertical axis that is aligned with the long axis of the stationary leg.
Although the ankle is widely viewed as a single joint between the leg and foot, ankle motion actually involves extremely complex interrelationships between the articular surfaces and ligaments of the talocrural joint, subtalar joint, transverse tarsal joint, tarsometatarsal joints, and metatarsophalangeal joints. The motions of an individual joint, which are almost never confined to a single cardinal plane, are primarily determined by the geometric configuration of its articular surfaces. A joint's “functional” axis of rotation is an imaginary line in space, around which angular motion occurs. Thus, the “functional” axis of angular motion for a given joint has a spatial orientation that typically deviates to some degree from vertical and horizontal reference planes.
The talocrural joint (TCJ), which is comprised of the tibia, fibula, and talus, is widely referred to as the ankle joint. Most of the upward and downward movement of the foot results from TCJ motion, but most of the side-to-side movement of the foot results from motion between the talus and calcaneus in the subtalar joint (STJ). Although the TCJ and STJ function in a highly integrated manner, they represent two distinctly separate joints. Thus, the TCJ should be viewed as the “upper” ankle joint and the STJ as the “lower” ankle joint. The orientation of the functional axis of the TCJ closely corresponds to the lower tips of the bony protuberances on either side of the ankle (the tibial malleolus and the fibular malleolus). Although TCJ motion primarily occurs within the sagittal plane, and is referred to as dorsiflexion and plantar flexion, the TCJ functional axis has a somewhat oblique orientation that combines some degree of supination and adduction with plantar flexion, and some degree of pronation and abduction with dorsiflexion (
The inward rotation of the sole of the foot that results from STJ motion is referred to as inversion, whereas the reciprocal outward rotation is referred to as eversion. From an outer side view, the average inclination of the STJ functional axis relative to the sole of the foot approximates a 45-degree orientation (
Excessive inversion torque is the dominant injury producing force in 85% of all ankle sprains. The position of the foot at the moment of injury is typically a combination of plantar flexion and inversion. The anterior talofibular ligament (ATFL) is the weakest and most vulnerable component of the lateral ligament complex, and it is the first to be stressed by the typical ankle sprain mechanism. Numerous experts in ankle biomechanics have emphasized the importance leg external rotation as key factor contributing to disruption of the ATFL. If the foot is firmly fixed to the ground, such that there is minimal movement at the ground-sole interface, torque is concentrated on the linkage between the foot and leg. As the leg rotates externally upon the talus, the ATFL is subjected to tensile stress. Tearing and/or chronic elongation of the ATFL results in abnormal rotary mobility within the TCJ (anterolateral rotary instability: anterior translation of the anterolateral portion of the talus from the tibio-fibular socket as the leg rotates externally;
To effectively prevent lateral ankle sprain, or chronic rotary displacement, an ankle orthosis must restrain excessive and abnormal coupled motions within the joints of the forefoot (tarsometatarsal joints and transverse tarsal joint) and hindfoot (STJ and TCJ). To be practical for use among athletes, the device must not significantly restrict upward and downward foot movements necessary for running and jumping (dorsiflexion and plantar flexion). The degree of resistance provided to a given ankle motion by a orthosis is determined by the following factors: 1) the geometric configuration of the elements of the device relative to the spatial orientation of the functional axis of motion, 2) the degree of stiffness or elasticity of the materials that comprise the orthosis elements, and 3) the degree of fixation of the device to both the leg and the foot segments.
When subjected to excessive inversion stress, the articular surfaces of the joints of the foot and ankle are distracted laterally and compressed medially. Several different strategies may be employed to resist such joint displacement. A “stirrup brace” incorporates medial and lateral components that are constructed from a relatively rigid plastic. Both components contribute to ankle stability, but have different biomechanical effects. The component that spans the medial joint surfaces acts like a “spacer bar” to resist medial compression. Assuming that the lateral component of a stirrup brace exerts pressure against the lateral surface of the ankle, it acts as a “buttress” to resist lateral distraction. Cloth adhesive tape applied to the ankle provides support through a different mechanism. When skillfully applied, strips of adhesive tape develop tension in response to distraction of the joints that they span, thereby acting like a “tether” that resists separation of its attachment points. Thus, tape may function like an “external ligament” that limits the displacement of underlying joint surfaces. Lace-up ankle braces, which are constructed from pliable fabric (e.g., nylon or vinyl) and are secured to the leg and foot segments by means of a system of eyelets and lacing (Hely, U.S. Pat. No. 5,067,486; Nelson, U.S. Pat. No. 4,237,874), do not conform to the ankle contours as closely as adhesive tape. The primary mode of protection for the lateral ankle ligaments provided by a lace-up ankle brace is probably derived from the manner in which the joints of the hindfoot are encased by material (i.e., a lateral buttress effect).
Ideally, an ankle support system should restrict excessive motion within the STJ, without significant restriction of motion within the TCJ. Because a wide range of upward and downward foot motion is clearly desirable for activities that involve running and jumping, some semi-rigid ankle brace designs have incorporated hinges on the medial and/or lateral aspects of the brace that are intentionally aligned with the approximate location of the TCJ axis (Bowman, U.S. Pat. No. 6,689,081; Miklaus et al., U.S. Pat. No. 5,209,722; Peters, U.S. Pat. No. 5,031,607; Peters, U.S. Pat. No. 6,053,884; Quinn et al., U.S. Pat. No. 5,971,946; Richie Jr., U.S. Pat. No. 6,602,215; Westin et al., U.S. Pat. No. 4,646,726). Fixation of brace components to the leg and foot segments is often provided by straps that incorporate Velcro hook and loop closure material. Many ankle braces incorporating adjustable-tension straps that link foot and leg components include a semi-rigid cuff and strap system that encircles the leg (Broadhurst, U.S. Pat. No. 4,982,733; Gilmour, U.S. Pat. No. 5,899,872; Hayashi, U.S. Pat. No. 6,056,713; Kenosh, U.S. Pat. No. 5,810,754; Peters, U.S. Pat. No. 6,053,884; Sutherland, U.S. Pat. No. 4,753,229; Westin et al., U.S. Pat. No. 4,646,726). To reduce interference with normal upward and downward movement of the foot, adjustable-tension straps are sometimes anchored to foot and/or leg brace components by means of a pivoting connection (Avon, U.S. Pat. No. 6,793,640; Baron, Des. 338,066; Bowman, U.S. Pat. No. 6,689,081; Montag, U.S. Pat. No. 5,472,411; Richie Jr., U.S. Pat. No. 6,602,215; Sutherland, U.S. Pat. No. 4,753,229; Westin et al., U.S. Pat. No. 4,646,726). An ankle support device is typically separate from the structure of the shoe within which it is worn, but support ankle systems may be embodied in either the form of an orthosis or incorporated into the structure of a shoe (Burns, U.S. Pat. No. 4,441,265; Kenosh, U.S. Pat. No. 5,810,754; Sutherland, U.S. Pat. No. 4,753,229; Townsend et al., U.S. Pat. No. 6,228,043).
Because motion of the talus is influenced by torque that is transferred from joints in the forefoot, restriction of excessive forefoot inversion is essential for optimal maintenance ankle stability. To control forefoot inversion, the support system must span the set of articulations between the talus, calcaneus, navicular, cuboid, and fifth ray, and it must be firmly anchored to both the leg and forefoot. The designs of most ankle support systems reflect a focus on enhancement of the stability of the hindfoot, without any attempt to control motion within the joints of the forefoot. However, there are a few notable exceptions. Westin et al. (U.S. Pat. No. 4,646,726) disclosed a design that incorporates an adjustable-tension oblique strap, which extends from the forefoot portion of a footplate component to a common junction with another vertical strap that is anchored to a leg cuff component. Kenosh (U.S. Pat. No. 5,810,754) disclosed a non-adjustable design that incorporates a “talofibular support portion” that is continuous in structure with the rest of the orthotic, which is clearly intended to provide a forefoot stabilization effect. Avon (U.S. Pat. No. 6,793,640) disclosed a device that is intended for control of ankle instability associated with paralysis, which incorporates a pair of obliquely-oriented adjustable straps on its medial and lateral aspects that span the joints of the forefoot and midfoot.
An ankle taping procedure that incorporates tape strips applied in such a manner that their orientation is perpendicular to the orientation of the STJ axis has been shown to be highly effective in restricting inversion and translatory movement of the foot in relation to the leg (
None of the prior art has disclosed an adjustable-tension tether strap that is anchored to the forefoot portion of a foot cuff/orthotic component, that pivots in a manner to permit normal upward and downward movement of the foot, and that is contiguous with a adjustable-tension derotation strap that wraps behind the leg and anchors to a leg cuff component. Because the major portion of forefoot motion results from rotation around the functional axis of the STJ, optimal resistance to excessive forefoot motion can be accomplished through a design that generates tensile resistance in a plane that is perpendicular to that of the STJ axis. Such a system requires moveable elements for the following reasons: 1) plantar flexion and dorsiflexion would be greatly limited by a non-elastic or non-articulated device that connects the leg and the forefoot, and 2) the orientation of the subtalar axis changes when the foot is dorsiflexed and plantar flexed.
The present invention is an ankle support system that incorporates the concept of forefoot to leg linkage, which has been demonstrated to be an effective ankle taping procedure for stabilization of the STJ and for restraint of translatory/rotary displacement of the talus in the transverse plane. The “subtalar sling” ankle taping procedure involves the application of semi-elastic strips of tape to the plantar aspect (sole) of the forefoot that are wrapped around the lateral border of the foot at an orientation of approximately 45 degrees and wrapped around the posterior, medial, and anterior aspects of the leg (Wilkerson, 2002, 2005;
One embodiment incorporates pivoting tether straps 8 and 9, a pivoting derotation strap 18, and a lace-up closure mechanism 22 that joins the lateral (outer) side portion 14 to the medial (inner) side portion 15 of the foot cuff 2, as well as the lateral side portion 6 to the medial side portion 3 of the leg cuff 1 (
The precise orientation of the oblique tether strap 8 in relation to the functional axes of the TCJ and the STJ is a critical factor influencing the effectiveness of the articulated ankle orthosis. To define its orientation, the ankle is assumed to be in a neutral position (i.e., long axis of the foot horizontal and long axis of the leg vertical) and viewed in the sagittal plane (i.e., looking at the lateral aspect). With the ankle in a neutral position, the axis of the subtalar joint is oriented at approximately 45 degrees relative to the long axes of both the foot and the leg in the sagittal plane. Because maximum resistance to inward rotation of the foot around the subtalar axis is provided by a line of force that is perpendicular to the axis, the orientation of the tether strap is also 45 degrees when the ankle is in a neutral position. The angle between the subtalar axis and the long axis of the leg increases when the ankle is plantar flexed (TCJ motion;
Strategic positioning of the attachment points 7 and 12 of the pivoting oblique tether strap 8 in relation to the orientations of both the TCJ and STJ axes achieves several interrelated functions: 1) relatively unrestricted plantar flexion and dorsiflexion of the TCJ within the sagittal plane, 2) maintenance of an approximately perpendicular relationship between the longitudinal axis of the oblique tether strap 8 and the position of the STJ axis throughout the range of plantar flexion and dorsiflexion, and 3) increased tension development within the oblique tether strap 8 as the foot moves toward a greater degree of plantar flexion (
Tension in oblique tether strap 8 is maintained and adjusted by a mechanism that includes D-ring 10, a mounting tab and rivet 12 that is attached to foot component side panel 14, and a double-slot buckle 16. An identical mechanism for vertical tether strap 9 includes D-ring 11, a mounting tab and rivet 13 that is attached to foot component side panel 14, and a double-slot buckle 17. For the embodiment depicted in
The mechanism described for control of the combination of subtalar inversion and leg external rotation can also be applied for control of the combination of subtalar eversion and leg internal rotation by reversing the locations of the previously described lateral (outer) and medial (inner) orthosis components. In the context of chronic overuse injuries affecting the foot and leg, the term “pronation” is synonymous with excessive subtalar eversion. To control pronation, which is coupled with internal rotation of the leg, the disclosed subtalar stabilization mechanism would incorporate the following: 1) oblique and vertical tether straps 8 and 9, and their associated anchoring and tension adjustment components, on the medial (inner) aspect, 2) a derotation strap 18 that shares a pivoting anchor 7 with the tether straps 8 and 9 on the medial (inner) aspect and that wraps behind the leg in a medial to lateral direction, and 3) overlapped leg and foot side panel components that are connected by a pivot joint 5 on the lateral aspect of the orthosis. Reversal of the relative locations of the medial and lateral orthosis components causes the relocated pivot points 5 and 7 to closely approximate the orientation of the functional axis of the TCJ in the frontal and transverse planes. Control of excessive subtalar eversion and leg internal rotation is also a primary consideration for prevention of the “syndesomotic” ankle sprain, which most commonly occurs during participation in contact sports. Because participants in contact sports may be susceptible to ankle injury from either excessive subtalar inversion (and leg external rotation) or excessive subtalar eversion (and leg internal rotation), oppositely oriented oblique tether straps 8 and derotation straps 18 are necessary on both the lateral and medial sides of the orthosis, and the leg and foot components must have overlapping side panels and pivot joint connections on both the medial and lateral sides. Such an embodiment replaces the vertically oriented tether strap 9 with an upward side panel extension of the foot component's semi-rigid structure, which overlaps the semi-rigid structure of the leg component, and is secured to the leg component side panel by a pivoting rivet connection, which also serves a the common anchor point for the oblique tether strap 8 and derotation strap 18. This bilateral incorporation of pivot joint connections between the leg cuff component and foot cuff/orthotic component and the bilateral incorporation of oblique tether straps and derotation straps requires both pivot joints to fulfill the functions of both pivot point 5 and pivoting anchor point 7. For the oblique tether straps 8 to be oriented in a manner that is approximately perpendicular to the orientation of the functional axis of the STJ in the sagittal plane on both sides of the orthosis, the combined orthosis pivot points 5 and pivoting strap anchor points 7 must be positioned at approximately the same height, which creates an orthosis axis of rotation that is relatively horizontal in the frontal plane.
In summary, the key to ankle stabilization for prevention of lateral ligament injury is restriction of excessive forefoot inversion and leg ER. The most effective means of controlling STJ motion is achieved through a pivoting forefoot to leg linkage. Because the most common mechanism of ankle injury is associated with lateral joint distraction, the lateral side of the ankle orthosis should have an adjustable “tether strap” that spans the lateral joints and functions like an external ankle ligament. Concomitant medial joint compression is resisted by the presence of a medial “spacer bar” element that is formed by the overlapped upper and lower semi-rigid orthosis components. Precise placement of moveable orthosis elements in relation to selected anatomical landmarks is essential for preservation of normal functional ankle motions, and for restraint of undesirable pathologic motions. Because external rotation of the leg increases tension in the contiguous derotation and oblique tether straps, a tensile force is applied to the lateral aspect of the foot that tends to lift it into an everted position. Thus, the derotation and oblique tether strap mechanism reverses the normal biomechanical coupling of leg external rotation and subtalar inversion. Precisely the same effect is produced if the mechanism is adapted to function on the medial side of the orthosis, i.e., internal rotation of the leg increases tension on the straps, which tends to lift the medial border of the foot. The disclosed ankle derotation and subtalar stabilization system offers greater advantages than any other that is presently available for the prevention and management of lateral ankle ligament injury, pronation-related overuse syndromes, and syndesmotic ankle injury, while presenting minimal interference to the efficient performance of athletic activities. The disclosed system can be readily incorporated into the structure of an ankle orthosis or the structure of athletic shoes or work/recreation boots.
This application claims benefit of Provisional application Ser. No. 60/846/738 filed Sep. 25, 2006.
Number | Date | Country | |
---|---|---|---|
60846738 | Sep 2006 | US |