The present invention, according to some embodiments, includes an implantable device, instrumentation and methods for fusing ankle bones of a mammalian patient. More particularly, in some embodiments, the invention is directed to an arthrodesis nail and instrumentation and methods for implanting the same to fuse the tibia, talus, and calcaneus bones of an ankle of a human patient.
In one embodiment there is an ankle fusion device that includes a proximal portion generally extending along a first longitudinal axis. The proximal portion includes a proximal end and a first fastener hole. The proximal portion has an arcuate curve such that the proximal end is spaced a distance from the first longitudinal axis in a first direction. The first fastener hole is configured to receive a first fastener along a first fastener axis. A distal portion of the ankle fusion device extends to a distal end from the proximal portion along a second longitudinal axis. The second longitudinal axis is angled in second and third directions relative to the first longitudinal axis. The second direction is perpendicular to the first direction and the third direction is opposite the first direction. The distal portion includes a second fastener hole configured to receive a second fastener along a second fastener axis. In one embodiment, the second fastener hole is elongate and the distal portion further includes a bore extending proximally from the distal end along the second longitudinal axis. The bore is at least partially threaded. The distal portion further includes an elongate third fastener hole configured to receive a third fastener along a third fastener axis.
In a further embodiment, the ankle fusion device comprises a compression screw configured to be received in the bore and translate therein along the second longitudinal axis. In on embodiment, the compression screw includes an engagement portion having a concave surface configured to contact the third fastener when the third fastener is received in the third fastener hole and a threaded portion attachable to the engagement portion and having external threads configured to engage the threads of the bore. In one embodiment, the bore does not extend through the entire distal portion.
In a further embodiment, the ankle fusion device further comprises an end cap set screw having a closed distal end and external screws configured to engage the threads of the bore. In one embodiment, the distal portion includes a third fastener hole configured to receive a third fastener along a third fastener axis. In one embodiment, the second fastener axis is oriented at an oblique angle relative to the third fastener axis. In one embodiment, the second fastener axis and the third fastener axis lie on planes that are parallel to one another. In one embodiment, the third fastener axis is configured to be substantially aligned with a longest dimension of a talus once the ankle fusion device is implanted. In one embodiment, the proximal portion further comprises a fourth fastener hole configured to receive a fourth fastener along a fourth fastener axis. In one embodiment, the fourth fastener axis and the first fastener axis are substantially parallel. In one embodiment, the fourth fastener hole is elongate.
In one embodiment, the distal end includes a truncated surface that is generally perpendicular to the first longitudinal axis and oriented at an oblique angle relative to the second longitudinal axis. In one embodiment, the second fastener axis is configured to be substantially aligned with a longest dimension of a calcaneus bone once the ankle fusion device is implanted. In one embodiment, once the ankle fusion device is implanted in a body the proximal portion extends into a tibia, the distal portion extends through a calcaneus, the first direction is in an anterior direction, the second direction is in a lateral direction and the third direction is in a posterior direction. In one embodiment, the entire proximal portion is arcuate in the first direction. In one embodiment, the proximal portion is least partially cannulated. In one embodiment, the proximal portion is substantially solid.
In another embodiment, a device for positioning at least one guidewire in a calcaneus bone and talus bone comprises a frame configured and dimensioned to at least partially surround the calcaneus bone and the talus bone. The frame includes a guidewire target configured and dimensioned to be inserted between the talus bone and a tibia bone proximate a talar dome of the talus bone and a first guidewire sleeve radially disposed about a first guidewire axis. The first guidewire axis is aligned with the guidewire target.
In a further embodiment, the device includes a second guidewire template attached to the frame and having a second guidewire sleeve radially disposed about a second guidewire axis. In one embodiment, the second guidewire template includes an alignment guide extending therefrom. In one embodiment, the second guidewire axis extends towards the guidewire target when the alignment guide is substantially aligned with a pre-selected anatomical feature. In one embodiment, the pre-selected anatomical feature is a second metatarsal bone. In one embodiment, the second guidewire axis is positioned at an oblique angle relative to the first guidewire axis when the alignment guide is substantially aligned with the pre-selected anatomical feature. In on embodiment, the second guidewire template is configured to rotate about the first guidewire axis. In one embodiment, the second guidewire template is slideable and rotatable relative to the first guidewire sleeve.
In a further embodiment, the device includes a tibial alignment guide engaged with the frame and configured to extend proximally therefrom along a longitudinal axis substantially parallel to the first guidewire axis. In one embodiment, the tibial alignment guide includes a transverse member being positionable at a location along a longitudinal axis of the tibial alignment guide. In one embodiment, the transverse member has a curvature about the first guidewire axis. In one embodiment, the frame further comprises a targeting arm that includes the guidewire target and the tibial member is attachable to the targeting arm. In one embodiment, an extension of the tibial alignment guide includes at least one alignment member, the at least one alignment member configured and positioned to intersect with a plane aligned with the first guidewire axis. In one embodiment, the tibial alignment guide is rotatably attachable with the frame.
In one embodiment, the frame further comprises a targeting arm that includes the guidewire target, the targeting arm and the first sleeve arm being substantially parallel to one another. In one embodiment, the first sleeve is fixed in position relative to the targeting arm. In one embodiment, the first guidewire axis is configured to substantially align with a center of the talar dome and to the guidewire target when the guidewire target is inserted between the talus and the tibia proximate the talar dome. In one embodiment, the first sleeve arm is positioned distally from the calcaneus bone when the guidewire target is inserted between the talus bone and the tibia bone proximate the talar dome of the talus bone.
In another embodiment, a method for positioning a guidewire in a calcaneus bone, talus bone, and tibia bone, includes: inserting a guidewire target on a guidewire targeting device into an ankle joint at a distal end of the tibia bone such that the guidewire target is proximate a talar dome of the talus bone; positioning a first guidewire sleeve on the guidewire targeting device proximate the calcaneus bone, the first guidewire sleeve pointing toward the guidewire target to provide a first guidewire axis; aligning the first guidewire axis of the first guidewire sleeve generally co-axially with a longitudinal axis of the tibia bone; and advancing a first guidewire along the first guidewire axis through the first guidewire sleeve and into the distal tibia bone through the calcaneus bone and talar dome of the talus bone.
In a further embodiment, the method includes: positioning a second guidewire axis of a guidewire template coupled to the guidewire targeting device at an oblique angle relative to the first guidewire axis; aligning the second guidewire axis with the talar dome of the talus bone and; and advancing a second guidewire along the second guidewire axis through a second guidewire sleeve on the guidewire temple and into the calcaneus bone and the talar bone until an end of the second guidewire generally reaches the first guidewire.
In one embodiment, the second guidewire axis includes rotating the guidewire template relative to the guidewire targeting device until an alignment arm of the guidewire template is substantially aligned with an anatomical feature. In one embodiment, the anatomical feature is a long axis of a second metatarsal bone. In one embodiment, the guidewire template is rotatably coupled to the guidewire targeting device. In one embodiment, the guidewire temple is slideably coupled over a portion of the first guidewire sleeve surrounding the first guidewire axis.
In a further embodiment, the method includes: removing the first guidewire; advancing a cannulated resection device over the second guidewire and through the calcaneus and the talus; performing a dorsiflexion and inversion of the ankle joint to align the second guidewire with the longitudinal axis of the tibia bone; advancing the second guidewire into the tibia bone along the longitudinal axis of the tibia bone; and further advancing the cannulated resection device over the second guidewire and into the tibia.
In one embodiment, the second guidewire axis is angled laterally and posteriorly relative to the first guidewire axis. In a further embodiment, the method comprises: positioning an elongate member coupled with the guidewire targeting device substantially parallel to the longitudinal axis of the tibia bone. In one embodiment, a proximal arm extends from the guidewire target and a distal arm extends from the first guidewire sleeve, the proximal arm being generally parallel to and spaced from the distal arm. In one embodiment, aligning the first guidewire axis includes aligning the guidewire target with a center of the talar dome.
In a further embodiment, the method includes bracing an alignment guide of the guidewire targeting device against an anterior surface of an outside of a leg. In one embodiment, aligning the first guidewire axis of the first guidewire sleeve generally co-axially with the longitudinal axis of the tibia bone includes positioning an alignment member of the guidewire targeting device proximal the tibia bone on a plane aligned with the longitudinal axis of the tibia bone.
The foregoing summary, as well as the following detailed description of embodiments of the Ankle Fusion Device, Instrumentation and Methods, will be better understood when read in conjunction with the appended drawings of an exemplary embodiment. It should be understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown.
In the drawings:
Referring to the drawings in detail, wherein like reference numerals indicate like elements throughout, there is shown in
Severe arthrosis and deformity of the ankle and subtalar joints may be debilitating problems that can be difficult to treat. Tibotalocalcaneal fusion (fusion of the calcaneus, talus and tibia) with an intramedullary nail can be considered a salvage procedure for severe arthrosis and deformity of the ankle and subtalar joints. Ankle arthrodesis may be a challenging procedure due to poor host conditions (e.g., bad skin, deformity, and avascular necrosis), inability to get adequate fixation for this slow healing process, and the inability to get adequate compression across the fusion. Performing an ankle arthrodesis can also be technically demanding because of the shape and small size of the talus and calcaneus. Furthermore, known methods of installing ankle arthrodeses may limit the optimal configuration of the nail and fixation screws.
Embodiments of ankle fusion device 10 are configured and shaped to obtain more optimal bony purchase in the calcaneus 12 and talus 14 and/or increase comfort. In some embodiments, ankle fusion device 10 obtains more optimal bony purchase and/or increase comfort by more accurately approximating the anatomy of the lower limb and using the instrumentation and methods described below to prepare the bones for implanting ankle fusion device 10. The embodiments disclosed below and shown in the drawings are for the left ankle. If not otherwise mentioned below, ankle fusion device 10, the instrumentation and methods are mirrored across the sagittal plane of the body for the right ankle.
Referring to
Referring to
In one embodiment, nail 18 also arcs anteriorly as it extends upwardly through the tibia 16 such that at least a portion of proximal portion 18a is arcuate. In one embodiment, the entire proximal portion 18a is arcuate. In one embodiment first longitudinal axis L1 is tangent to the distal most end of axis A1 of proximal portion 18a. Having an arcuate proximal portion 18a may help in positioning and/or fixing nail 18 within the canal of tibia 16. In one embodiment, proximal portion 18a has an arcuate curve such that proximal end 18b is spaced a distance dp from first longitudinal axis L1 in a first direction d1. In one embodiment, distance dp is about 36 mm for a 300 mm long nail 18. In one embodiment, proximal portion 18a has a radius of curvature of about 1.5 m. In one embodiment, the radius of curvature of proximal portion 18a is generally equal to the radius of curvature of an anterior tibial canal surface.
In one embodiment, proximal end 18b is spaced a distance dp from first longitudinal axis L1 in a first direction d1 and second longitudinal axis L2 is oriented at oblique angles in second and third directions d2, d3 relative to first longitudinal axis L1. In one embodiment, second direction d2 is perpendicular to first direction d1 and third direction d3 is opposite first direction d1. In one embodiment, once nail 18 is implanted, first direction d1 corresponds to a forward or anterior direction, second direction d2 corresponds to an outward or lateral direction and third direction d3 corresponds to a rear or posterior direction relative to the ankle. In an alternative embodiment, proximal portion 18a is substantially straight. In one such embodiment, proximal portion 18a is co-axial with first longitudinal axis L1.
In one embodiment, once ankle fusion device 10 is implanted in a body, proximal portion 18a extends into tibia 16, distal portion 18c extends through calcaneus 12, first direction d1 is in an anterior direction, second direction d2 is in a lateral direction and third direction d3 is in a posterior direction. In some embodiments, proximal end 18b is tapered or pointed, in order to facilitate insertion into the canal of tibia 16. In some embodiment, proximal end 18b is tapered and configured to prevent a stress concentration on the canal of tibia 16 once nail 18 is implanted that may otherwise be caused by a nail end having a sharp edge. In one embodiment, proximal end 18b is a blunt or rounded tip. In one embodiment, proximal end 18b is closed.
In one embodiment, nail 18 has a generally circular cross section throughout its length. In alternative embodiments, nail 18 may have any cross section shape including but not limited to square, star, rectangular and triangular. In one embodiment, nail 18 has a plurality of sections that decrease in diameter toward a proximal end 18b. In some embodiments, nail 18 tapers or decreases in cross sectional size between distal portion 18c and proximal portion 18a. In some embodiments, distal portion 18c has a larger diameter than the largest diameter of proximal portion 18a. In one embodiment, distal portion 18c has a substantially constant diameter. In one embodiment, distal portion 18c has a diameter of about 8 mm to about 18 mm. In one embodiment, distal portion 18c has a diameter of about 13 mm.
In some embodiments, proximal portion 18a includes a smaller diameter section and a larger diameter section. In one embodiment, the smaller diameter section is about 7 mm to about 11 mm. In one embodiment, the smaller diameter section is about 9 mm. In one embodiment, the larger diameter section is about 10 mm. In one embodiment, the larger diameter section is about 11.5 mm. In one embodiment, the larger diameter section is about 13 mm. In some embodiments, at least a portion of the larger diameter section is hollow. In some embodiments, the smaller diameter section is not hollow. In some embodiments, the smaller diameter section is proximal to the larger diameter section and distal to proximal end 18b. In some embodiments, nail 18 is substantially solid. In some embodiments, nail 18 is hollow or cannulated.
In some embodiments, proximal portion 18a includes a frustoconical section 18h providing a transition between the larger diameter section and the smaller diameter section of the proximal portion 18a. In some embodiments, frustoconical section 18h is located at or proximate the center of the proximal portion 18a (e.g., about midway along the length of proximal portion 18a). In some embodiments, the smaller diameter section is shorter than the larger diameter section.
In other embodiments, the smaller diameter section is longer than the larger diameter section. in some embodiments, the smaller diameter section and the larger diameter section have lengths that are substantially equal. In some embodiments, nail 18 has a length of about 200 mm to about 300 mm.
In some embodiments, distal portion 18c is configured to be positioned, at least partially, in talus and calcaneus bones 14, 12 of an ankle of the patient. In some embodiments, distal portion 18c is oriented at an oblique angle relative to proximal portion 18a to maximize purchase of distal portion 18c in talus 14 and calcaneus 12 upon implantation of ankle fusion device 10. In some embodiments, distal portion 18c is configured to be positioned in talus 14 and calcaneus 12 so as to generally pass through the center of talus 14 and calcaneus 12. In some embodiments, upon implantation, distal portion 18c is angled posteriorly and/or laterally relative to proximal portion 18a. In some embodiments, upon implantation, distal portion 18c is angled posteriorly and/or laterally relative to a longitudinal axis of the tibia bone.
In the exemplary embodiment shown in
Referring to
In one embodiment, a first fastener hole 222a is configured to receive a first fastener 20a for securing nail 18 to calcaneus 12 that is substantially co-axially aligned with a longest dimension of calcaneus 12 as shown. In one embodiment, first fastener hole 222a is aligned with a central portion of calcaneus 12. For example, first fastener hole 222a may be configured and oriented to have a central axis A4 substantially co-axially aligned with a central longitudinal axis of calcaneus 12. Co-axial alignment of central axis A4 with a central portion of the calcaneus bone allows first fastener 222a, in some embodiments, to find greater purchase in calcaneus 12 and to permit a stronger securement thereto. In one embodiment, the central longitudinal axis of calcaneus 12 generally extends in an anterior direction. In some embodiments, first fastener 20a has a length substantially matching the length of calcaneus 12 along a central longitudinal axis of calcaneus 12. In some embodiments, first fastener 20a is about 70 mm to about 100 mm.
In one embodiment, a second fastener hole 222b is configured to receive a second fastener 20b for securing nail 18 to talus 14 that is substantially co-axially aligned with a longest dimension of talus 14 as shown. For example, second fastener hole 222b may be configured (e.g., angled) to have a central axis A3 substantially co-axially aligned with a central longitudinal axis of talus 14. In one embodiment, the central longitudinal axis of talus 14 generally extends in an anterior direction. In one embodiment, the central longitudinal axis of talus 14 generally extends in an anterior-medial direction. Co-axial alignment of the second fastener hole 222b with a central portion of the talus bone allows the second fastener 20b, in some embodiments, to find greater purchase in the talus 14 and to permit a stronger securement thereto. In one embodiment, the central longitudinal axis of talus 14 generally extends in an anterior-lateral direction. In some embodiments, second fastener 20b has a length substantially matching the length of talus 14 along a central longitudinal axis of the talus 14. In some embodiments, second fastener 20b is about 46 mm to about 80 mm.
Preferably, the central axes of the first and second elongate fastener holes 222a, 222b are divergent (e.g., as they extend anteriorly), such that the central axes are not parallel and/or not coplanar. Furthermore, the first elongate fastener hole 222a may have a different (e.g., larger) dimension than the second elongate fastener hole 222b, for example, so as to accept larger fasteners and/or permit greater shifting of the fastener.
Referring to
Proximal portion 18a includes at least one fastener hole 22. In one embodiment, proximal portion 18a of nail 18 includes a locking or static fastener hole 222c. In such an embodiment, the locking fastener hole 222c is configured to receive a third fastener 20c and sized to substantially prevent translational movement of third fastener 20c relative to nail 18. In one embodiment, proximal portion 18a of nail 18 includes a dynamic fastener hole 222d. In one embodiment, dynamic fastener hole 222d is elongated such that nail 18 can be translated proximally with respect to a fourth fastener 20d extending through dynamic fastener hole 222d. In such an embodiment and as described in further detail below, fourth fastener 20d is installed toward the proximal end of dynamic fastener hole 222d such that nail 18 is substantially prevented from moving distally with respect to tibia 16 but allows for a predetermined amount of proximal movement to allow for, for example, additional compression of the ankle joint. Either one of or both third fastener 20c and fourth fastener 20d may be used depending on whether it is desired to fix nail 18 relative to tibia 16.
In one embodiment, dynamic fastener hole 222d has an axis A5 such that fourth fastener 20d can be translated distally with respect to first longitudinal axis L1 while being parallel with axis A5. In one embodiment, axis A5 is substantially perpendicular to first longitudinal axis L1 in the coronal or x-y plane as shown in
Referring to
The compression screw 324 includes a threaded portion 324c attachable to engagement portion 324a. Threaded portion 324c includes threads configured to engage the threads of bore 18e. In one embodiment, threaded portion 324c is rotatably attached to engagement portion 324a. In one embodiment, threaded portion 324c includes an engagement member 324d such as, for example a hexagon socket or slot, for mating with a screw driver tool 326. As threaded portion 324c is rotated, compression screw 324 advances proximally through bore 18e and translates first fastener 20c proximally (e.g., across first fastener hole 222a). Since first fastener 20a is fixed relative to calcaneus 12 and at least one of third and fourth fasteners 20c, 20d keep nail 18 from being pulled distally, advancing compression screw 324 moves calcaneus 12 proximally toward talus 14.
Similarly, if second fastener hole 222b is elongate, advancing compression screw 324 proximally moves talus 14 toward tibia 16. If both first and second fastener holes 222a, 222b are elongate, advancing compression screw 324 proximally moves both calcaneus and talus toward tibia 16 and compresses all three bones together. In one embodiment, bore 18e extends entirely through distal portion 18c. In one embodiment, bore 18e extends substantially through the entire nail 18 such that nail 18 is generally hollow. In some embodiments, bore 18e extends at least partially through distal portion 18c. In an alternative embodiment, bore 18e extends only through distal portion 18c that is distal to first fastener hole 222a.
Referring to
In some embodiments, distal end 18d of nail 18 includes a groove or step 18g for engaging and orienting tools about and relative to second longitudinal axis L2 as described in further detail below. In such embodiments, ankle fusion device 10 may include an end cap sleeve 430. End cap sleeve 430 includes one or more projections 430a on a proximal end that are configured to align with groove 18g and an end surface 430b on a distal end that forms the distal most end of ankle fusion device 10. In one embodiment, end surface 430b is configured to be substantially flush with the surrounding calcaneus 12 and with the end cap screw 428, proximate the end of bore 18e.
In some embodiments, in order to insert nail 18 into the calcaneus 12, talus 14 and tibia 16, a path is created, e.g., by advancing (e.g., drilling) a hole proximally starting from the bottom of calcaneus 12. Referring to
Referring to
In one embodiment, guidewire targeting device 534 includes a frame 536 for at least partially surrounding the calcaneus 12 and talus 14. In one embodiment, frame 536 includes a target arm 538 having a guidewire target 538a configured and dimensioned to be inserted between talus 12 and tibia 16 proximate a talar dome 14a (see
In order to align a first guidewire axis A7 with the guidewire target 538a, in one embodiment, frame 536 includes a first sleeve arm 540. In one embodiment, first sleeve arm 540 includes a proximal side facing towards target arm 538 and a distal side opposite the proximal side. In one embodiment, frame 536 is substantially C-shaped. In one embodiment, frame 536 is bent or at least arcuate such that target arm 538 extends above talar dome 14a while first sleeve arm 540 extends under calcaneus 12. In one embodiment, target arm 538 and first sleeve arm 540 are substantially parallel. In one embodiment, first sleeve arm 540 includes a first guidewire sleeve 542. In one embodiment, first guidewire sleeve 542 is integral with first sleeve arm 540. In one embodiment, first guidewire sleeve 542 is detachable from first sleeve arm 540. In one embodiment, first guidewire sleeve 542 is positioned at or proximate a free end of first sleeve arm 540. In one embodiment, at least a portion of first guidewire sleeve 542 extends from the proximal side of first sleeve arm 540. In one embodiment, at least a portion of first guidewire sleeve 542 extends from the distal side of first sleeve arm 540. In one embodiment, first guidewire sleeve 542 extends from the proximal side and the distal side of first sleeve arm 540. In one embodiment, first guidewire sleeve 542 is fixed in position relative to guidewire target 538a. In one embodiment, a central longitudinal axis of first guidewire sleeve 542 is configured to co-axially align with first guidewire axis A7. In one embodiment, first guidewire sleeve 542 is fixed in position relative to target arm 538. In one embodiment, first guidewire sleeve 542 is radially disposed about first guidewire axis A7. In one embodiment, first guidewire axis A7 is aligned with guidewire target 538a.
In order to co-axially align first guidewire axis A7 with first longitudinal axis L1, guidewire targeting device 534 may be aligned with and/or attached to at least one anatomical feature of the patient. In one embodiment, the at least one anatomical feature is tibia 16. In one embodiment, guidewire targeting device 534 includes a tibial member or alignment guide 544. In one embodiment, tibial alignment guide 544 is engaged with frame 536 and is configured to extend proximally therefrom along a longitudinal axis substantially parallel to the first guidewire axis A7. In one embodiment, tibial alignment guide 544 is attached to target arm 538. In one embodiment, tibial alignment guide 544 is moveably attached to frame 536 using a fastener 544b. In one embodiment, tibial alignment guide 544 is moveably attached to frame 536 using a star grind fastener such that tibial alignment guide 544 may be positioned relative to tibia 16 and frame 536 may be independently rotated about first longitudinal axis L1 and then locked in position relative to tibial alignment guide 544 once in the appropriate position. In one embodiment, the position of frame 536 relative to tibial alignment guide 544 is adjustable but generally set by the surgeon prior to attaching to the patient. In one embodiment, the position of frame 536 relative to tibial alignment guide 544 is adjustable once guidewire targeting device 534 has been attached to the patient. In one embodiment, the position of frame 536 relative to tibial alignment guide 544 is radially adjustable. In alternative embodiments, transverse member 546 is fixed to frame 536.
To further aid in positioning guidewire targeting device 534, tibial alignment guide 544 may include a transverse member 546. In some embodiments, transverse member 546 extends generally perpendicularly from tibial alignment guide 544. In one embodiment, transverse member 546 is configured to have a curvature about first guidewire axis A7, such that the transverse member 546 wraps at least partially around the leg during use. In one embodiment, the transverse member 546 is positionable at different locations along a length of tibial alignment guide 544 to aid in aligning first guide wire axis A7 with first longitudinal axis L1 during use as described further below. In one embodiment, tibial alignment guide 544 includes a longitudinal slot 544a extending at least partially along a length of tibial alignment guide 544. In one embodiment, transverse member 546 includes a fastener 546a such as a screw knob that extends through longitudinal slot 544a. In alternative embodiments, transverse member 546 may be movable attached to or fixedly attached but moveable relative to tibial alignment guide 544 in any manner. In one embodiment, instead of a longitudinal slot 544a, tibial alignment guide 544 includes a plurality of holes. In an alternative embodiment, transverse member 546 is fixed relative to or integral with tibial alignment guide 544.
In one embodiment, transverse member 546 is bendable or conformable such that the surgeon can shape transverse member 546 to the shape of the patient's leg. In one embodiment, transverse member 546 includes an attachment member (not shown) such as, for example, a Velcro strap and/or elastic band that is configured to attached to the patient's leg. In one embodiment, frame 536 and/or transverse member 546 may be attached to tibial alignment guide 544 in the opposite facing direction for use with the right ankle.
In one embodiment, frame 536 and/or tibial alignment guide 544 includes indicia (not shown) to indicate the proper orientation of or connection between components of guidewire targeting device 534 for the left and right foot. In one embodiment, frame 536 and/or transverse member 546 includes indicia (not shown) to indicate the general position frame 536 should be oriented to tibial alignment guide 544 depending on the position of the patient during surgery. In one embodiment, transverse member 545 includes indicia 546b, 546c to indicate the proper orientation for the left and right foot. In the embodiment illustrated, transverse member 546 is shaped for use when the patient is in the supine position. In some embodiments, a differently shaped transverse member 546 may be provided for patients in the prone position. In alternative embodiments, a single transverse member 546 is provided and frame 536 may be attached to tibial alignment guide 544 in a radial orientation relative to tibial alignment guide 544 depending on the position of the patient.
In one embodiment, transverse member 546 includes a first alignment member 546d for aligning with the first longitudinal axis L1 and/or first guidewire 1060 as described further below. In one embodiment, transverse member 546 includes a second alignment member 546e for aligning with first longitudinal axis L1 and/or first guidewire 1060. In one embodiment, first and/or second alignment members 546d, 546e are configured and positioned to intersect with a plane aligned with the first guidewire axis A7. In one embodiment, first and second alignment members 546d, 546e include indents or bends in the transverse member 546. In one embodiment, first and second alignment members 546d, 546e include one or more projections and/or grooves in the transverse member 546. In alternative embodiments, first and second alignment members 546d, 546e include a marker that is visible using an imaging device such as but not limited to a radio-marker that is visible using an imaging device. In some embodiments, the horizontal thickness of first and second alignment members 546d, 546e is generally equal to a thickness of first guidewire 1060. In one embodiment, first alignment member 546d is positioned along the length of transverse member 546 such that first alignment member 546d aligns with first longitudinal axis L1 from a lateral view of tibia 16 and second alignment member 546e is positioned along the length of transverse member 546e such that second alignment member 546e aligns with first longitudinal axis L1 from an anterior view of tibia 16. In one embodiment, aligning first and second alignment member 546e with first longitudinal axis L1 from two directions helps to ensure that tibial alignment guide 534 is substantially parallel with first longitudinal axis L1.
Referring to
Second guidewire template 648 (see, e.g.,
In one embodiment, second position sleeve 648a is configured to be a retainer for receiving and aligning a second guidewire sleeve 1252 (see, e.g.,
Second guidewire template 648 may include an alignment arm 648b for positioning second guidewire axis A8 relative to first longitudinal axis L1 by aligning alignment arm 648b relative to an anatomical feature of the patient. In embodiments where second guidewire template 648 is moveable with respect to frame 536, alignment arm 648b may be used to position second guidewire axis A8 relative to first guidewire axis A7 and relative to first longitudinal axis L1 by aligning alignment arm 648b relative to an anatomical feature of the patient. In one embodiment, second guidewire template 648 is configured such that second guidewire axis A8 is substantially aligned with guidewire target 538a and/or center 14b of talar dome 14a when alignment arm 648b is aligned with a pre-selected anatomical feature of the patient. In one embodiment, alignment arm 648b extends generally perpendicularly from first guidewire axis A7. In one embodiment, the pre-selected anatomical feature aligned with the alignment arm 648b is generally perpendicular to the central axis of tibia 16 (i.e., first longitudinal axis L1). In one embodiment, the pre-selected anatomical feature is a second metatarsal bone 1150 (see
Referring to
Before beginning the procedure, the position of the patient may be determined based on the type of arthrodesis procedure performed and the discretion of the surgeon. In one embodiment, the patient is placed in the prone position. In another embodiment, the patient is placed in the supine position. In some embodiments, for example, with a patient in the prone position, guidewire targeting device 534 is placed in the posterior (not shown) or posterolateral position (the position shown in the exemplary embodiment of
Referring to
In addition to positioning guidewire target 538a relative to talus 14, first guidewire sleeve 542 is positioned under calcaneus such that first guidewire axis A7 generally aligns with guidewire target 538a. In one embodiment, first guidewire sleeve 542 is positioned so that first guidewire sleeve 542 aligns exactly with guidewire target 538a. In one embodiment, first guidewire sleeve 542 is positioned so that first guidewire axis A7 is aligned with center 14b of talar dome 14a.
In one embodiment, tibial alignment guide 544 is used to help align the first guidewire axis A7 with first longitudinal axis L1 by positioning tibial alignment guide 544 substantially parallel with tibia 16. In one embodiment, first alignment member 546d and/or second alignment member 546e are aligned with first longitudinal axis L1 in the lateral and anterior views, respectively, to position tibial alignment guide 544 substantially parallel with tibia 16.
In one embodiment, tibial alignment guide 544 is positioned relative to first longitudinal axis L1 by sliding or otherwise positioning transverse member 546 along the length of tibial alignment guide 544 and in contact with the outer surface of the leg. In one embodiment, transverse member 546 prevents guidewire targeting device 534 from moving with respect to the patient. In one embodiment, without transverse member 546, guidewire targeting device 534 would pivot laterally and posteriorly relative to guidewire target 538a caused by the weight of guidewire targeting device 534. In one embodiment, transverse member 546 counters any pivot of guidewire targeting device 534 with respect to the guidewire target 538a. Due to the shape of the leg, in one embodiment, moving transverse member 546 along the length of tibial alignment guide 544 alters the orientation of first guidewire axis A7 in a first plane until first guidewire axis A7 is aligned with first longitudinal axis L1. In one embodiment, the curvature of transverse member 546 keeps first guidewire axis A7 aligned with first longitudinal axis L1 in a second plane, the second plane being generally perpendicular to the first plane.
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
In embodiments using a compression screw, first fastener 20a is inserted into the most distal end of first fastener hole 22a. In such embodiments, second fastener 20b is inserted into the most distal end of second fastener hole 22b. For the third and fourth fasteners 20c, 20d, in one embodiment, there are three options 1) static locking, 2) dynamic locking and 3) originally static with the option to later make dynamic. In one embodiment, if static locking only is desired, third fastener 20c is inserted into third fastener hole 20c to prevent nail 18 from moving relative to tibia 16. In one embodiment, if dynamic locking only is desired, fourth fastener 20d is inserted into the most proximal end of fourth fastener hole 22d. In one embodiment, if it is desired to have nail 18 be static but keep the option to later make dynamic, fourth fastener 20d is inserted into the most proximal end of fourth fastener hole 22d and third fastener 20c is inserted into third fastener hole 20c. Such an embodiment prevents nail 18 from moving relative to tibia 18 until third fastener 20c is removed at which point nail 18 may move proximally up tibia 16 if calcaneus 12 and/or talus 14 are compressed further toward tibia 16 (e.g., if bone graft compresses).
Referring to
Referring to
Referring to
In one embodiment, there is a kit for performing the ankle arthrodeses described herein. Such a kit may include one or more of each of the instruments, fasteners and/or implantable devices described herein. In one embodiment, a kit for performing ankle arthrodesis includes nail 18, one or more fasteners 20, guidewire targeting device 534, and at least one guidewire 1060. In one embodiment, a kit for performing ankle arthrodesis includes nail 18, one or more fasteners 20, guidewire targeting device 534, first guidewire 1060 and second guidewire 1062. In one embodiment, a kit for performing ankle arthrodesis includes guidewire targeting device 534, and at least one guidewire 1060. In one embodiment, a kit for performing ankle arthrodesis includes guidewire targeting device 534, at least one guidewire 1060, and aiming arm 1870.
It will be appreciated by those skilled in the art that changes could be made to the exemplary embodiments shown and described above without departing from the broad inventive concept thereof. It is understood, therefore, that this invention is not limited to the exemplary embodiments shown and described, but it is intended to cover modifications within the spirit and scope of the present invention as defined by the claims. For example, specific features of the exemplary embodiments may or may not be part of the claimed invention and features of the disclosed embodiments may be combined. Unless specifically set forth herein, the terms “a”, “an” and “the” are not limited to one element but instead should be read as meaning “at least one”.
It is to be understood that at least some of the figures and descriptions of the invention have been simplified to focus on elements that are relevant for a clear understanding of the invention, while eliminating, for purposes of clarity, other elements that those of ordinary skill in the art will appreciate may also comprise a portion of the invention. However, because such elements are well known in the art, and because they do not necessarily facilitate a better understanding of the invention, a description of such elements is not provided herein.
Further, to the extent that the method does not rely on the particular order of steps set forth herein, the particular order of the steps should not be construed as limitation on the claims. The claims directed to the method of the present invention should not be limited to the performance of their steps in the order written, and one skilled in the art can readily appreciate that the steps may be varied and still remain within the spirit and scope of the present invention.
This application is a divisional of U.S. patent application Ser. No. 12/965,691 filed Dec. 10, 2010, which claims the benefit of U.S. Provisional Patent Application No. 61/284,141 filed Dec. 11, 2009 and entitled “Ankle Fusion Device and Method”, both of which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
1863188 | Clash | Aug 1929 | A |
2079567 | Anderson | May 1932 | A |
2020252 | Utterbeck et al. | Jun 1934 | A |
2101889 | Anderson | Dec 1934 | A |
2185322 | Anderson | Mar 1935 | A |
2035952 | Ettinger | May 1935 | A |
2204266 | Wilcox | Feb 1937 | A |
2393831 | Stader | Dec 1942 | A |
2406987 | Anderson | Jan 1943 | A |
3433220 | Zickel | Mar 1969 | A |
4135507 | Harris | Jan 1979 | A |
4159716 | Borchers | Jul 1979 | A |
4281649 | Derweduwen | Aug 1981 | A |
4308863 | Fischer | Jan 1982 | A |
4338927 | Volkov et al. | Jul 1982 | A |
4365624 | Jaquet | Dec 1982 | A |
4622959 | Marcus | Nov 1986 | A |
4733654 | Marino | Mar 1988 | A |
4805607 | Engelhardt et al. | Feb 1989 | A |
4827917 | Brumfield | May 1989 | A |
4858602 | Seidel et al. | Aug 1989 | A |
4875474 | Border | Oct 1989 | A |
4875475 | Comte et al. | Oct 1989 | A |
4877019 | Vives | Oct 1989 | A |
4881535 | Sohngen | Nov 1989 | A |
4889111 | Ben-Dov | Dec 1989 | A |
4913137 | Azer et al. | Apr 1990 | A |
4946459 | Bradshaw et al. | Aug 1990 | A |
5032125 | Durham et al. | Jul 1991 | A |
5034013 | Kyle et al. | Jul 1991 | A |
5035697 | Frigg | Jul 1991 | A |
5041114 | Chapman et al. | Aug 1991 | A |
5041115 | Frigg et al. | Aug 1991 | A |
5047034 | Sohngen | Sep 1991 | A |
5053035 | McLaren | Oct 1991 | A |
5057110 | Kranz et al. | Oct 1991 | A |
5063918 | Guhl | Nov 1991 | A |
5066296 | Chapman et al. | Nov 1991 | A |
5078719 | Schreiber | Jan 1992 | A |
5100404 | Hayes | Mar 1992 | A |
5122141 | Simpson et al. | Jun 1992 | A |
5167663 | Brumfield | Dec 1992 | A |
5176681 | Lawes et al. | Jan 1993 | A |
5178621 | Cook et al. | Jan 1993 | A |
5179915 | Cohen et al. | Jan 1993 | A |
5201735 | Chapman et al. | Apr 1993 | A |
5263955 | Baumgart et al. | Nov 1993 | A |
5268000 | Ottieri et al. | Dec 1993 | A |
5312406 | Brumfield | May 1994 | A |
5334192 | Behrens | Aug 1994 | A |
5352227 | O'Hara | Oct 1994 | A |
5352228 | Kummer et al. | Oct 1994 | A |
5374235 | Ahrens | Dec 1994 | A |
5454813 | Lawes | Oct 1995 | A |
5458600 | Stapert et al. | Oct 1995 | A |
5472444 | Huebner et al. | Dec 1995 | A |
5480402 | Kim | Jan 1996 | A |
5505733 | Justin et al. | Apr 1996 | A |
5505734 | Caniggia et al. | Apr 1996 | A |
5509919 | Young | Apr 1996 | A |
5516335 | Kummer et al. | May 1996 | A |
5531748 | de la Caffiniere | Jul 1996 | A |
5549610 | Russell et al. | Aug 1996 | A |
5562665 | Young | Oct 1996 | A |
5562666 | Brumfield | Oct 1996 | A |
5562667 | Shuler et al. | Oct 1996 | A |
5569249 | James et al. | Oct 1996 | A |
5573536 | Grosse et al. | Nov 1996 | A |
5603715 | Kessler | Feb 1997 | A |
5620445 | Brosnahan et al. | Apr 1997 | A |
5626580 | Brosnahan | May 1997 | A |
5628750 | Whitlock et al. | May 1997 | A |
5653709 | Frigg | Aug 1997 | A |
5658287 | Hofmann et al. | Aug 1997 | A |
5658288 | Kim | Aug 1997 | A |
5688271 | Faccioli et al. | Nov 1997 | A |
5697930 | Itoman et al. | Dec 1997 | A |
5713902 | Friedl | Feb 1998 | A |
5743908 | Kim | Apr 1998 | A |
5766174 | Perry | Jun 1998 | A |
5779704 | Kim | Jul 1998 | A |
5855579 | James et al. | Jan 1999 | A |
5931837 | Marsh et al. | Aug 1999 | A |
5935127 | Border | Aug 1999 | A |
6010505 | Asche et al. | Jan 2000 | A |
6010506 | Gosney et al. | Jan 2000 | A |
6053918 | Spievack | Apr 2000 | A |
6106528 | Durham et al. | Aug 2000 | A |
6120504 | Brumback et al. | Sep 2000 | A |
6123708 | Kilpela et al. | Sep 2000 | A |
6126661 | Faccioli et al. | Oct 2000 | A |
6168595 | Durham et al. | Jan 2001 | B1 |
6197029 | Fujimori et al. | Mar 2001 | B1 |
6221074 | Cole et al. | Apr 2001 | B1 |
6228086 | Wahl et al. | May 2001 | B1 |
6235031 | Hoddeman et al. | May 2001 | B1 |
6270499 | Leu et al. | Aug 2001 | B1 |
6322591 | Ahrens | Nov 2001 | B1 |
6328737 | Moorcroft et al. | Dec 2001 | B1 |
6383185 | Baumgart | May 2002 | B1 |
6387098 | Cole et al. | May 2002 | B1 |
6402753 | Cole et al. | Jun 2002 | B1 |
6406477 | Fujiwara | Jun 2002 | B1 |
6461358 | Faccioli et al. | Oct 2002 | B1 |
6461360 | Adam | Oct 2002 | B1 |
6508820 | Bales | Jan 2003 | B2 |
6524313 | Fassier et al. | Feb 2003 | B1 |
6569165 | Wahl et al. | May 2003 | B2 |
6572620 | Schon et al. | Jun 2003 | B1 |
6579293 | Chandran | Jun 2003 | B1 |
6579294 | Robioneck | Jun 2003 | B2 |
6652524 | Weiner | Nov 2003 | B1 |
6652528 | Vandewalle | Nov 2003 | B2 |
6652529 | Swanson | Nov 2003 | B2 |
6746448 | Weiner et al. | Jun 2004 | B2 |
6808527 | Lower et al. | Oct 2004 | B2 |
6926719 | Sohngen et al. | Aug 2005 | B2 |
6932819 | Wahl et al. | Aug 2005 | B2 |
6964663 | Grant et al. | Nov 2005 | B2 |
7001386 | Sohngen et al. | Feb 2006 | B2 |
7018380 | Cole | Mar 2006 | B2 |
7041104 | Cole et al. | May 2006 | B1 |
7141052 | Manderson | Nov 2006 | B2 |
7144399 | Hayes et al. | Dec 2006 | B2 |
7175633 | Roth et al. | Feb 2007 | B2 |
7182765 | Roth et al. | Feb 2007 | B2 |
7232442 | Sohngen et al. | Jun 2007 | B2 |
7232443 | Zander et al. | Jun 2007 | B2 |
7341588 | Swanson | Mar 2008 | B2 |
7410488 | Janna et al. | Aug 2008 | B2 |
7422593 | Cresina et al. | Sep 2008 | B2 |
7465303 | Riccione et al. | Dec 2008 | B2 |
7479142 | Weiner et al. | Jan 2009 | B2 |
7588577 | Fencl et al. | Sep 2009 | B2 |
7608074 | Austin et al. | Oct 2009 | B2 |
7625409 | Saltzman et al. | Dec 2009 | B2 |
7749224 | Cresina et al. | Jul 2010 | B2 |
7815586 | Grant et al. | Oct 2010 | B2 |
7887495 | Boyd et al. | Feb 2011 | B2 |
7887498 | Marin | Feb 2011 | B2 |
7955333 | Yeager | Jun 2011 | B2 |
8343199 | Tyber et al. | Jan 2013 | B2 |
20040039394 | Conti et al. | Feb 2004 | A1 |
20040133200 | Ruch et al. | Jul 2004 | A1 |
20050107791 | Manderson | May 2005 | A1 |
20050203510 | Sohngen | Sep 2005 | A1 |
20060095039 | Mutchler | May 2006 | A1 |
20060155276 | Walulik et al. | Jul 2006 | A1 |
20060200141 | Janna et al. | Sep 2006 | A1 |
20060206044 | Simon | Sep 2006 | A1 |
20060235394 | Martin | Oct 2006 | A1 |
20070100338 | Deffenbaugh et al. | May 2007 | A1 |
20070123856 | Deffenbaugh et al. | May 2007 | A1 |
20070123857 | Deffenbaugh et al. | May 2007 | A1 |
20070276385 | Schlienger et al. | Nov 2007 | A1 |
20080015587 | Munoz | Jan 2008 | A1 |
20080294164 | Frank et al. | Nov 2008 | A1 |
20090099571 | Cresina et al. | Apr 2009 | A1 |
20090149861 | Brodsky et al. | Jun 2009 | A1 |
20090248084 | Hintermann | Oct 2009 | A1 |
20090275944 | Huebner et al. | Nov 2009 | A1 |
20110082458 | Crozet et al. | Apr 2011 | A1 |
20110166608 | Duggal et al. | Jul 2011 | A1 |
20110218542 | Lian | Sep 2011 | A1 |
20120215223 | Chiodo et al. | Aug 2012 | A1 |
20120277745 | Lizee | Nov 2012 | A1 |
Number | Date | Country |
---|---|---|
2047808 | Apr 2009 | EP |
2004014243 | Feb 2004 | WO |
2006099270 | Sep 2006 | WO |
2007120539 | Oct 2007 | WO |
2007131287 | Nov 2007 | WO |
2010122034 | Oct 2010 | WO |
Entry |
---|
International Search Report dated May 17, 2011 for PCT/US2010/059937. |
T2 Ankle Arthrodesis Nail; Ankle Arthrodesis Nailing System; Operative Technique Manual; Stryker; 2009. |
The Titanium Cannulated Hindfoot Arthrodesis Nail, Expert Nailing System: Technique Guiede; Synthes; 2007. |
International Search Report and Written Opinion for PCT Application No. PCT/US2010/059937 dated May 17, 2011. |
Number | Date | Country | |
---|---|---|---|
20140025127 A1 | Jan 2014 | US |
Number | Date | Country | |
---|---|---|---|
61284141 | Dec 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12965691 | Dec 2010 | US |
Child | 14031526 | US |