The present disclosure relates to an ankle muscle resistance-training apparatus.
In general, ankle movement, along with the muscle strength, has an important effect on gait stability. The ankle movements can be summarized as movements occurring in the sagittal plane, the frontal plane, and the transverse plane, and occurs according to the movements of the ankle joint (or talocrural joint), transverse tarsal joint, and subtalar joint.
Damage, impairment, and loss of lower extremity function due to musculoskeletal and central nervous system diseases may lead to a decrease in gait ability or loss, which can be regarded as one of the serious causes of hindering the performance of independent daily living. In particular, in the case of stroke, which is one of the central nervous system diseases, most patients support 61% to 80% of the total body weight with a non-injured lower limb, thus exhibiting asymmetric posture alignment and deterioration of balance ability. Abnormal gait patterns after the stroke include stiff-knee gait during the swing phase, genu recuvatum during the stance phase, reduction of dorsiflexion at the stance phase and excessive plantar flexion during the swing phase, and the like. In addition, gait speed, cadence, and stride length are reduced, and double stance periods are increased, and the standing period of the damaged side is shorter than that of the non-injured side.
Therefore, for the gait rehabilitation of people with central nervous system disorders such as stroke, functional electric stimulation, brace support, and the like are applied, or methods of performing joint movement range exercises by the therapist, stretching exercises, resistance bands, manual ankle trainers, weight-bearing resistance exercises in an upright posture, and so on are clinically used. Furthermore, in order to provide a range of movement of the ankle, an automatic ankle trainer is also used, which includes a rotation shaft corresponding to the ankle joint and driven by a motor. These gait training interventions involving ankles have positive effects such as increased gait stability, gait speed, gait efficiency, and so on.
However, these methods have limitations in improving muscle strength because by these methods, a disabled user with hemiplegia is not allowed to actively move his or her ankle, but is passively provided with a range of movements of the ankle by the therapist, trainer, and the like, and accordingly does not have a resistance force during ankle movement.
The technical problem of the present disclosure is to provide an ankle muscle resistance-training apparatus capable of improving ankle muscle strength by inducing an angle change of an ankle, and also by applying a resistance force to a movement of the ankle during active movement of the ankle.
In order to achieve the objects described above, an ankle muscle resistance-training apparatus according to an embodiment of the present disclosure is provided, which may include: a support member; a first movement guiding shaft perpendicular to a front-rear direction of the support member and horizontal to a ground; an intermediate member rotatably provided on the support member with respect to the first movement guiding shaft; a second movement guiding shaft perpendicular to the first movement guiding shaft and inclined to the ground; a foot support rotatably provided on the intermediate member with respect to the second movement guiding shaft and inclined with respect to the second movement guiding shaft, and on which a foot of a user is placed; a first resistance force application part linked with the first movement guiding shaft and applying resistance force of an adjustable intensity against the active ankle movement of the user made with respect to the first movement guiding shaft in a state in which the foot is placed on the foot support; and a second resistance force application part linked with the second movement guiding shaft and applying resistance force of an adjustable intensity against the active ankle movement of the user made with respect to the second movement guiding shaft in a state in which the foot is placed on the foot support.
The first resistance force application part may include: a link shaft provided rotatably on the support member and linked with the first movement guiding shaft; a rotating disk provided rotatably on the support member through a first support bracket and linked with the first link shaft; a first brake applying a braking force to the rotating disk using an electromagnet; and a first adjustment switch for adjusting a strength of the electromagnet of the first brake.
The first resistance force application part may further include an one-way bearing supporting any one of the first movement guiding shaft, the link shaft, and the rotating disk such that the resistance force is applied only when the foot support is pressed by an ankle of the user.
The second resistance force application part may include: a center crank wheel linked with the second movement guiding shaft; a first side crank wheel spaced apart from one side of the center crank wheel and rotatably provided on one side of the intermediate member; a first horizontal sliding joint slidably provided on the intermediate member to be slid left and right between the center crank wheel and the first side crank wheel; a first crank arm linking the center crank wheel with the first horizontal sliding joint; a second crank arm linking the first horizontal sliding joint and the first side crank wheel; a second brake applying braking force to the first side crank wheel using an electromagnet; and a second adjustment switch for adjusting a strength of the second brake.
The second resistance force application part may further include: a second side crank wheel spaced apart from the other side of the center crank wheel and rotatably provided on the other side of the intermediate member; a second horizontal sliding joint slidably provided on the intermediate member to be slid left and right between the center crank wheel and the second side crank wheel; a third crank arm linking the center crank wheel with the second horizontal sliding joint; a fourth crank arm linking the second horizontal sliding joint with the second side crank wheel; and a third brake applying a braking force to the second side crank wheel using an electromagnet, in which the second adjustment switch may adjust the strengths of the electromagnets of the second and third brakes together.
The first movement guiding shaft may be provided such that an ankle joint of the user is placed in an axial direction thereof.
The second movement guiding shaft may be provided such that a subtalar joint of the user is placed in an axial direction thereof.
According to an embodiment of the present disclosure, a technical configuration including a support member, a first movement guiding shaft, an intermediate member, a second movement guiding shaft, a foot support, a first resistance force application part, and a second resistance force application part is provided, and it is possible to induce changes in the angle of the ankle normally generated during active walking for those who are unable to smoothly generate ankle movements necessary for walking due to lower limb paralysis or muscle weakness, and also enhance ankle muscle strength by applying a resistance force to the ankle movements.
Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the accompanying drawings, which will be readily apparent to those skilled in the art to which the present disclosure pertains. However, the description proposed herein is just a preferable example for the purpose of illustrations only, and not intended to limit the scope of the invention, so it should be understood that other equivalents and modifications could be made thereto without departing from the scope of the invention.
As shown in
The support member 110 forms a framework of the ankle muscle resistance-training apparatus 100 according to the present disclosure, in which a lower portion is designed so as to be placed on a flat surface such as the ground (see 10 in
The first movement guiding shaft 120 serves as a hinge of the intermediate member 130 such that the intermediate member 130 is rotated with respect to the support member 110, and as shown in
Accordingly, when the foot of the user is placed on the foot support 150 provided in the intermediate member 130 and rotated with respect to the first movement guiding shaft 120, the foot may be rotated upward (dorsiflexion) or downward (plantarflexion) with respect to the ankle joint, and accordingly, it is possible to assist rehabilitation of those who are unable to smoothly generate the ankle movements necessary for walking due to lower limb paralysis or muscle weakness, by inducing normal angle changes of the ankle with respect to the ankle joint as are generated during walking.
The intermediate member 130 is provided between the support member 110 and the foot support 150 and supports the foot support 150, in which, as shown in
The second movement guiding shaft 140 serves as a hinge of the foot support 150 such that the foot support 150 is rotated with respect to the intermediate member 130, and as shown in
In particular, the second movement guiding shaft 140 may be provided such that the subtalar joint of the user is positioned in the axial direction thereof.
Accordingly, when the foot of the user is placed on the foot support 150 and rotated with respect to the second movement guiding shaft 140, the foot may be rotated left or right with respect to the subtalar joint, and accordingly, it is possible to assist rehabilitation of those who are unable to smoothly generate the ankle movements necessary for walking due to lower limb paralysis or muscle weakness by inducing normal angle changes of the ankle with respect to the subtalar joint as are generated during walking.
The foot support 150 is where the foot of the user is placed, and, as shown in
In particular, as shown in
Furthermore, since the subtalar joint is positioned in the axial direction of the second movement guiding shaft 140, when the second movement guiding shaft 140 is rotated, the front end of the foot support 150 may be moved while following a left-and-right trajectory (T in
In addition, the ankle muscle resistance-training apparatus 100 according to the embodiment of the present disclosure described above may further include a left and right guide portion 160, as shown in
The left and right guide portion 160 is a component that guides a front end of the foot support 150 in accordance with the left-and-right trajectory T while supporting the front end of the foot support 150. For example, the left and right guide portion 160 may include a driven guide member 161 and a driving guide member 162 as shown in
Therefore, since a rear end of the foot support 150 is provided on the intermediate member 130 through the second movement guiding shaft 140, and the front end of the foot support 150 is supported by the intermediate member 130 through the left and right guide portion 160, the foot support 150 is supported at both the front end and the rear end thereof, such that the left and right movements of the foot support 150 can be more stably guided with a minimum operation error.
The first resistance force application part 170 is a component for improving the muscle strength of the ankle joint of the user by applying a load while the user is placing his or her foot on the foot support 150 and actively moving the ankle joint, and as shown in
For example, as shown in
D20. The first brake 173 may apply a braking force to the rotating disk 172 using an electromagnet, and the first adjustment switch 174 may adjust the strength of the electromagnet of the first brake 173.
As shown in
In addition, as shown in
In addition, as shown in
In addition, as shown in
As another example, as shown in
The second resistance force application part 180 is a component for improving the muscle strength of the subtalar joint of the user by applying a load while the user is placing his or her foot on the foot support 150 and actively moving the subtalar joint, and as shown in
For example, as shown in
Furthermore, the second brake 184 may take any of the two embodiments described above with respect to the first brake 173, and since these two embodiments have been described above, the detailed description thereof will be omitted. Note that, among the two embodiments described above, when the first eddy current brake (see 173 of
In addition, as shown in
The second side crank wheel 186 may be spaced apart from the other side of the center crank wheel 181 and rotatably provided on the other side of the intermediate member 130, and the second horizontal sliding joint J20 may be slidably provided on the intermediate member 130 so as to be slid left and right between the center crank wheel 181 and the second side crank wheel 162. The third crank arm 187a may link the center crank wheel 181 with the second horizontal sliding joint J20, and the fourth crank arm 187b may link the second horizontal sliding joint J20 with the second side crank wheel 186. The third brake 188 may apply a braking force to the second side crank wheel 186 using an electromagnet, and in particular, may be adjusted to the same strength as the second brake 184 described above by the second adjustment switch 185 described above for balance of the left and right forces. In addition, as shown in
Furthermore, the third brake 188 may take any of the two embodiments described above with respect to the first brake 173, and since these two embodiments have been described above, the detailed description thereof will be omitted. Note that, among the two embodiments described above, when the first eddy current brake (see 173 of
Number | Date | Country | Kind |
---|---|---|---|
10-2017-0175300 | Dec 2017 | KR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/KR2018/015410 | 12/6/2018 | WO | 00 |