Ankle support for an in-line skate

Information

  • Patent Grant
  • 6726225
  • Patent Number
    6,726,225
  • Date Filed
    Wednesday, November 14, 2001
    22 years ago
  • Date Issued
    Tuesday, April 27, 2004
    20 years ago
Abstract
An ankle support, particularly for in-line skates, which includes a base support that wraps about the users heel and a spaced upper support which wraps about the user's leg. The upper and base supports are fixedly joined by a plurality of struts. At least one stop secured to either the upper support or the struts abuts a stop on the base support to provide a hard stop for maximum braking.
Description




FIELD OF THE INVENTION




The present invention relates to an ankle support particularly suited for in-line skates and the like which provides forward flexion, a rear hard stop, and lateral support.




BACKGROUND OF THE INVENTION




In-line skates typically include an upper and a rigid frame which encases the foot in an effort to provide a balance of comfort and stability. The frame is secured to an underlying roller chassis, which also may include a rear brake element.




Typically, frames have been formed of pivotally connected rigid parts which permit rotation of the leg about a transverse axis. These constructions, however, are constrained by the pivot pin and do not conform to the user's natural skating motion. Rotation of the parts about the pin also entails the generation of friction in the journal which results in inefficient movement. While monolithic frames are known, they tend to construct a user's movement, lack sufficient ventilation, or add undue weight. Further, hinged and monolithic frames fail to provide the necessary resistance for maximizing braking pressure.




SUMMARY OF THE INVENTION




It is an object of the invention to provide a stiff frame formed into a single integral piece, with no pivoting mechanism, which provides enhanced flexing, support, and ventilation.




It is another object of the invention to provide an ankle support which provides a natural longitudinal motion for the user's leg, while providing a hard rearward stop for maximum braking.




It is another object of the present invention to provide an in-line skate with a soft, shoe-like upper and a stiff frame in the heel and ankle area to provide support and comfort during skating.




It is a further object of the invention to make the soft upper, like a traditional running shoe, which provides a secure fit and comfort to the skater. The upper is provided with laces, straps, or other closure devices to secure the upper to the forefoot and instep area of the skater's foot.




The ankle support of the present invention includes a base support which wraps about the user's heel and a spaced upper support which wraps about the user's leg. The upper and base supports are fixedly joined by a plurality of struts. The struts permit a natural longitudinal flexing during use, while still providing lateral support. At least one stop secured to either the support or the struts abuts a stop on the base support to provide a hard stop for maximum braking.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a side elevation of an in-line skate according to a first embodiment of the present invention.





FIG. 2

is a side view of the frame of the skate shown in FIG.


1


.





FIG. 3

is a partial perspective view of a frame with an alternative stop construction.





FIG. 4

is a side elevation view of an alternative embodiment provided with rear elastomeric flex member.





FIG. 5

is a side elevation view of an alternative embodiment provided with a flex limiting/stiffening mechanism.





FIG. 6

is a profile view of the flex limiting/stiffening mechanism shown in FIG.


5


.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




In-line skate


1


includes an internal shoe


2


forming a soft upper which encases the user's foot to provide suitable comfort in skating. The upper


2


is preferably formed like a soft running-shoe made from traditional materials, such as breathable mesh and synthetic suede. An inner lining (not shown) of the upper


2


may be composed of a polyester knit or similar material that is durable, transports perspiration away from the body, and dries quickly. The tongue


4


of the internal shoe


2


is also preferably made from traditional materials such as a combination of foam and heat embossed synthetic suede. Closure means, such as laces, straps, or buckles, are provided to secure the upper to the foot of the user. The toe area of the shoe may have a toe bumper


5


attached to it for protection against impact and abrasion. The bumper may be made from fiberglass filled plastic or similar material.




The internal shoe


2


is attached to a midsole


6


which is, in turn, secured to a rigid outsole plate


8


in the anterior portion of the foot. A frame


10


overlies the posterior part of the foot to provide the desired support. The frame


10


is also attached to the outsole plate


8


in the posterior part of the foot. The outsole plate is preferably made from an engineering plastic or similar material which is able to dampen vibration and protect against abrasion and impact. The outsole plate may contain an air cushion for shock absorption. An in-line skate chassis


12


is attached to the underside of the outsole plate


8


.




Frame


10


is preferably made from a minimal amount of material so as to provide a lightweight and minimally sized support. The frame


10


is preferably formed as a single component of engineering plastic. Nevertheless, the frame could be fabricated from a plurality of components fixed together by rivets, adhesive or other fastening means. Moreover, alternative suitable materials could also be used.




The frame


10


includes a base support


16


which is rigidly secured to the outsole plate


8


. Base support


16


has a concave, and preferably arcuate, configuration with an open front which wraps about the user's heel to define a medial side


16




a


and a lateral side


16




b


extending outward from the rear apex


16




c


. A web or upper support


20


also has a concave, and preferably arcuate, configuration which is open in the front and wraps around the back of the user's leg.




A pair of opposing vertical flexing struts


14


fixedly interconnect base support


16


and upper support


20


to form frame


10


. The frame is preferably molded as a single piece, but as mentioned above, could have other constructions. The struts


14


are attached at their respective lower ends to the medial and lateral sides of base


16


. In the preferred construction, one strut is provided on each side such that the struts are adjacent to the ankle bones (malleoli) of the user, and shaped and positioned such that they do not rub against the ankle bones. Nevertheless, a plurality of struts could be provided on either or both sides of the ankle. The struts may be reinforced with an internal rod made from known materials such as stainless steel. While the struts on the medial and lateral sides are preferably transversely aligned, they could be offset. For instance, the medial side strut could be offset rearwardly to better simulate the motion of the user's ankle. This arrangement could provide extra comfort by reducing chafing of the user's leg due to friction, and further reduce fatigue because the user does not encounter unnecessary lateral forces.




A pair of stop members


22


extend downward and rearward as elongated arms from the junction of the web or upper support


20


and the upper ends of struts


14


. The stop members


22


terminate at the rear of the user's foot adjacent the achilles. These stops


22


contact a stop


23


formed along the top edge of base support


16


. Stop


23


is preferably formed along the top edge of a raised rear portion


18


of base support


16


, although other constructions could be used. Stop members


22


could alternatively be secured to either the upper support


20


or one or both struts


14


. In addition, stops


22


could terminate at other locations to engage stop


23


. Finally, although stops


22


are preferably formed as elongated arms, other structures could be used so long as they form a firm abutment at a rear predetermined position with stop


23


of base support


16


.




The abutment of stops


22


against stop


23


provides a rear hard stop when the user is at the end of a skating stroke and his/her ankle becomes unflexed (in the upright position). This unflexed ankle position is also the position at which the struts are unflexed. The rear hard stop is provided to allow the user to effectively apply solid pressure to a brake mechanism (not shown) which may be attached at the rear of the skate.




An opening


26


, below upper support


20


and above the elongated arms forming stops


22


, is provided to enhance ventilation. A pad


28


may be mounted to the inside of the upper support


20


to prevent the upper support from coming into direct contact with the back of the user's leg. A pad or cushion may also be provided along the entire interior of frame


10


. At least one strap


30




a


with buckle


30




b


(or buckle


31




b


, as depicted in

FIG. 4

) or other closure is attached to the web


20


above the struts


14


to close the front portion of the web


20


and provide a secure fit to the lower leg above the ankle.




Due to the structural design of frame


10


and its material, the frame in the preferred embodiment is permitted to flex forward to a maximum of about 45 degrees beyond the unflexed position as the skater bends at the ankle. Stiff lateral support, however, is not compromised by this flex in the forward (longitudinal) direction. Because this member is flexing rather than pivoting, it stores the energy generated during the skater's stroke due to ankle flexion, and returns the energy to the skater as the ankle straightens at the end of the staking stroke. Moreover, the flexing, as opposed to pivoting, allows the upper support


20


to move in conformance with the natural skating motion of the leg.




In an alternative embodiment, shown in

FIG. 3

, the stop


23




a


of the raised portion


18




a


of base support


16




a


has an undulating configuration which mates with a corresponding undulating structure at the ends of the stop members


22




a


. In this way, relative movement of the stop members


22




a


is restricted in the lateral direction as well as the downward direction. While the mating undulations are preferably rectangular in shape, other mating surfaces limiting downward and lateral movement of stops


22




a


could be used. Further, while stop members


22




a


in this alternative are secured to struts


14




a


, they could also be secured to the upper support (not shown).




In another embodiment (FIG.


4


), an elastic member


39


is attached to the rear of the upper support


20


and to the raised portion


18


of base support


16


. For convenience the same numbers used in the first embodiment have been used for like parts. The elastic member


39


biases upper support in a rearward direction toward base support


16


, and provides additional energy storage to supplement the flexing of struts


14


.




In another embodiment (FIGS.


5


and


6


), a flex limiting and stiffening mechanism


36


is incorporated into the frame


10




c


on either or both sides of the ankle. This mechanism includes a body


43


that is fixed to and forms a part of base support


16




c


. Body


43


has a channel


37


formed with a leading edge


38


and rearward edge


40


. The strut


14




c


is situated in the channel


37


so as to flex between the leading edge


38


and the rearward edge


40


. Edges


30


and


40


limit the forward and rearward motion of the upper support


20




c


. The rear edge of the strut


14




c


received in channel


37


forms a stop


22




c


which abuts the stop defined by the rearward edge


40


to form a hard stop to maximize braking.




In addition, a limiting slot


42


is provided along an upper portion of body


43


. The limiting slot


42


has a forward end


44


and a rearward end


46


. An adjustable flex cam


48


is situated on the outside of the strut


14




c


and is rotatable relative to the strut about a pin of an inside cam member


50


. The inside cam member


50


is slidable within the slot


42


and extends in an expanded form along the inside of the frame. This adjustable flex cam


48


is rotatable about cam


50


out of channel


37


so as to pull cam


50


against the back of the flex limiting member


36


and apply an adjustable resisting friction force on the sides of the slot


42


to thereby stiffen the flex characteristics of frame


10




c.






Although the description above contains many specificities, these should not be construed as limiting the scope of the invention but merely providing illustrations of the invention, it will be appreciated that many modifications and changes may be made by those skilled in the art without departing from the spirit of the invention. For example, the stiff support structure could be used in combination with a cross-country ski boot, hiking boot, snowboard boot, and the like where stiff lateral support is desired with forward flex. Also, the stiff support structure and the base plate could be formed into one monolithic piece from a single mold rather than separate attachable pieces, or even the support structure, base plate, and chassis together could be formed from a single mold.




Thus, the scope of the invention should be determined by the appended claims and their legal equivalents, rather than by the example(s) given.



Claims
  • 1. An ankle support comprising:a base support having a generally concave configuration which is adapted to wrap about a user's heel and define a medial side and a lateral side extending from a rear apex, said base support further including a first stop; an upper support having a generally concave configuration which is adapted to wrap about the user's leg, said upper support being spaced from said base support; a plurality of struts fixedly connected to said upper support and said base support such that at least one strut extends upward from each of said medial and lateral sides of said base support, said struts being flexible to permit longitudinal movement and resist lateral movement of said upper support relative to said base support; and a second stop connected to one of said struts or said upper support, said second stop abutting said first stop at a predetermined position to form a hard rear stop and thereby prevent any rearward movement of said upper support relative to said base support beyond said predetermined position, said first and second stops include complementary undulating abutting edges which limit lateral movement between the first and second stops when abutted at said predetermined position.
  • 2. An ankle support in accordance with claim 1 in which said second stop includes at least one arm extending rearwardly and downwardly from one of said struts or said upper support.
  • 3. An ankle support in accordance with claim 1 in which said first stop is formed along a top edge of said base support.
  • 4. An ankle support in accordance with claim 1 in which said base support and said upper support are open in the front.
  • 5. An ankle support in accordance with claim 1 further including a closure to selectively tighten said upper support about the user's leg.
  • 6. An ankle support in accordance with claim 1 which said upper support is spaced from said base support to define an opening over said rear apex of said base support.
US Referenced Citations (26)
Number Name Date Kind
2444428 Carrier Aug 1948 A
3963252 Carlson Jun 1976 A
4835885 Hoshizaki et al. Jun 1989 A
4989350 Bunch et al. Feb 1991 A
5090138 Borden Feb 1992 A
D326700 Brown et al. Jun 1992 S
5125171 Stewart Jun 1992 A
5295701 Reiber et al. Mar 1994 A
5397137 Pellegrini et al. Mar 1995 A
5408761 Gazzano Apr 1995 A
5475935 Frost Dec 1995 A
5480168 Chen Jan 1996 A
5484149 Lee Jan 1996 A
5498033 Hoshizaki et al. Mar 1996 A
5505470 Hoshizaki Apr 1996 A
5526586 Foscaro Jun 1996 A
5992872 Proctor Nov 1999 A
6018892 Acheson et al. Feb 2000 A
6135464 Borel Oct 2000 A
6371494 Bonaventure et al. Apr 2002 B1
6431558 Erdman Aug 2002 B1
6517090 Fullum Feb 2003 B1
6557864 Lenoir May 2003 B1
20010022434 Sauter et al. Sep 2001 A1
20010028152 Ricci Oct 2001 A1
20020171210 Sauter et al. Nov 2002 A1
Foreign Referenced Citations (4)
Number Date Country
30 04 668 Feb 1980 DE
2 614 547 Apr 1987 FR
584461 Feb 1947 GB
1 404 228 Aug 1975 GB
Non-Patent Literature Citations (4)
Entry
MOJO “Sport & Soul” Brochure—Published 1996.
K2 Corporation Catalog—Published 1997.
ASOLO Advertisement—Publication date is unknown and Applicants submit that the publication date is at least one year prior to the Nov. 14, 2001 filing date of the present application.
ROLLERBLADE Specification—Publication date in unknown and Applicants submit that the publication date is at least one year prior to the Nov. 14, 2001 filing date of the present application.