The present invention relates in general to the field of arthrodesis, and more particularly, to a novel ankle (tibio-talar) fusion nail.
None.
Without limiting the scope of the invention, its background is described in connection with Joint arthrodesis and arthroplasty.
Ankle fusion is currently done by screws with or without plates or external fixators. Both of these have their disadvantages. The nail system when used for nail fixation requires fixation of the subtalar joint. Thus, when a nail is used to fuse an ankle (tibio-talar) joint, it will have to also fuse another joint (subtalar or the talo-calcaneal joint). This means that the ankle joint cannot be fused with a nail unless another joint is fused with it.
U.S. Pat. No. 8,585,744, issued to Duggal, et al., for a Joint arthrodesis and arthroplasty. Briefly, these inventors teach an implantable fixation system for fusing a joint between a first bone and a second bone. The system may include an anchor, standoff, bolt, and cortical washer. The system may be implanted across the joint along a single trajectory, the length of the system adjustable to provide compressive force between the anchor and the cortical washer. The system may be implanted across a tibio-talar joint with the anchor positioned in the sinus tarsi. A spacing member may be inserted between the two bones and the fixation system implanted to extend through an opening in the spacing member. The spacing member may be anatomically shaped and/or provide deformity correction. An ankle arthroplasty system may include a tibial plate, a talar plate, and a bearing insert. The plates may be anchored to the tibia and talus along a single trajectory. The ankle arthroplasty system may be revisable to a fusion system.
U.S. Pat. No. 9,125,695, issued to Early et al., “Ankle fusion nail apparatus and method” claims to teach an ankle fusion nail apparatus and method that includes a first, tibial component that includes a hole there through. The tibial component may include, among other things, a base. A second, talar component may include a hole there through, also, and, among other things, a base and a top. The talar component may be separate from the talar component. A third, central component may be provided that may be separate from the first tibial component and the second talar component. The central component may be conformed to connect with the tibial base and the talar top such that the central component joins the tibial and talar components together and aligns them as the central component is connected with the tibial base and the talar top. The present invention is advantageous over the claimed teaching of this published application in that (1) the straight portion of an embodiment of the present invention can be longer and can extend to the tibial shaft; (2) the straight portion of an embodiment of the present invention requires less bone reaming, permitting insertion on the talus or the tibia, whereas a curved nail requires more bone reaming with the attendant major bone loss and possible fracturing of the talus; (3) an embodiment of the present invention may be inserted laterally and not medially, whereas medial insertion is difficult and risks damage to the posterior tibial nerve, the posterior tibial artery, and the tibialis posterior tendon; (4) locking screws of the present invention make the present invention very stable and should help with quicker union; and (5) an embodiment of the present invention requires less talar bone loss for insertion and better mechanical stability than the claimed teaching of the issued patent.
In one embodiment, the present invention is a tibio-talar device for providing stabilizing support between a tibia and a talus comprising: a bone nail adapted to traverse the tibia and the talus, wherein the bone nail is curved such that it traverses the tibia and enters the talus at an angle, wherein the bone nail is angled from lateral to medial, wherein the bone nail is configured to provide for intra medullary fusion of the ankle without obstructing the subtalar joint, wherein the bone nail has 2, 3, 4, 5, 6, 7, or 8 openings that each are capable of engaging a screw, wherein the openings are positioned along the length of the bone nail, and wherein the screw engages the bone nail to lock its rotation in relation to the tibia and talus and optionally for compression of two or more bones selected from tibia to talus, fibula to tibia, or fibula to talus. In one aspect, the device further comprises one or more screws, wherein at least of the one or more screws is adapted to engage one of the openings in the bone nail. In another aspect, the bone nail is at least one of: further affixed to the tibia and talus with a biocompatible adhesive; contoured to lock proximally in the tibia from lateral to medial; provided in increments of approximately 5 cm; or is at least one of titanium, stainless steel, nitinol or other biocompatible material. In another aspect, the device further comprises one or more openings to receive screws that pass from the tibia or the fibula through the bone nail to the talus. In another aspect, the bone nail has an upper portion, a middle portion, and a lower portion, wherein the upper portion and the lower portion have the same curvature, the upper portion is straight and the lower portion is curved, wherein the lower and upper portions are curved but have different curvatures, or wherein the upper portion is curved, the middle portion is curved, and the lower portion is straight. In another aspect, at least one of the openings is threaded to engage the at least one of the one or more screws to compress the fibula to both the tibia and talus to enhance fusion. In another aspect, at least one of the screws, at least a portion of an end proximate to a head of the at least one of the screws is not threaded and at least a portion of a distal end of the at least one of the screws is threaded for engagement with the bone nail, or substantially the entire length of the at least one of the screws is threaded. In another aspect, at least one of the screws is adapted to engage bone tissue with a threaded portion to enhance compression and stability of fusion. In another aspect, at least one of the screws is adapted to lock into the bone nail. In another aspect, the openings have a longitudinal axis from lateral to medial, and are horizontal.
In another embodiment, the present invention is an ankle arthrodesis nail kit comprising: a bone nail adapted to traverse the tibia and the talus, wherein the bone nail is curved such that it traverses the tibia and enters the talus at an angle, wherein the bone nail is angled from lateral to medial, wherein the bone nail is configured to provide for intra medullary fusion of the ankle without obstructing the subtalar joint, wherein the bone nail has 2, 3, 4, 5, 6, 7, or 8 openings that each are capable of engaging a locking screw using a surface or a locking mechanism, wherein the openings are positioned along the length of the bone nail, and wherein the screw engages the bone nail to lock its rotation in relation to the tibia and talus and optionally for compression of two or more bones selected from tibia to talus, fibula to tibia, or fibula to talus. In another aspect, the kit further comprises one or more screws, wherein for each of the one or more screws, at least a portion of an end proximate to a head of the screw is not threaded and at least a portion of a distal end is threaded for engagement with the bone nail, and wherein each of the one or more screws is adapted to lock into one of the openings in the bone nail. In another aspect, the bone nail is at least one of: further affixed to the tibia and talus with a biocompatible adhesive; contoured to lock proximally in the tibia from lateral to medial; provided in increments of approximately 5 cm; or is at least one of titanium, stainless steel, nitinol or other biocompatible material. In another aspect, the nail further comprises one or more openings to receive screws that pass from the tibia or the fibula through the bone nail to the talus. In another aspect, the nail bone has an upper portion, a middle portion, and a lower portion, wherein the upper portion and the lower portion have the same curvature, the upper portion is straight and the lower portion is curved, wherein the lower and upper portions are curved but have different curvatures, or wherein the upper portion is curved, the middle portion is curved, and the lower portion is straight. In another aspect, at least one of the openings is threaded to engage at least one of the one or more screws to compress the fibula to both the tibia and talus to enhance fusion. In another aspect, at least one of the screws, at least a portion of an end proximate to a head of the at least one of the screws is not threaded and at least a portion of a distal end of the at least one of the screws is threaded for engagement with the bone nail, or substantially the entire length of the at least one of the screws is threaded. In another aspect, at least one of the screws is adapted to engage bone tissue with a threaded portion to enhance compression and stability of fusion. In another aspect, at least one of the screws is adapted to lock into the bone nail. In another aspect, the openings have a longitudinal axis from lateral to medial, and are horizontal.
In another embodiment, the present invention includes a kit for use in a method for conducting an ankle arthrodesis system for providing stabilizing support between a tibia and a talus, the method comprising: identifying a patient in need of an ankle arthrodesis; inserting a bone nail adapted to traverse the tibia and the talus, wherein the bone nail is curved such that it traverses the tibia and enters the talus at an angle, wherein the bone nail is angled from lateral to medial, wherein the bone nail is configured to provide for intra medullary fusion of the ankle without obstructing the subtalar joint, wherein the bone nail has 2, 3, 4, 5, 6, 7, or 8 openings that each are capable of engaging a screw, wherein the openings are positioned along the length of the bone nail, and wherein the screw engages the bone nail to lock its rotation in relation to the tibia and talus and optionally for compression of two or more bones selected from tibia to talus, fibula to tibia, or fibula to talus; anchoring the bone nail without obstructing the subtalar joint; and inserting one or more screws through one or more of the openings, wherein for each of the one or more screws, at least a portion of an end proximate to a head of the screw is not threaded and at least a portion of a distal end is threaded for engagement with the bone nail. In one aspect, the opening is defined further as being adapted for the bone anchor to at least one of traverse from talus to tibia or traverse from tibia to talus. In another aspect, the bone nail is at least one of: further affixed to the tibia and talus with a biocompatible adhesive; contoured to lock proximally in the tibia from lateral to medial; provided in increments of approximately 5 cm; or is at least one of titanium, stainless steel, nitinol or other biocompatible material. In another aspect, the bone nail comprises one or more openings to receive screws that pass from the tibia or the fibula through the bone nail to the talus. In another aspect, the bone nail has an upper portion, a middle portion, and a lower portion, wherein the upper portion and the lower portion have the same curvature, the upper portion is straight and the lower portion is curved, wherein the lower and upper portions are curved but have different curvatures, or wherein the upper portion is curved, the middle portion is curved, and the lower portion is straight. In another aspect, the bone nail has 2, 3, 4, 5, 6, or 8 openings that each are capable of supporting a screw, wherein the openings are positioned along the length of the bone nail, and wherein optionally one of the openings permits affixing the bone screw to the talus. In another aspect, at least one of the openings is threaded to engage the one or more screws to compress the fibula to both the tibia and talus to enhance fusion. In another aspect, at least one of the screws, at least a portion of an end proximate to a head of the at least one of the screws is not threaded and at least a portion of a distal end of the at least one of the screws is threaded for engagement with the bone nail, or substantially the entire length of the at least one of the screws is threaded. In another aspect, at least one of the screws is adapted to engage bone tissue with a threaded portion to enhance compression and stability of fusion. In another aspect, at least one of the screws is adapted to lock into the bone nail. In another aspect, the openings have a longitudinal axis from lateral to medial, and are horizontal.
In another embodiment, the present invention includes a tibio-talar device for providing stabilizing support between a tibia and a talus comprising: a bone nail adapted to traverse the tibia and the talus, wherein the bone nail is curved such that it traverses the tibia and enters the talus at an angle, wherein the bone nail is angled from lateral to medial and anterior to posterior, wherein the bone nail is configured to provide for intra medullary fusion of the ankle without obstructing the subtalar joint, wherein the bone nail has 2, 3, 4, 5, 6, 7, or 8 openings that each are capable of engaging a locking screw using a surface or a locking mechanism, wherein the openings are positioned along the length of the bone nail, and wherein the screw engages the bone nail to lock its rotation in relation to the tibia and talus and optionally for compression of two or more bones selected from tibia to talus, fibula to tibia, or fibula to talus; and one or more screws, wherein for each of the one or more screws, at least a portion of an end proximate to a head of the screw is not threaded and at least a portion of a distal end is threaded for engagement with the bone nail, and wherein each of the one or more screws is adapted to lock into one of the openings in the bone nail.
In one embodiment, the present invention includes a tibio-talar device for providing stabilizing support between a tibia and a talus including: a bone nail adapted to traverse the tibia and the talus, wherein the bone nail is curved such that it traverses the tibia and enters the talus at an angle, wherein the nail is angled from lateral to medial and anterior to posterior, wherein the bone nail is configured to provide for intra medullary fusion of the ankle without obstructing the subtalar joint. In one aspect, the nail is further affixed to the tibia and talus with a biocompatible adhesive. In another aspect, the nail is contoured to lock proximally in the tibia from lateral to medial. In another aspect, the bone nail is provided in increments of approximately 5 cm. In another aspect, the bone nail is at least one of titanium or stainless steel. In another aspect, the bone nail has an upper and a lower portion, wherein the upper portion and the lower portion have the same curvature, the upper portion is straight and the lower portion is curved, or wherein the lower and upper portion are curved but have a radius of curvature. In another aspect, the bone nail has 2, 3, 4, 5, 6, or 8 openings that each are capable of supporting a screw, wherein the holes are positioned along the length of the bone nail, and wherein optionally one of the holes permits affixing the bone screw to the talus.
In another embodiment, the present invention includes an ankle arthrodesis nail including: a bone nail adapted to traverse the tibia and the talus, wherein the bone nail is curved such that it traverses the tibia and enters the talus at an angle, wherein the nail is angled from lateral to medial, and wherein the bone nail is configured to provide for intra medullary fusion of the ankle, wherein the nail locks proximally in the tibia from lateral to medial, without obstructing the subtalar joint. In one aspect, the nail is further affixed to the tibia and talus with a biocompatible adhesive. In another aspect, the nail is contoured to lock proximally in the tibia from lateral to medial. In another aspect, the bone nail is provided in increments of approximately 5 cm. In another aspect, the bone nail is at least one of titanium or stainless steel. In another aspect, device further includes one or more opening to receive screws that pass from the tibia or the fibula through the nail to the talus. In another aspect, the bone nail has an upper portion, a middle portion, and a lower portion, wherein the upper portion and the lower portion have the same curvature, the upper portion is straight and the lower portion is curved, wherein the lower and upper portion are curved but have different radii of curvature, or wherein the upper portion is curved, the middle portion is curved, and the lower portion is straight. In another aspect, the bone nail has 2, 3, 4, 5, 6, or 8 openings that each are capable of supporting a screw, wherein the holes are positioned along the length of the bone nail, and wherein optionally one of the holes permits affixing the bone screw to the talus. The holes can be threaded to allow the locking screws to engage into the holes to compress the fibula to both the tibia and the talus to enhance the fusion.
In yet another embodiment, the present invention includes a method for conducting an ankle arthrodesis system for providing stabilizing support between a tibia and a talus, the method including: identifying a patient in need of an ankle arthrodesis; inserting a bone nail adapted to traverse the tibia and the talus, wherein the bone nail is curved such that it traverses the tibia and enters the talus at an angle, wherein the nail is angled from lateral to medial, wherein the bone nail is configured to provide for intra medullary fusion of the ankle; and anchoring the bone nail without obstructing the subtalar joint. In one aspect, the opening is defined further as being adapted for the bone anchor to at least one of traverse from talus to tibia or traverse from tibia to talus. In another aspect, the nail is further affixed to the tibia and talus with a biocompatible adhesive. In another aspect, the nail is contoured to lock proximally in the tibia from lateral to medial. In another aspect, the bone nail is provided in increments of approximately 5 cm. In another aspect, the bone nail is at least one of titanium or stainless steel. In another aspect, the method further including inserting one or more screws through openings in the bone nail, wherein the screws pass from the tibia or the fibula through the nail to the talus. In another aspect, the bone nail has an upper portion, a middle portion, and a lower portion, wherein the upper portion and the lower portion have the same curvature, the upper portion is straight and the lower portion is curved, wherein the lower and upper portion are curved but have different radii of curvature, or wherein the upper portion is curved, the middle portion is curved, and the lower portion is straight. In another aspect, the bone nail has 2, 3, 4, 5, 6, or 8 openings that each are capable of supporting a screw, wherein the holes are positioned along the length of the bone nail, and wherein optionally one of the holes permits affixing the bone screw to the talus. The holes can be threaded to allow the locking screws to engage into the holes to compress the fibula to both the tibia and the talus to enhance the fusion.
In yet another embodiment, the present invention includes a tibio-talar device for providing stabilizing support between a tibia and a talus including a bone nail adapted to traverse the tibia and the talus, wherein the bone nail is curved such that it traverses the tibia and enters the talus at an angle, wherein the bone nail is angled from lateral to medial, wherein the bone nail is configured to provide for intra medullary fusion of the ankle without obstructing the subtalar joint, wherein the bone nail has 2, 3, 4, 5, 6, 7, or 8 openings that each are capable of engaging a screw, wherein the openings are positioned along the length of the bone nail. In one aspect, the device further includes one or more screws, wherein at least of the one or more screws is adapted to engage one of the openings in the bone nail. In another aspect, the bone nail is further affixed to the tibia and talus with a biocompatible adhesive. In another aspect, the bone nail is contoured to lock proximally in the tibia from lateral to medial. In another aspect, the bone nail is provided in increments of approximately 5 cm. In another aspect, the bone nail is at least one of titanium or stainless steel. In another aspect, the tibio-talar device further includes one or more openings to receive screws that pass from the tibia or the fibula through the bone nail to the talus. In another aspect, the bone nail has an upper and a lower portion, wherein the upper portion and the lower portion have the same curvature, the upper portion is straight and the lower portion is curved, or wherein the lower and upper portion are curved but have a radius of curvature. In another aspect, the bone nail has an upper portion, a middle portion, and a lower portion, wherein the upper portion and the lower portion have the same curvature, the upper portion is straight and the lower portion is curved, wherein the lower and upper portion are curved but have different radii of curvature, or wherein the upper portion is curved, middle portion is curved, and the lower portion is straight. In another aspect, at least one of the openings is oriented horizontally in the bone nail. In another aspect, at least one of the openings is threaded to engage the at least one of the one or more screws to compress the fibula to both the tibia and talus to enhance fusion. In another aspect, for at least one of the screws, at least a portion of an end proximate to a head of the at least one of the screws is not threaded and at least a portion of a distal end of the at least one of the screws is threaded for engagement with the bone nail, or substantially the entire length of the at least one of the screws is threaded. In another aspect, at least one of the screws is adapted to engage bone tissue with a threaded portion to enhance compression and stability of fusion. In another aspect, at least one of the screws is adapted to lock into the bone nail.
In yet another embodiment, the present invention includes an ankle arthrodesis nail kit including a bone nail adapted to traverse the tibia and the talus, wherein the bone nail is curved such that it traverses the tibia and enters the talus at an angle, wherein the bone nail is angled from lateral to medial, wherein the bone nail is configured to provide for intra medullary fusion of the ankle without obstructing the subtalar joint, wherein the bone nail has 2, 3, 4, 5, 6, 7, or 8 openings that each are capable of engaging a locking screw using a surface or a locking mechanism, wherein the openings are positioned along the length of the bone nail. In one aspect, the ankle arthrodesis nail kit further includes one or more screws, wherein for each of the one or more screws, at least a portion of an end proximate to a head of the screw is not threaded and at least a portion of a distal end is threaded for engagement with the bone nail, and wherein each of the one or more screws is adapted to lock into one of the openings in the bone nail. In another aspect, the bone nail is further affixed to the tibia and talus with a biocompatible adhesive. In another aspect, the bone nail is contoured to lock proximally in the tibia from lateral to medial. In another aspect, the bone nail is provided in increments of approximately 5 cm. In another aspect, the bone nail is at least one of titanium or stainless steel. In another aspect, the ankle arthrodesis nail kit further includes one or more openings to receive screws that pass from the tibia or the fibula through the bone nail to the talus. In another aspect, the bone nail has an upper portion, a middle portion, and a lower portion, wherein the upper portion and the lower portion have the same curvature, the upper portion is straight and the lower portion is curved, wherein the lower and upper portions are curved but have different curvatures, or wherein the upper portion is curved, the middle portion is curved and the lower portion is straight. In another aspect, at least one of the openings is oriented horizontally in the bone nail. In another aspect, at least one of the openings is threaded to engage at least one of the one or more screws to compress the fibula to both the tibia and talus to enhance fusion. In another aspect, for at least one of the screws, at least a portion of an end proximate to a head of the at least one of the screws is not threaded and at least a portion of a distal end of the at least one of the screws is threaded for engagement with the bone nail, or substantially the entire length of the at least one of the screws is threaded. In another aspect, at least one of the screws is adapted to engage bone tissue with a threaded portion to enhance compression and stability of fusion. In another aspect, at least one of the screws is adapted to lock into the bone nail. In another aspect, the bone nail has an upper and a lower portion, wherein the upper portion and the lower portion have the same curvature, the upper portion is straight and the lower portion is curved, or wherein the lower and upper portion are curved but have a radius of curvature.
In yet another embodiment, the present invention includes a method for conducting an ankle arthrodesis system for providing stabilizing support between a tibia and a talus, the method including identifying a patient in need of an ankle arthrodesis; inserting a bone nail adapted to traverse the tibia and the talus, wherein the bone nail is curved such that it traverses the tibia and enters the talus at an angle, wherein the bone nail is angled from lateral to medial, wherein the bone nail is configured to provide for intra medullary fusion of the ankle without obstructing the subtalar joint, wherein the bone nail has 2, 3, 4, 5, 6, 7, or 8 openings that each are capable of engaging a screw, wherein the openings are positioned along the length of the bone nail; anchoring the bone nail without obstructing the subtalar joint; and inserting one or more screws through one or more of the openings, wherein for each of the one or more screws, at least a portion of an end proximate to a head of the screw is not threaded and at least a portion of a distal end is threaded for engagement with the bone nail. In one aspect, opening is defined further as being adapted for the bone anchor to at least one of traverse from talus to tibia or traverse from tibia to talus. In another aspect, the bone nail is further affixed to the tibia and talus with a biocompatible adhesive. In another aspect, the bone nail is contoured to lock proximally in the tibia from lateral to medial. In another aspect, the bone nail is provided in increments of approximately 5 cm. In another aspect, the bone nail is at least one of titanium or stainless steel. In another aspect, the bone nail comprises one or more openings to receive screws that pass from the tibia or the fibula through the bone nail to the talus. In another aspect, the bone nail has an upper portion, a middle portion, and a lower portion, wherein the upper portion and the lower portion have the same curvature, the upper portion is straight and the lower portion is curved, wherein the lower and upper portions are curved but have different curvatures, or wherein the upper portion is curved, the middle portion is curved and the lower portion is straight. In another aspect, the bone nail has 2, 3, 4, 5, 6, or 8 openings that each are capable of supporting a screw, wherein the openings are positioned along the length of the bone nail, and wherein optionally one of the openings permits affixing the bone screw to the talus. In another aspect at least one of the openings is oriented horizontally in the bone nail. In another aspect, at least one of the openings is threaded to engage the one or more screws to compress the fibula to both the tibia and talus to enhance fusion. In another aspect, for at least one of the screws, at least a portion of an end proximate to a head of the at least one of the screws is not threaded and at least a portion of a distal end of the at least one of the screws is threaded for engagement with the bone nail, or substantially the entire length of the at least one of the screws is threaded. In another aspect, at least one of the screws is adapted to engage bone tissue with a threaded portion to enhance compression hence stability of the fusion. In another aspect, at least one of the screws is adapted to lock into the bone nail. In another aspect, the bone nail has an upper and a lower portion, wherein the upper portion and the lower portion have the same curvature, the upper portion is straight and the lower portion is curved, or wherein the lower and upper portion are curved but have a radius of curvature.
In yet another embodiment, the present invention includes a tibio-talar device for providing stabilizing support between a tibia and a talus including a bone nail adapted to traverse the tibia and the talus, wherein the bone nail is curved such that it traverses the tibia and enters the talus at an angle, wherein the bone nail is angled from lateral to medial, wherein the bone nail is configured to provide for intra medullary fusion of the ankle without obstructing the subtalar joint, wherein the bone nail has 2, 3, 4, 5, 6, 7, or 8 openings that each are capable of engaging a locking screw using a surface or a locking mechanism, wherein the openings are positioned along the length of the bone nail; and one or more screws, wherein for each of the one or more screws, at least a portion of an end proximate to a head of the screw is not threaded and at least a portion of a distal end is threaded for engagement with the bone nail, and wherein each of the one or more screws is adapted to lock into one of the openings in the bone nail. In another aspect, the bone nail has an upper and a lower portion, wherein the upper portion and the lower portion have the same curvature, the upper portion is straight and the lower portion is curved, or wherein the lower and upper portion are curved but have a radius of curvature.
For a more complete understanding of the features and advantages of the present invention, reference is now made to the detailed description of the invention along with the accompanying figures and in which:
While the making and using of various embodiments of the present invention are discussed in detail below, it should be appreciated that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed herein are merely illustrative of specific ways to make and use the invention and do not delimit the scope of the invention. To facilitate the understanding of this invention, a number of terms are defined below. Terms defined herein have meanings as commonly understood by a person of ordinary skill in the areas relevant to the present Terms such as “a”, “an” and “the” are not intended to refer to only a singular entity, but include the general class of which a specific example may be used for illustration. The terminology herein is used to describe specific embodiments of the invention, but their usage does not delimit the invention, except as outlined in the claims.
Ankle fusion is currently done by screws, plus or minus, plates or external fixator. Both of these have their disadvantages. The nail system when used for nail fixation has also to include the subtalar joint. So when a nail is used to fuse an ankle (tibio-talar) joint, it will have to also fuse another joint (subtalar or the talo-calcaneal joint). This means that the ankle joint cannot be fused by a nail unless another joint is fused with it. This invention to have a nail that can fuse the ankle without the need for fusing another joint with it.
Thus, the present invention provides for a novel ankle fusion nail that overcomes the problems with existing external fixators or plates, as outlined herein below. Ankle fusion by current nails will require fusion of the subtalar joint. This invention helps to fuse the ankle joint with a nail without fusing the subtalar joint.
Thus, in one embodiment the present invention includes a nail that is adapted to fuse the ankle joint without crossing the subtalar joint (see
In certain non-limiting examples, the nail specification can include: Titanium or stainless steel, or a material of similar strength that is compatible. While not a limitation of the present invention, it may be convenient to provide the nail in a few widths, e.g., 8 mm and 10 mm (more sizes can be added). Likewise, the length can be selected from, e.g., 20-35 cm with 5 cm increments, depending on the size of the bones to be fused (e.g., pediatric versus adult). One feature of the nail is that it permits distal locking in the talus (from lateral to medial and from anterior to posterior). Another feature is that it provides for locking proximally in the tibia that is from lateral to medial. Another feature is also screws that pass from the tibia or the fibula through the nail to the talus. This will give a great amount of fixation and stability for the nail fusion construct.
Additional novel features of the present invention are that it provides for intra medullary fusion of the ankle without crossing the subtalar joint irrespective of: (1) Nail is passing from talus to tibia or from tibia to talus; (2) Shape of nail, diameter, material; (3) Size and length; and (4) orientation and number of locking screws.
The present invention further defines the position of the screw in a way to use the fibular bone to obtain more compression. This compression (if successfully implanted) makes this fusion device a much better mechanical device than other methods of fixation. By obtaining better mechanical properties of the device, this ankle fusion device is a better ankle fusion solution from both the biology and mechanics.
The embodiments depicted in
Finally, the present invention is distinguishable from the ankle fusion nail apparatus and method (WO 2014062205 A1) “Curved Tibiotalar Fusion Nail And Method Of Use” for the following reasons. The design taught therein has one or more inherent problems and is not similar to the nail of the present invention due to these reasons. (1) The nail taught therein can only be of certain short length, thus, the nail taught therein cannot extend to the tibial shaft. Please refer to description of
It is contemplated that any embodiment discussed in this specification can be implemented with respect to any method, kit, reagent, or composition of the invention, and vice versa. Furthermore, compositions of the invention can be used to achieve methods of the invention.
It will be understood that particular embodiments described herein are shown by way of illustration and not as limitations of the invention. The principal features of this invention can be employed in various embodiments without departing from the scope of the invention. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, numerous equivalents to the specific procedures described herein. Such equivalents are considered to be within the scope of this invention and are covered by the claims.
All publications and patent applications mentioned in the specification are indicative of the level of skill of those skilled in the art to which this invention pertains. All publications and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
The use of the word “a” or “an” when used in conjunction with the term “comprising” in the claims and/or the specification may mean “one,” but it is also consistent with the meaning of “one or more,” “at least one,” and “one or more than one.” The use of the term “or” in the claims is used to mean “and/or” unless explicitly indicated to refer to alternatives only or the alternatives are mutually exclusive, although the disclosure supports a definition that refers to only alternatives and “and/or.” Throughout this application, the term “about” is used to indicate that a value includes the inherent variation of error for the device, the method being employed to determine the value, or the variation that exists among the study subjects.
As used in this specification and claim(s), the words “comprising” (and any form of comprising, such as “comprise” and “comprises”), “having” (and any form of having, such as “have” and “has”), “including” (and any form of including, such as “includes” and “include”) or “containing” (and any form of containing, such as “contains” and “contain”) are inclusive or open-ended and do not exclude additional, unrecited elements or method steps. In embodiments of any of the compositions and methods provided herein, “comprising” may be replaced with “consisting essentially of” or “consisting of”. As used herein, the phrase “consisting essentially of” requires the specified integer(s) or steps as well as those that do not materially affect the character or function of the claimed invention. As used herein, the term “consisting” is used to indicate the presence of the recited integer (e.g., a feature, an element, a characteristic, a property, a method/process step or a limitation) or group of integers (e.g., feature(s), element(s), characteristic(s), propertie(s), method/process steps or limitation(s)) only.
The term “or combinations thereof” as used herein refers to all permutations and combinations of the listed items preceding the term. For example, “A, B, C, or combinations thereof” is intended to include at least one of: A, B, C, AB, AC, BC, or ABC, and if order is important in a particular context, also BA, CA, CB, CBA, BCA, ACB, BAC, or CAB. Continuing with this example, expressly included are combinations that contain repeats of one or more item or term, such as BB, AAA, AB, BBC, AAABCCCC, CBBAAA, CABABB, and so forth. The skilled artisan will understand that typically there is no limit on the number of items or terms in any combination, unless otherwise apparent from the context.
As used herein, words of approximation such as, without limitation, “about”, “substantial” or “substantially” refers to a condition that when so modified is understood to not necessarily be absolute or perfect but would be considered close enough to those of ordinary skill in the art to warrant designating the condition as being present. The extent to which the description may vary will depend on how great a change can be instituted and still have one of ordinary skilled in the art recognize the modified feature as still having the required characteristics and capabilities of the unmodified feature. In general, but subject to the preceding discussion, a numerical value herein that is modified by a word of approximation such as “about” may vary from the stated value by at least ±1, 2, 3, 4, 5, 6, 7, 10, 12 or 15%.
Additionally, the section headings herein are provided for consistency with the suggestions under 37 CFR 1.77 or otherwise to provide organizational cues. These headings shall not limit or characterize the invention(s) set out in any claims that may issue from this disclosure. Specifically and by way of example, although the headings refer to a “Field of Invention,” such claims should not be limited by the language under this heading to describe the so-called technical field. Further, a description of technology in the “Background of the Invention” section is not to be construed as an admission that technology is prior art to any invention(s) in this disclosure. Neither is the “Summary” to be considered a characterization of the invention(s) set forth in issued claims. Furthermore, any reference in this disclosure to “invention” in the singular should not be used to argue that there is only a single point of novelty in this disclosure. Multiple inventions may be set forth according to the limitations of the multiple claims issuing from this disclosure, and such claims accordingly define the invention(s), and their equivalents, that are protected thereby. In all instances, the scope of such claims shall be considered on their own merits in light of this disclosure, but should not be constrained by the headings set forth herein.
All of the compositions and/or methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this invention have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions and/or methods and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit and scope of the invention. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.
This application is a continuation application of the following: (1) U.S. National Phase application Ser. No. 16/978,836 filed on Sep. 8, 2020 and which claims priority to International Application No. PCT/US2019/021339, filed on Mar. 8, 2019 claiming the priority of U.S. Provisional Application 62/640,604, filed on Mar. 9, 2018; (2) This application is also a continuation application of U.S. National Phase application Ser. No. 15/566,280, filed on Oct. 13, 2017, which claims priority to International Application No. PCT/US2016/027455, filed on Apr. 14, 2016 claiming priority of U.S. Provisional Application 62/148,277, filed on Apr. 16, 2015. All of the foregoing patent applications are hereby incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
62640604 | Mar 2018 | US | |
62148277 | Apr 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16978836 | Sep 2020 | US |
Child | 17590286 | US | |
Parent | 15566280 | Oct 2017 | US |
Child | 16978836 | US |