1. Field of the Invention
The present invention relates generally to valves, and more particularly, but not by way of limitation, to a constriction valve for controlling the flow of fluids from a well, especially during uncontrolled well blowouts. The present invention more specifically relates to devices for constricting around and closing off the annular flow volume surrounding a pipe or tubing present in a well. The present invention may therefore be described as an annular blowout container (ABOC) and therefore relates to an improved constriction valve for controlling the flow of drilling fluids and hydrocarbon fluids and gases in a state of free flow known as blowout in drilling and production phases, in combination with additional valves that may be positioned at the well head.
2. Description of the Related Art
The control and containment of free flowing fluids, hydrocarbon fluids and gases in well drilling and production operations is critical. There are a wide variety of blowout preventers (BOPS) but these have a long history of failure. In particular, various types of shear rams commonly used today are hydraulically operated and are typically only designed to cut the tube section of the drill pipe being used, not to stop the flow of fluids. In addition, shear rams rely for proper placement and function on the drill pipe being in a center position of the hole to cut or sever the drill pipe tube only. Most blowouts, however, occur during the tripping phase of drilling, and as a result, other drilling tools such as drill collars and/or downhole tools are frequently within the section to be closed.
A further significant cause of failure of blowout preventers used today results from the fact that typically only the body of the BOP is tested at API recommended pressures. The internal components of BOPs used today rely on elastomeric components installed in grooves to make contact with the body of the valve. These elastomeric components will generally not contain higher pressures above 5,000 psi. Therefore, the BOPs in use today are significantly overrated for use in conjunction with higher pressures.
The present invention provides an annular blowout container (ABOC) that may be used in conjunction with one or more additional standard blowout containers (BOCs). The ABOC of the present invention incorporates a bladder of approximately 7-10 feet in height that provides approximately 3.5-4.5 feet of tight constrictive seal around whatever pipe or tubing may be in the well bore. The bladder is made of top and bottom rotator plates with springs extending between the plates. The springs are encased in Teflon® and held in place by Kevlar® then covered over completely while in a form with liquid Viton® that is injected to complete the overall bladder in a molded form.
These molded bladders may be removed and replaced in the ABOC by removing the top section of the valve housing and twisting out the bladder assembly. Inside the ABOC body are two cavities, one for holding hydraulic oil and the electrically driven hydraulic pump needed for power to activate the rotators, and the second is utilized for holding the batteries in the self contained system.
The top and bottom rotator plates are moved in a counter-revolutionary manner as they are affixed to the bladder so as to twist and constrict the bladder to a full grip and sure seal against the pipe or tubing that is in the drill string. The flexible form of the bladder allows it to constrict around irregular components such as collars on the drill string without sacrificing the tightness of seal. The rotators turn the bladder approximately one-quarter of a turn or slightly more to collapse the bladder to the outside diameter of the object in the drill string. This quick rotator action therefore provides the time necessary to get the blowout stopped or stalled out so that heavy mud can be pumped down the hole to stop the pressure at its source. The present ram type BOPs are generally antiquated in that they rely on seals to hold back rated pressures of the fluid flow when in fact the rubber type seals are only rated for up to 5,000 psi and the BOP bodies are open to returning gases, fluids, and solids coming from the drilled hole. These existing BOPs are generally overly complex and rely on the rig as a source for hydraulic oil pressure to activate.
The internal bladder in the ABOC of the present invention contains rows of springs that are arranged and placed in between the two steel upper and lower rotator plates. The plates are preferably circular with an internal aperture that is required for the ABOC to be fully open for drilling and/or production purposes. The arrangement of the holes drilled in the plates for installation of the springs are preferably in a circular pattern with the holes being drilled progressing towards the center in a circular pattern toward an inside diameter. A preferred embodiment has four concentric rings of apertures forming attachment points for the springs suspended between the rotating plates. The springs are preferably made in the manner of rebar with external ridges for internal holding power. The springs are preferably constructed from prime steel suitable for spring making. For severe service the springs may be made using suitable alloys that will withstand hydrogen sulfide and carbon dioxide gases, as well as other severe service environments. After the springs are cut to length and heat treated, they are put through a coating process with a first coating of a Teflon® based mixture applied. This first coating is preferably a mixture of Teflon® and other materials that allow the Teflon® to flex and stretch as needed in the compression cycle of the valve. Over the Teflon® mixture coating, a second layer of coating in the form of a Kevlar® mixture is applied. The springs are then installed between the top and bottom plates affixing each end to form the basic bladder. Once the basic bladder has been completed in this manner, it is placed in a mold with the outside diameter and the inside diameters set as needed for the geometry of the valve. Pressurized Viton® is then pumped in and allowed to cure, filling the spaces between the coated springs and inside the mold containment.
The upper bladder plate section is attached to the top rotator assembly inside the ABOC. Likewise, the lower section of the bladder plate is attached to the bottom rotator assembly. The function of the rotators is to turn the bottom and top plates in a counter-revolutionary direction a quarter turn or more for each action. When the rotator plates are thus turned, the bladder will compress towards the center contacting and pressing against whatever tube or pipe is in the hole opening. This compression seals off the bottom from the top as a constrictive valve. The molded in Viton® will compress, but is resistant to tear or being shredded. Extreme high flowing gases, liquids and solids can be stalled out (slowed down) for a significant time using the ABOC bladder while other drilling blowout measures are used to load the hole with more drilling fluids that can then be pumped down the drill pipe. The bottom rotator assembly is designed to allow the plate to move up as the twisting action on the bladder is applied. As the height of the bladder is shortened on twisting compression, one portion of the assembly (the top or bottom rotator plate) must be allowed to move towards the center of the assembly.
The hydraulic oil contained on the back side of the bladder is compressed further as piston mechanisms move up into the hydraulic fluid. In the same manner, the high pressure gases and fluids enter into a piston assembly under the bottom rotator plate that will additionally compress the hydraulic fluid, thus increasing the pressure on the back side of the bladder sealing element, and further facilitating the force with which the bladder constricts against the tube or pipe.
The height of the springs before attaching all of the hardware in the construction of the bladder is preferably about 7-10 feet. Tests show that approximately one-third of the spring section will provide a seal tight grip around the tube or pipe within the center of the bladder assembly. The rotator plates are preferably driven by a number of worm gear drive assemblies through either a direct linkage to the edge of the plate (formed with gear teeth) or through a gear coupling connecting to the hydraulic fluid pumps.
Reference is made first to
A section of drill pipe 22 is shown positioned within the ABOC central bore, although it will be recognized that the tubular component within the bore may be drill pipe or production tubing. Positioned within top section body 12 is top drive assembly 24 which incorporates top drive motor 26. This drive assembly serves to rotate the top rotator disc 34 as described in more detail below. Associated with bottom section body 14 is bottom drive assembly 28 incorporating bottom drive motor 30. This assembly serves to counter-rotate bottom rotator disc 36.
The counter-rotation of top rotator disc 34 and bottom rotator disc 36 serves to twist and constrict bladder assembly 38 (shown in a relaxed condition in
Also within bottom section body 14 are power supply and instrument chamber 32a and hydraulic supply chamber 32b. Power supply and instrument chamber 32a contains the necessary electrical batteries to operate the hydraulic pumps that in turn operate top drive motor 26 and bottom drive motor 30. Also within chamber 32a are control electronics and instrumentation connected externally (preferably through a hot stab connection) to the ABOC that allows for both monitoring of the condition of the ABOC and its remote control. In chamber 32b, both a hydraulic fluid reservoir and the necessary electrically driven hydraulic pumps provide the high pressure hydraulics required to operate the top drive assembly 24 and the bottom drive assembly 28. Each of the chambers shown may comprise multiple chambers radially arrayed about the center bore of bottom section body 14. The use of these chambers to hold and house the various operational and control elements of the ABOC eliminates much of the external connections (hydraulic and electrical) that are normally required for such valves.
Additional detail highlighted by Detail Section A is described in conjunction with
Rotator disc 36 is turned (counter to the rotation of the top rotator disc 34) by means of bottom drive assembly 28. Bottom drive motor 30 turns worm gear drive shaft 52 set in position to engage the gear tooth edge of rotator disc 36 and held in place by drive bearing 54. Power supply and instrument chamber 32a and hydraulic supply chamber 32b are shown from above in the view of
Repeated use of the same bladder is anticipated both in testing and in actual operations. Despite the capacity to be repeatedly operated, the components of the ABOC that are subject to degradation over time are still primarily confined to the replaceable bladder. In this manner, the ABOC of the present invention may, after an extended period of use, be easily re-built by replacing the bladder assembly and the soft seal components. The hard steel components of the device will need little in the way of replacement or maintenance.
Reference is finally made to
Although the present invention has been described in conjunction with certain preferred embodiments, it is anticipated that variations in both the size and geometry of the structures may be utilized without departing form the spirit and scope of the invention. To some extent, the geometry of the various components described (the height of the bladder assembly, for example) is determined by the drilling and bore hole environment within which the ABOC is intended to operate. Higher pressure environments may require larger bladder assemblies, whereas lower pressure terrestrial environments may require smaller bladder assemblies. Once again, such variations that are primarily determined by the levels of pressure associated with the operating environment do not necessarily depart from the spirit and scope of the claimed invention.
This application claims the benefit under Title 35 United States Code §119(e) of U.S. Provisional Application 61/765,895 filed Feb. 18, 2013 the full disclosure of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3837356 | Selep et al. | Sep 1974 | A |
4529169 | Johns et al. | Jul 1985 | A |
4997162 | Baker et al. | Mar 1991 | A |
5143348 | Baker et al. | Sep 1992 | A |
5211373 | Baker | May 1993 | A |
5377955 | Baker | Jan 1995 | A |
20110297396 | Hendel et al. | Dec 2011 | A1 |
20130126153 | Baker | May 2013 | A1 |
20130220631 | Wilie | Aug 2013 | A1 |
Number | Date | Country |
---|---|---|
2304860 | Mar 1997 | GB |
Number | Date | Country | |
---|---|---|---|
61765895 | Feb 2013 | US |