Annular chamber seal

Information

  • Patent Grant
  • 6260850
  • Patent Number
    6,260,850
  • Date Filed
    Thursday, December 11, 1997
    27 years ago
  • Date Issued
    Tuesday, July 17, 2001
    23 years ago
Abstract
Internal and external metal-to-metal radially interfering seals are provided for an annular chamber. Typically, an annular chamber is used in tubular goods to be part of the hydraulic control circuitry, such as for operating subsurface equipment such as a subsurface safety valve. Resilient seals are eliminated and sealing reliability is enhanced by a design which features metal-to-metal seals internally and externally, preferably assembled by an external two-step thread. The radial interference seal, which is internally disposed, is constructed so as to be incapable of experiencing tensile loads. This reinforces joint integrity by minimizing stresses on thin components.
Description




FIELD OF THE INVENTION




The field of this invention relates to sealing technology, particularly those seals used in downhole tools for sealing annular chambers.




BACKGROUND OF THE INVENTION




In the past, tubing strings have employed various devices which have needed pressure chambers for actuation of various components. In some of these layouts, a separate connection outside the tubing string is provided for hydraulic control pressure. This pressure is used to selectively actuate a subsurface safety valve, depending on the configuration. Occasionally, the control components in the hydraulic circuit, for actuation of such downhole components as a subsurface safety valve, fail. For example, the hydraulic piston that is actuated by the control circuit, which is in fluid communication with an annular chamber, occasionally sticks or experiences seal failure.. When this occurs, it is not possible to use the hydraulic forces in the control circuit to actuate the subsurface safety valve, or some other downhole component as required. When these circumstances occur, it is desirable to lower a substituted component through the tubing and position it appropriately to accomplish the task of the part rendered inoperative due to control circuit failure. At the same time, it is desirable to use the hydraulic control pressure to actuate this newly inserted component in the tubing or wellbore.




When these situations occur, it has become desirable to lower a penetrating tool to the desired depth and bore laterally into the hydraulic control circuit chamber. In order to facilitate the fluid communication into the control circuit, an annular chamber is provided so that upon reaching the proper depth, radial puncture in any direction will assure fluid communication into the annular chamber. Stated differently, if the control circuit flowpath extending adjacent the tubular were strictly longitudinal, the puncture device would have to be properly oriented so that when it was actuated to perform a radial puncture, it would be in alignment with the longitudinal flowpath of the control circuit.




In the past, sealing annular control circuit chambers has been and continues to be of concern.




Accordingly, one of the objects of the present invention is to provide an annular chamber, such as those used in control circuits where the annular chamber extends in the tubular goods and is sealed internally and externally by metal-to-metal seals. It is a further object of this invention to eliminate resilient seals for sealing annular chambers used in control circuits or other application in tubular goods for downhole use.




SUMMARY OF THE INVENTION




Internal and external metal-to-metal radially interfering seals are provided for an annular chamber. Typically, an annular chamber is used in tubular goods to be part of the hydraulic control circuitry, such as for operating subsurface equipment such as a subsurface safety valve. Resilient seals are eliminated and sealing reliability is enhanced by a design which features metal-to-metal seals internally and externally, preferably assembled by an external two-step thread. The radial interference seal, which is internally disposed, is constructed so as to be incapable of experiencing tensile loads. This reinforces joint integrity by minimizing stresses on thin components.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a sectional elevational view showing the annular chamber with a sealing assembly using resilient seals.





FIG. 2

is a sectional elevational view of the apparatus of the present invention showing the annular pressurized chamber with internal and external metal seals.





FIG. 3

shows the operation with an insert valve installed after penetration into the chamber.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT





FIG. 1

illustrates the annular chamber with a sealing assembly. There, an annular chamber


10


is internally sealed by resilient seals


12


and


14


. A connection


16


is provided to allow introduction of control hydraulic pressure. The hydraulic pressure enters chamber


10


and flows through passage


18


until it reaches piston


20


. The movement of piston


20


can be used to actuate a downhole component, such as a subsurface safety valve. Threads


22


and


24


in conjunction with sealing surfaces


28


and


30


have been used for external seals for chamber


10


. This two-step thread employed a torque shoulder


26


and opposed sealing surfaces


28


and


30


.




The apparatus of the present invention, as shown in

FIG. 2

, still has the connection


16


leading into the chamber


10


. Chamber


10


is in flow communication with passage


18


for actuation of subsurface component, such as a subsurface safety valve, by pressure applied to connection


16


. The internal seals for chamber


10


comprise opposed surfaces


32


and


34


. In a preferred embodiment, there is radial interference between the pin


36


and the box


38


. The upper end


40


of pin


36


, due to the absence of threads, is incapable of being subjected to tensile loads. This is significant because upper end


40


is a thin-walled component of pin


36


and could be subject to fracture under tensile loads following radial puncture. In order to provide the interference force that keeps mating surfaces


32


and


34


together, a two-step thread


42


and


44


is employed. The two-step thread


42


and


44


has a form known to those skilled in the art and further comprises a pair of sealing surfaces


46


and


48


. A torque shoulder


50


assists in the makeup of the two-step thread


42


and


44


. The thread form of threads


42


and


44


can be overhung so that, in conjunction with the torque shoulder


50


, the sealing surfaces


46


and


48


are drawn to their opposed surface. There is a preferably slight interference fit radially for the paired surfaces


46


and


48


. In the preferred embodiment, the sealing surfaces


32


,


34


,


46


, and


48


are slightly tapered in the range of 0-20° from the longitudinal axis of the pin


36


and box


38


.




Another feature of the apparatus of the present invention is the configuration of chamber


10


. Chamber


10


has a thin-walled section


52


. This facilitates the radial puncture procedure by providing a thin wall


52


for the puncture apparatus. As a result, the puncture procedure can be concluded more quickly since there is less metal to penetrate. At the same time, the inner wall of the pin


36


has sufficient structural rigidity to withstand the desired interference fit radially at mating surfaces


32


and


34


, as well as the expected internal pressures in chamber


10


.




Referring now to

FIG. 3

, an insert valve


60


is lowered into bore


54


. Valve


60


latches on to bore


54


in the customary manner such as using locking collets in a manner well-known in the art. With chamber


10


punctured to create port


56


, the insert valve


60


may be operated by applying pressure at inlet


16


, which flows through a channel


62


to a piston


64


. Seals


66


seal off the lower end of passage


62


. Additionally, seals


68


seal off passage


62


at the upper end. Accordingly, pressure applied to inlet


16


is communicated against piston


64


to actuate its movements so that the valve


60


can continue to operate using the control circuit pressure communicated through chamber


10


. The insert valve


60


takes the place of subsurface safety valve


70


, which is pushed out of the way upon insertion of the insert valve


60


.




Normally, the subsurface components are actuated by a control circuit pressure applied at connection


16


. Typically, the applied pressure at port


16


actuates a piston which in turn ties into the final controlled component (not shown). However, if for any reason, the piston (such as


20


shown in

FIG. 1

) fails to operate and another replacement component is inserted through the bore


54


, it is desirable to redirect the pressure in the control circuit from chamber


10


directly into the newly installed component. Those skilled in the art will appreciate that the replacement component inserted through the bore


54


has its own actuating mechanisms responsive to hydraulic pressure. At that point in time with thin wall


52


having been penetrated by a penetrating tool, the control circuit pressure in chamber


10


is redirected into the replacement component. The replacement component (not shown) straddles the opening


56


which is placed there as a result of the operation of the penetrating tool. Thereafter, the replacement downhole component can be actuated using pressure applied at port


16


. Now, instead of directing the pressure downwardly through passage


18


, the pressure is redirected through opening


56


into the replacement subsurface component so that it can be actuated and operations resumed.




It can be seen that internal pressure applied in bore


54


also urges the sealing surfaces


32


and


34


into greater contact, thus promoting the internal seal of chamber


10


.




The elimination of the flexible seals, is a significant improvement in reliability of these critical joints that are part of the hydraulic circuit for key downhole components. Unreliability in the sealing of the joints in the control circuit, such as at chamber


10


, can adversely effect the longevity of the control system. By virtue of the addition of the internal and external metal seals, reliability has been approved. Assembly has also been facilitated since in the past the resilient seals, such as cup-shaped seals, were extremely difficult to install without doing damage to the seals during assembly. With the metal-to-metal seals internally and externally, assembly has been greatly facilitated as it is now guided by the two-step thread


42


and


44


.




In another feature of the present invention, a method has been developed to create a pin


36


and box


38


arrangement so that an annular cavity is created, with the annular space sealed internally and externally with metal-to-metal seals. The method of the present invention overcomes the prior problem in attempting to build such an apparatus because there previously did not exist the means of economically controlling the needed metal-to-metal interferences so that the seals could be reliably created internally and externally to the annular chamber. The proper amount of interference is important to ensure sealing integrity. However, too much interference can tend to create galling and prevent the easy assembly of the joint. Due to the close manufacturing tolerances required, construction of annular chambers with metal-to-metal internal and external seals have not been commercially available in the past. The threaded connection


42


and


44


has a center locating shoulder


50


which carries the torque of the made-up connection. The shoulder


50


also positions the contacting surface


32


and


34


on the pin nose


40


and the mating opposed surfaces in the box, as well as on the other end involving the contacting surfaces


46


and


48


on the box nose and its mating surface on the pin. In the preferred embodiment, the pin and box are made so as to have radial interference of about 0.0025 inch per inch of diameter. It has generally been found that lesser degrees of interference do not provide for an adequate seal, while substantially greater interference presents a hazard of galling. The pin


36


and box


38


are designed such that the pin nose is thin-walled but abuts the relatively thick main section of the box


38


. Therefore, internal pressures in bore


54


actually promote internal sealing, while the substantial thickness of box


38


adjacent pin nose


40


provides the structural rigidity for the internal sealing. The same concept applies on the external joint at sealing surfaces


46


and


48


. While the box nose is relatively a thin-walled member, it is mounted opposite the thick-walled portion of the pin. Accordingly, external pressures in the annulus applied to the pin


36


and box


38


promote sealing externally at sealing surfaces


46


and


48


.




The method of the present invention applies a technique wherein the pin and box are manufactured using the same baseline dimensions. The manufacturing baseline dimension is taken from the torque shoulder


50


on both the pin and box. Based on this starting dimension, the extension portion is developed which includes sealing surfaces


32


and


34


. Since the base dimension is taken from shoulder


50


, the exact location of mating surfaces


32


and


34


can be positioned with the desired amount of interference in a manufacturing process that allows for specific control of the tolerances. This ensures that the proper amount of the desired radial interference is built into the pin


36


and the box


38


such that when they are put together, there will be sufficient force to ensure the seal yet an interference amount short of a situation where galling can occur. The pin nose


40


is not manufactured with a torque shoulder due to the difficulty in manufacturing tolerances of having two torque shoulders seat simultaneously. The torque shoulder


50


, along with precise control of the dimensions of the pin nose


40


and the mating portions of box


38


, removes the need for an internal torque shoulder or threads. However, the base reference technique using torque shoulder


50


or another starting reference point can be employed to optionally produce a pin/box joint involving an annular space in between, with an internal as well as external torque shoulder. Through the use of a common reference point, the particular interference range at the pin nose is accomplished by dimensional control of the surfaces adjacent the pin nose. Since a common reference point is used for the mating surfaces adjacent the pin nose, the tolerance spread of mating surfaces


32


and


34


can be controlled to within the same tolerance as the mating surfaces


46


and


48


.




The foregoing disclosure and description of the invention are illustrative and explanatory thereof, and various changes in the size, shape and materials, as well as in the details of the illustrated construction, may be made without departing from the spirit of the invention.



Claims
  • 1. A method of providing access to a fluid control circuit through a tubular, comprising:fabricating a pin and a box; threading said pin to said box; creating an annular chamber by said threading; creating an internal bore by said threading; creating at least one seal for said chamber by said threading; providing a thin wall to separate said internal bore from said chamber; penetrating said thin wall with a penetrating tool.
  • 2. A method of providing access to a fluid control circuit through a tubular, comprising:fabricating a pin and a box; threading said pin to said box; creating an annular chamber by said threading; creating an internal bore by said threading; creating at least one seal for said chamber by said threading; providing a thin wall to separate said internal bore from said chamber; providing a passage through said assembled pin or box in communication with said chamber by said assembly; operating an independent fluid control system by fluid pressure through said passage.
  • 3. The method of claim 2, further comprising:providing an additional access to the control system other than said passage by penetrating said thin wall.
  • 4. The method of claim 2, further comprising:providing an additional access to the control system other than said passage by penetrating said thin wall.
  • 5. An apparatus for isolating a chamber from at least one of pressures internal to the apparatus and pressures applied externally to the apparatus, said apparatus defining a tubularly shaped wall containing a chamber, said chamber comprising a portion of a downhole fluid-actuated system, comprising:an elongated housing comprising a threaded pin and a threaded box tubular components, said components when threaded together forming a wall, said wall having an interior and exterior face and defining an annular chamber therein and at least one passage running in said wall in communication with said chamber and serving as part of a pressurized fluid-actuated downhole control system; at least one internal seal to prevent at least one of flow into said chamber from pressure against said internal face and pressure in said chamber from escaping past said interior face; at least one external seal to prevent at least one of flow into said chamber from pressure against said external face and pressure in said chamber from escaping past said exterior face; said chamber disposed in said housing in communication with said seals; and at least one of said internal and external seals formed by metal-to-metal contact between said housing components, whereupon threading of said housing components, fluid pressure can be communicated through said chamber and said passage for operation of a fluid-actuated control system.
  • 6. The apparatus of claim 5, wherein:said internal seal comprises a nonmetallic seal.
  • 7. The apparatus of claim 6, wherein said internal seal comprises a resilient seal.
  • 8. A sealing system against internal and external pressures applied to an annular chamber in a downhole tubular forming a part of a fluid-actuated system, comprising:an elongated housing, having a bore therethrough and forming an annular chamber formed in a wall thereof, said wall having an internal face exposed to said bore and an external face forming the outside of the downhole tool, said wall further forming at least one passage therethrough, independent of said bore and in communication with said chamber as a part of a pressurized fluid control system through said wall; said housing composed of a threaded pin and a threaded box members, said chamber formed between said pin and box members when threaded together; at least one internal seal exposed to said bore and said chamber; at least one external seal exposed to said chamber and said external face, wherein at least one of said internal and external seals is formed by metallic component contact between said pin and said box; said internal seal disposed on an opposite side of said chamber from said external seal.
  • 9. The sealing system of claim 8, wherein said internal seal comprises a resilient nonmetallic seal.
  • 10. A method of sealing a chamber in a wall of a downhole tubular against internal and external applied pressures, comprising:forming a threaded tubular pin and a threaded tubular box member so that when threaded together, a chamber is formed in a wall defined by said threaded together pin and box members; providing an internal seal for said chamber, between said pin and box; threading said pin and box to form said internal seal; providing an external seal due to said connection; disposing said internal seal opposite said chamber from said external seal; providing a metallic seal on at least one of said internal and external seals; providing at least one passage in said wall in fluid communication with said chamber; connecting said passage in a fluid control system independent of an internal bore formed by said wall.
  • 11. The method of claim 10, further comprising:providing said external seal as a metal-to-metal seal; providing at least an interference fit for said external metal-to-metal seal.
  • 12. The method of claim 11, further comprising:providing said internal seal as a resilient nonmetallic seal.
  • 13. A sealing system for an annular passage in a downhole tool, comprising:an elongated housing having a bore therethrough and forming an annular chamber; said housing composed of a pin and box members; at least one internal seal exposed to said bore and said chamber; said internal seal is unrestrained longitudinally to minimize stresses due to applied forces in a direction parallel to said bore; at least one external seal exposed to said chamber and to outside the downhole tool on the opposite side of said pin and box members than said bore; said pin and box members further comprising at least one passage therethrough in fluid communication with said chamber to allow said chamber to function in the pressurized fluid control system, independent of said bore; a thin wall on said pin where it extends into said box, said thin wall defining a portion of said chamber and characterized by adjacent thicker, portions of said pin and separating said bore from said chamber to facilitate auxiliary access into said chamber from said bore.
  • 14. The sealing system of claim 13, wherein:said internal seal is a nonmetallic resilient seal.
  • 15. An apparatus for downhole using, comprising:a pin member and box member joinable to form an internal bore and an annular chamber therebetween; at least one nonmetallic seal to prevent pressure in said bore or from outside said pin and box from entering said chamber; said pin and box members, when joined together, defining an internal wall which defines at least a portion of said internal bore and said chamber, said internal wall formed on said pin where it extends into said box defines a portion of said chamber and is thin as compared to adjacent portions of said pin to facilitate radial penetration from said bore into said chamber; said chamber in flow communication through one of said pin and box members, with at least one passage in a pressurized fluid control system, said passage being distinct from said internal bore, for normal operation of said pressurized fluid control system; whereupon said thin wall selectively facilitates an additional entry into said chamber for alternative operation of the fluid control system.
  • 16. The apparatus of claim 15, further comprising:an internal and an external seal, wherein said internal seal is resilient and nonmetallic.
  • 17. The apparatus of claim 16, wherein said external seal is a metal-to-metal seal.
  • 18. The apparatus of claim 17, wherein said external seal is an interference fit between said pin and said box.
  • 19. The apparatus of claim 16, wherein said internal seal is longitudinally displaced from said external seal with said chamber in between to allow said thin wall to form part of said chamber.
  • 20. A method of providing access to a fluid control circuit through a tubular, comprising:fabricating a pin and a box; joining said pin to said box; creating an annular chamber by said joining; creating an internal bore by said joining; providing at least one nonmetallic resilient seal between said internal bore and said chamber; providing a thin wall between said bore and said chamber defined on a portion of the pin extending into the box with the thin wall defining a portion of the chamber and being thinner than adjacent portions of the pin, in order to facilitate auxiliary access into said chamber from said bore.
REFERENCE TO RELATED APPLICATIONS

This application is a continuation of application Ser. No. 08/787,781, filed on Jan. 23, 1997, which was a file wrapper continuation of application Ser. No. 08/555,597, filed on Nov. 9, 1995, now abandoned, which was a continuation of application Ser. No. 08/036,345, filed on Mar. 24, 1993, now issued as U.S. Pat. No. 5,496,044. This application is also a continuation of application Ser. No. 08/594,503, filed on Jan. 31, 1996, now abandoned, which was a continuation of application Ser. No. 08/341,433, filed on Nov. 17, 1994, now abandoned, which was a divisional of application Ser. No. 08/036,345, filed on Mar. 24, 1993, now issued as U.S. Pat. No. 5,496,044.

US Referenced Citations (18)
Number Name Date Kind
3141685 Watts Jul 1964
4373587 Pringle Feb 1983
4452310 Pringle et al. Jun 1984
4538838 Pringle Sep 1985
4624488 Furgerson Nov 1986
4641841 Regan Feb 1987
4669547 Pringle Jun 1987
4676529 McDonald Jun 1987
4736967 Mott et al. Apr 1988
4749043 Rodenberger Jun 1988
4795200 Tung Jan 1989
4796705 Carmody et al. Jan 1989
4796928 Carlin et al. Jan 1989
4817962 Mott et al. Apr 1989
4862965 Pringle Sep 1989
4941534 Berzin Jul 1990
4944351 Eriksen et al. Jul 1990
5496044 Beall et al. Mar 1996
Non-Patent Literature Citations (6)
Entry
Baker Oil Tools literature on Safety Systems, 1 page date unknown.
Baxendale & Co. Ltd, Catalogue No. 371, Reprinted, pp. 226-227.
Baker Oil Tools Drawing No. 565-446-00, Apr. 15, 1988.
Baker Oil Tools Drawing No. 565-446-01, Apr. 15, 1988.
Baker Packer Information Brochure/Catalog on Models “FVL”, and “FVH”, Tubing Retrievable Safety Valves, 3 pages, 1982-1983.
Baker Packer Information Brochure/Catalog on Models “FV”, Series Tubing Retrievable Flapper Safety Valve Models “FVL”, & “FVH”, 3 pages, 1984-1985.
Continuations (5)
Number Date Country
Parent 08/787781 Jan 1997 US
Child 08/988912 US
Parent 08/555597 Nov 1995 US
Child 08/787781 US
Parent 08/036345 Mar 1993 US
Child 08/555597 US
Parent 08/594503 Jan 1996 US
Child 08/036345 US
Parent 08/036345 US
Child 08/036345 US