The present invention refers to an annular prosthesis for a mitral valve.
A mitral plastic surgery operation includes a series of procedures suitable to re-establish the correct functionality of the mitral valve, when it is affected by congenital or acquired pathology. Among these procedures, the remodelling of the valve annulus is one of the most frequently used maneuvers in order to complete and/or to strengthen the valve. Remodeling provides for two moments: the reduction of the annular area and the proper remodeling that is suitable to re-establish the normal geometric ratios that are found in natural valves free of pathology. The first one of these maneuvers is usually carried out with the aid of a prosthesis that is appropriately sutured to the natural annulus. The prostheses for annuloplastic surgery available on the market are of two types. Flexible annular prostheses, made of various materials, that allow a “linear” reduction of the annular circumference, and rigid and semi-rigid annular prostheses made of various materials, that allow the “linear” reduction of the annular circumference and a geometric remodeling so as to re-establish the physiological systolic shape of the annulus. In the case of semi-rigid prostheses, they additionally allow a minimum deformation in order to allow the prosthesis to follow the deformations of the annulus-during the cardiac stages.
All the rigid and semi-rigid annular prostheses have a kidney-like or coupled D shape, with an anterior half-ring, rectilinear in first approximation, that gets sutured in correspondence of the joining of the anterior valve leaflet and a curved posterior half-ring that is sutured in correspondence of the joining of the posterior valve leaflet. The shape of the annular prostheses at issue reproduces the configuration of the valve annulus during the ventricular systole, and therefore in the stage of the valve closing. The ratio between the minor axis and the major axis is approximately ¾ in all the models currently on the market, since this reproduces the normal anatomical ratios.
Recently the concept of undersizing of mitral valve annuloplasty has been introduced. This procedure is proposed in case of mitral insufficiency due to a reduced movement of the leaflets, as in the case of ischemic mitral valve or dilated cardiomyopathy. The undersizing consists in using a ring smaller than necessary, though still maintaining the ratio of approximately ¾, and it is carried out in order to bring the base of the anterior leaflet even closer to the posterior leaflet in order to increase the coaptation surface (closure).
The Applicants noticed that in certain pathological conditions, there is a need to modify such ratio in order to make the operation of reconstruction of the mitral valve more effective: for instance in order to bring the valve leaflets closer to each other in the case of anatomical or functional tissue deficiency of one or both leaflets. In addition, it has also been observed that anatomical variation that do not correspond to the ratios reported above are frequent in nature.
In view of the state of the art described herein, the object of the present invention is to provide an annular prosthesis for mitral valve that can meet the different requirements that have been noticed.
According to present the invention, these and other objects have been attained by means of an annular prosthesis for a mitral valve made up of a posterior half-ring and an anterior half-ring that are coupled to each other on a first transverse plane which defines a maximum width section of the prosthesis. The ratio between the distance between the anterior half-ring and the posterior half-ring, as measured along a second plane, perpendicular to the first plane and equidistant to the couplings, and the maximum width of the prosthesis is lower than ¾.
The characteristics and the advantages of the present invention will become evident from the following detailed description of an embodiment thereof, which is illustrated by a non-limiting example in the enclosed drawings, in which:
In
In
For every size of prosthesis two or more reduced ratios can therefore be provided. By size, the dimension of the transverse width of the prosthesis is meant; it represents the clinical parameter on the basis of which the prosthesis is selected in each single clinical case in examination, and it is also the identifying parameter for the prosthesis.
The lower ratio, as compared with the prostheses currently used for annuloplastic surgery, allows its use in selected cases of pathologies that are not treatable in an adequate way with conventional prostheses.
The lower ratios in this case have the function to treat pathologies characterized by reduced movement of the leaflets with tethering (stretching towards the cardiac apex) symmetrical (as regards each leaflet) with medium or serious proportions. The reduction of the ratio confers the prosthesis a more “squeezed” shape that allows a better apposition of the leaflets in selected cases. For instance, in the dilated cardiomyopathy, when the expansion of the left ventricle determines a lateral movement and toward the apex of the papillary muscles, the leaflets stretch toward the cardiac apex and the apposition is thus lacking at the central level. Possible sizing, in addition, must respect an anatomical requirement: the anterior half-ring 1 (the base for the implant of the front leaflet) is anatomically fixed and not modifiable, and therefore, sizing should not be applied to this structure, that is, to the width of the prosthesis. The maintaining of a normal fore width of the prosthesis, associated with the reduction of the height allows an undersizing that is less inclined to deformation of the fore leaflet, therefore reducing the risk of residual insufficiency.
In
In some extreme cases, it could be useful to make the distance between the two half-rings in the central zone equal to zero, in order to obtain an eight-shape configuration, as seen in phantom in
In
The prosthesis, according to the present invention, can be made of an inert material that is highly tolerated by the human organism and can have a resistance that is appropriate to the use and that can substantially maintain the shape given to it.
Number | Date | Country | Kind |
---|---|---|---|
MI 2001A 001012 | May 2001 | IT | national |
The present application is a continuation of U.S. application Ser. No. 10/742,454, filed Dec. 18, 2003, under the same title, which claims priority to U.S. application Ser. No. 10/144,932, filed May 15, 2002, under the same title, which claims priority under 35 U.S.C. §119 to Italian Application No. MI 2001A 001012, filed May 17, 2001.
Number | Date | Country | |
---|---|---|---|
Parent | 10742454 | Dec 2003 | US |
Child | 12697936 | US | |
Parent | 10144932 | May 2002 | US |
Child | 10742454 | US |