Some embodiments of the present invention relate in general to valve repair, and more specifically to repair of an atrioventricular valve of a patient.
Ischemic heart disease causes mitral regurgitation by the combination of ischemic dysfunction of the papillary muscles, and the dilatation of the left ventricle that is present in ischemic heart disease, with the subsequent displacement of the papillary muscles and the dilatation of the mitral valve annulus.
Dilation of the annulus of the mitral valve prevents the valve leaflets from fully coapting when the valve is closed. Mitral regurgitation of blood from the left ventricle into the left atrium results in increased total stroke volume and decreased cardiac output, and ultimate weakening of the left ventricle secondary to a volume overload and a pressure overload of the left atrium.
In some applications of the present invention, apparatus is provided that comprises an implant structure comprising a flexible sleeve having a first and second sleeve end, a lumen, and at least one opening at a first end of the implant structure (i.e., one of the first and second sleeve ends). The implant structure additionally comprises a closure element (e.g., a closure mechanism) configured to close the at least one opening at the first end of the implant structure. The implant structure comprises a contracting assembly configured to longitudinally contract and expand the implant structure at least in part. For some applications, the closure mechanism comprises at least one end flap, and the contracting mechanism is configured to actuate the end flap so as to cover the at least one opening. For other applications, the closure mechanism comprises self-closing strips which are biased to close around the portion of the implant structure that defines the at least one opening. For some applications, the closure mechanism is configured to compress (e.g., by gathering together) excess portions of the sleeve which do not need to be anchored to tissue of a patient.
Typically, the implant structure comprises at least part of an annuloplasty structure (e.g., a partial annuloplasty ring) for repairing a dilated valve annulus of a native atrioventricular valve, such as a mitral or tricuspid valve, of a patient. Typically, the one or more flexible, longitudinal contracting members (e.g., a wire, string, or suture) are coupled to the sleeve by being threaded one or more times through the sleeve.
In some applications of the present invention, the contracting assembly includes one or more longitudinal contracting members coupled to the contracting mechanism. Typically, the implantable structure is placed completely around the annulus, such that none of the one or more longitudinal contracting members is positioned along an anterior portion of the annulus between fibrous trigones of the valve. The implantable structure is fastened to the annulus. The contracting assembly is then actuated to contract a longitudinal portion of the sleeve not positioned along the anterior portion of the annulus. Tightening of the implantable structure therefore tightens at least a portion of the posterior portion of the annulus, while preserving the length of the anterior portion of the annulus. (The anterior portion of the annulus should generally not be contracted because its tissue is part of the skeleton of the heart.) However, the portion of the sleeve deployed along the anterior portion of the annulus prevents dilation of the anterior annulus, because the sleeve is anchored at both ends of the anterior annulus, and the sleeve typically comprises a longitudinally non-extensible material. This deployment configuration may help prevent long-term resizing of annulus, especially the anterior annulus, which sometimes occurs after implantation of partial annuloplasty rings, such as C-bands.
The contracting assembly is configured to longitudinally contract the sleeve, and comprises a contracting mechanism and a longitudinal contracting member having first and second member ends. Typically, the contracting mechanism is disposed longitudinally at a first site of the sleeve, and the second member end is coupled to the sleeve (e.g., by being directly coupled or by being coupled to an element coupled to the sleeve) longitudinally at a second site longitudinally between the first site and the second sleeve end, exclusive. The contracting member also has a first member end portion, which extends from the first member end toward the second member end along only a longitudinal portion of the contracting member, and is coupled to the contracting mechanism. A first portion of the sleeve longitudinally extends from the first sleeve end toward the first site, and a second portion of the sleeve longitudinally extends from the second sleeve end toward the second site. The implantable structure is configured such that the contracting assembly applies a longitudinal contracting force only between the first and the second sites.
In some applications of the present invention, one or more of the tissue anchors are coupled to the sleeve at respective third sites longitudinally between the second site and the second sleeve end, exclusive. Typically, the implantable structure is configured such that the contracting assembly applies a longitudinal contracting force only between the first and the second sites. The longitudinal contracting force contracts at least a portion of the sleeve only between the first and the second sites. Providing the one or more anchors beyond the ends of the contracting member generally distributes force applied by contraction of the contracting assembly over the tissue interfaces of these anchors. In contrast, in some configurations of the implantable structure in which anchors are not provided beyond the ends of the contracting member, the force applied by the contracting assembly is applied predominantly to the single anchor nearest the first end of the contracting member, and the single anchor nearest the second end of the contracting member.
For some applications, at least two of the tissue anchors are coupled to the sleeve at respective third sites longitudinally between the second member end and the second sleeve end, exclusive. For some applications, the second site is at least 5 mm from the second sleeve end, measured when the sleeve is in a straight, relaxed, non-contracted state, such as at least 9 mm, e.g., at least 18 mm. For some applications, the second site is at a longitudinal distance from the second sleeve end, which distance is no greater than 30% of a total length of the sleeve, the distance and length measured when the sleeve is in the straight, relaxed, non-contracted state. For some applications, at least three of the tissue anchors are coupled to the sleeve alongside the contracting member, longitudinally between the first and second sites, exclusive. Typically, the sleeve is substantially longitudinally non-extensible.
For some applications, the sleeve has first and second sleeve ends, and first and second portions that longitudinally extend from the first and the second sleeve ends, respectively. The sleeve is arranged in a closed loop, such that the first and second portions of the sleeve together define a longitudinally overlapping portion of the sleeve positioned at least partially along the anterior portion of the annulus, and none of the one or more longitudinal contracting members is positioned along the overlapping portion of the sleeve. For some applications, at least one of the tissue anchors penetrates both the first and second portions of the sleeve at the overlapping portion. Such a mutual anchor helps ensure that the first and second portions remain tightly coupled together and to the tissue, so that the sleeve retains its closed loop shape. Alternatively, for some applications, the sleeve is shaped so as to define an integrally closed loop having no sleeve ends. For such applications in which the sleeve is shaped so as to define a closed loop and/or has the overlapping portion, the implantable structure is configured such that the contracting assembly applies a longitudinal contracting force only between the first and the second sites, and not along the overlapping portion. The longitudinal contracting force longitudinally contracts at least a portion of the sleeve only between the first and the second sites, and not along the overlapping portion. Typically, the contracting member extends along neither the first nor the second portion of the sleeve.
The implantable structure, when in this closed-loop configuration, is deployed around the entire annulus of the native valve, including an anterior portion of the annulus (on the aortic side of the valve) between the fibrous trigones. Typically, the contracting member does not extend along the portion of the sleeve deployed along the anterior portion of the annulus, and thus does not extend along the first portion, the second portion, or the overlapping portion of the sleeve. The portion of the sleeve deployed along the anterior portion of the annulus (between the trigones) is thus non-contractible. As mentioned above, tightening of the implantable structure therefore tightens the posterior portion of the annulus, while preserving the length of the anterior portion of the annulus. For some applications, this deployment configuration may also help achieve a closed loop that serves as a base ring to which a prosthetic valve is coupled.
In some applications of the present invention, the implantable structure further comprises an elongated linking member, which is positioned along an anterior portion of the annulus, so as to join the ends of the implantable structure in a complete loop. Over time after implantation, the linking member becomes fixed to the anterior portion of the annulus, thereby helping prevent long-term dilation of the anterior annulus. Typically, at least a portion of the linking member is disposed within and covered by the sleeve, into and/or over which fibrous tissue grows over time, helping anchor the linking member to tissue of the anterior annulus. Typically, in this configuration of the implantable structure, none of the anchors is coupled to the anterior portion of the annulus.
A first end of the linking member is typically fixed between 2 and 6 cm from a first end of the sleeve. A second end of the linking member is positioned within 1.5 cm of the same end of the sleeve, either protruding from the end of the sleeve, or recessed within the sleeve. The second end of the linking member comprises (e.g., is shaped so as to define) a first coupling element. The implantable structure further comprises a second coupling element, which is configured to be coupleable to the first coupling element. The second coupling element is coupled to the implantable structure within 1.5 cm of the second end of the sleeve. The second coupling element may be coupled to the housing, directly to the sleeve, or otherwise coupled to the implantable structure. Typically, the linking member is substantially longitudinally non-extensible, i.e., its length is fixed.
For some applications, the linking member is configured as a spring, which is typically curved, so as to be elastic in a radial direction, i.e., to be compressible like a bow or deflected beam. In these applications, the linking member is oriented such that it is pressed by elasticity against the anterior portion of the mitral annulus, i.e., the outer wall of the aorta, thereby holding the sleeve covering the linking member against the aortic wall. For some applications, at least two of the tissue anchors are coupled to the sleeve at respective, different longitudinal sites alongside the linking member, within 6 cm of the first end of the linking member. These tissue anchors may help set the proper direction of curvature of the linking member, for applications in which the linking member is curved.
As described hereinabove, the contracting member is coupled at the first member end portion thereof to the contracting mechanism. For applications in which the closure mechanism comprises the end flap, a second member end portion of the contracting member is coupled to the end flap. When the contracting mechanism is actuated in a first actuation direction, the contracting mechanism pulls on the contracting member which, in turn, pulls on the end flap, thereby covering the opening at least in part. One or more contraction-restricting elements are coupled to the implant structure and/or to the contracting member. The one or more contraction-restricting elements are configured to restrict contraction of at least a first portion of the implant structure beyond a predetermined amount while the contraction of the remaining portion(s) of the implant structure is ongoing.
For some applications, the contracting mechanism comprises a rotatable structure, and a housing in which the rotatable structure is positioned. The contracting mechanism and the longitudinal contracting member are arranged such that rotation of the rotatable structure contracts the implant structure and/or adjusts a perimeter of the implant structure. Typically, an anchor deployment manipulator is advanced into a lumen of the sleeve, and, from within the lumen, deploys the anchors through a wall of the sleeve and into cardiac tissue, thereby anchoring the sleeve around a portion of a valve annulus. The anchor deployment manipulator is typically deflectable.
In some applications of the present invention, the anchor deployment manipulator comprises a steerable tube in which is positioned an anchor driver having an elongated, flexible shaft. Rotation of the anchor driver screws the anchors into the cardiac tissue. The anchors may, for example, be helical in shape. For some applications, one or more stiffening elements, e.g., wires or sutures, are threaded through one or more portions of the sleeve in order to maintain relative positioning of the anchor driver relative to the implant structure during deflection of the anchor driver within the sleeve.
A rotation tool is provided for rotating the rotatable structure. The tool is configured to be guided along (e.g., over, alongside, or through) the longitudinal guide member, to engage the rotatable structure, and to rotate the rotatable structure in response to a rotational force applied to the tool.
For some applications, the implantable structure comprises an adjustable annuloplasty ring structure for repairing a dilated valve annulus of an atrioventricular valve, such as a mitral valve. The annuloplasty ring structure may be used for treating functional mitral regurgitation (FMR) or degenerative mitral valve disease. For other applications, a prosthetic heart valve is further provided, which is configured to be coupled to the sleeve.
For some applications in which the implantable structure is implanted around the annulus of a valve, the implantable structure may be advanced toward the annulus of a valve in any suitable procedure, e.g., a transluminal or transcatheter procedure, a percutaneous procedure, a minimally invasive procedure, or an open heart procedure.
For some applications, the annuloplasty ring is typically configured to be placed only partially around the valve annulus (e.g., to assume a C-shape), and, once anchored in place, to be contracted so as to circumferentially tighten the valve annulus. To this end, the annuloplasty ring comprises the flexible contracting member. For some applications of the present invention, the implant structure comprises one or more contraction-restricting elements configured to restrict contraction of at least a portion of the implant structure. Thus, the implant structure is partially-contractible.
Typically, a first anchor is deployed at or in a vicinity of a first trigone of the valve, and a second anchor is deployed at or in a vicinity of a second trigone. For valves which are particularly distended, the implant structure is anchored to the first trigone at a first free end thereof and is anchored to the second trigone at a second free end thereof. For applications in which the implant structure is implanted along an annulus of a mitral valve, the body portion of the implant structure extends from the first trigone and toward and along a portion of the annulus that is adjacent to the posterolateral leaflet. For such an application, the contraction-restricted portion is disposed along the annulus and therefore, a portion of the implant structure is contracted (i.e., a contraction-facilitated portion), thereby contracting a portion of the annulus that is between the first and second trigones and adjacent to the posterolateral leaflet and, thereby, reducing a perimeter of the valve annulus and drawing the leaflets together.
For other applications, the second free end is not anchored to the trigone, but is instead anchored to a portion of the atrial wall (e.g., a portion of the interatrial septum or a portion of a free wall) of the heart of the patient while the first free end or a first portion of the implant structure adjacent the first free end is anchored to the first trigone. For some applications, the entire contraction-restricted portion is attached to the portion of the atrial wall and the contraction-facilitated portion is disposed between the first and second trigones and runs along the portion of the annulus that is adjacent to the posterolateral leaflet. For such applications in which the implant structure is implanted at the mitral valve, the entire portion of the annulus that is between the first and second trigones and adjacent the posterolateral leaflet is contracted, thereby reducing a perimeter of the valve annulus and drawing the leaflets together.
For some applications, the contracting mechanism comprises a spool to which a first end of the contracting member is coupled. Rotation of the spool winds a portion of the contracting member around the spool, thereby contracting the implant structure. For some applications, the contracting mechanism comprises a housing that houses the spool, and the rotation tool is configured to engage and rotate the spool with respect to the housing. For some applications, the rotation tool comprises a tube, which is configured to be passed over the longitudinal member coupled to the contracting mechanism, and to engage the housing, such that the housing is held rotationally stationary when the tube is held rotationally stationary.
For some application in which the implant structure comprises an annuloplasty ring structure, all of the tools and elements of the annuloplasty system that are introduced into left atrium are contained within the sleeve of the annuloplasty ring structure, which reduces the risk that any elements of the system will accidentally be released to the blood circulation, or damage surrounding tissue. In addition, the lumen of the sleeve provides guidance if it should be necessary to return to a previously deployed anchor, such as to tighten, loosen, remove, or relocate the anchor. For some applications, the anchors comprise helical screws, which facilitate such adjusting or removing.
There is therefore provided, in accordance with some applications of the present invention, apparatus including an implantable structure, including:
a flexible sleeve, having first and second sleeve ends;
a contracting assembly, which is configured to longitudinally contract the sleeve, and which includes:
a force-distributing element configured to be coupled to the sleeve in a vicinity of the second sleeve end, the force-distributing element is configured to distribute a contraction force by the contracting member between the second member end and the second sleeve end.
In some applications of the present invention, the apparatus includes a first anchor couplable to the sleeve at a third site longitudinally between the second member end and the second sleeve end; and a second anchor couplable to the sleeve in a vicinity of the second site, the force-distributing element is configured to distribute a contraction force between the first and second anchors.
In some applications of the present invention, the force-distributing element includes an element that is longitudinally non-compressible.
In some applications of the present invention, the force-distributing element includes a coiled element having a plurality of longitudinally-non-compressible coils.
In some applications of the present invention, the force-distributing element is advanceable within the sleeve through an opening at the second sleeve end, and the force-distributing element is shaped so as to define one or more protrusions to engage and couple the force-distributing element to the sleeve.
In some applications of the present invention, the apparatus includes a plurality of tissue anchors, one or more of which are coupled to the sleeve at respective third sites longitudinally between the second site and the second sleeve end, exclusive.
In some applications of the present invention, the apparatus includes a plurality of tissue anchors, one or more of which are coupled to the sleeve at respective third sites longitudinally between the second member end and the second sleeve end, exclusive.
In some applications of the present invention, the apparatus includes: second-sleeve-end coupling element couplable to the second sleeve end; and an approximating element coupled at a first end portion thereof to the second-sleeve-end coupling element, and at a second end portion of the approximating element to the force-distributing element, the approximating element being configured to change a spatial orientation of at least a portion of a portion of the sleeve that is between the force-distributing element and the second sleeve end.
In some applications of the present invention, the approximating includes a screw shaft, the approximating element is shaped so as to define screw thread for receiving the screw shaft, and the approximating element is configured to shorten the at least the portion of the sleeve between the force-distributing element and the second sleeve end.
In some applications of the present invention, the force-distributing element is shaped so as to define the screw thread.
In some applications of the present invention, the approximating element includes a spring, and the approximating element is configured to shorten the at least the portion of the sleeve between the force-distributing element and the second sleeve end.
In some applications of the present invention, the spring has a tendency to compress in order to compress the portion of the sleeve between the force-distributing element and the second sleeve end.
In some applications of the present invention, the approximating element includes an elongate deflectable structural element coupled to the sleeve at the at least the portion, the elongate deflectable structural element having a shape-memory element so as to facilitate deflecting of the at least the portion.
In some applications of the present invention, the flexible sleeve is configured to provide an opening at at least the second sleeve end, and the second-sleeve-end coupling element includes a closure element configured to close the opening.
In some applications of the present invention, the closure element includes a plug.
There is additionally provided, in accordance with some applications of the present invention apparatus including an implantable structure, which includes:
a flexible sleeve, having first and second sleeve ends;
a second-sleeve-end coupling element couplable to the second sleeve end;
a structural, reference-force component coupled to the sleeve at a portion of the sleeve that is between the first and second sleeve ends; and
an approximating element coupled at a first end portion thereof to the second-sleeve-end coupling element, and at a second end portion of the approximating element to the structural, reference-force component, the approximating element being configured to change a spatial orientation of at least a portion of a portion of the sleeve that is between the structural, reference-force component and the second sleeve end.
In some applications of the present invention, the structural, reference-force component includes a force-distributing element configured to distribute a contraction force by the contracting member between the second member end and the second sleeve end.
There is further additionally provided, in accordance with some applications of the present invention, apparatus including an implantable structure, including:
a flexible sleeve, having first and second sleeve ends;
a contracting assembly, which is configured to longitudinally contract the sleeve, and which includes:
a contracting-member-receiving element coupled to the sleeve between the first site and the second sleeve end, exclusive, the contracting member being slidable with respect to the contracting-member-receiving element; and
a stopper coupled to the second member end, the stopper being advanceable toward the contracting-member-receiving element during contraction of the sleeve by the contracting mechanism.
In some applications of the present invention, the contracting member slides within a portion of the contracting-member-receiving element.
In some applications of the present invention, the contracting-member-receiving element includes a coupler to engage the stopper to the contracting-member-receiving element.
In some applications of the present invention:
the sleeve defines a contracting-assembly-contraction-facilitated portion between the first sleeve end and the contracting-member-receiving element, the contracting-assembly-contraction-facilitated portion being contractible and expandable by the contracting assembly; and
the sleeve defines a contracting-assembly-non-contraction-facilitated portion between the contracting-member-receiving element and the second sleeve end.
In some applications of the present invention, the apparatus includes an elongate deflectable structural element coupled to the sleeve at the contracting-assembly-non-contraction-facilitated portion, the elongate deflectable structural element having a shape-memory element so as to facilitate deflecting of the contracting-assembly-non-contraction-facilitated portion.
There is also provided, in accordance with some applications of the present invention, apparatus including an implantable structure, which includes:
a flexible sleeve, having first and second sleeve ends, the sleeve defining:
an elongate deflectable structural element coupled to the sleeve at the deflectable region, the elongate deflectable structural element having a shape-memory element so as to facilitate deflecting of the deflectable region of the sleeve.
There is further provided, in accordance with some applications of the present invention, apparatus including an implantable structure, including:
a flexible sleeve, having first and second sleeve ends;
a contracting assembly, which is configured to longitudinally contract the sleeve, and which includes:
a sleeve-shortening element configured to shorten the at least a portion of a portion of the sleeve between the second site and the second sleeve end.
In some applications of the present invention, contracting mechanism includes a spool around which at least the first member end portion is wound.
In some applications of the present invention, the sleeve-shortening element includes a screw shaft, the sleeve-shortening element is shaped so as to define screw thread for receiving the screw shaft. In some applications of the present invention, the sleeve-shortening element includes a spring. In some applications of the present invention, the spring has a tendency to compress in order to compress the portion of the sleeve between the second site and the second sleeve end.
There is also provided, in accordance with an application of the present invention, apparatus including an implantable structure, which includes:
a flexible sleeve, having first and second sleeve ends; and
a contracting assembly, which is configured to longitudinally contract the sleeve, and which includes:
a first portion of the sleeve longitudinally extends from the first sleeve end toward the first site, and a second portion of the sleeve longitudinally extends from the second sleeve end toward the second site,
the sleeve is arranged in a closed loop, such that the first and second portions of the sleeve together define a longitudinally overlapping portion of the sleeve, and
the implantable structure is configured such that the contracting assembly applies a longitudinal contracting force only between the first and the second sites, and not along the overlapping portion.
For some applications, the implantable structure further includes a plurality of tissue anchors, at least one of which penetrates both the first and second portions of the sleeve at the overlapping portion. For some applications, the at least one of the tissue anchors includes a coupling head and a tissue coupling element, the tissue coupling element penetrates both the first and second portions of the sleeve at the overlapping portion, and the coupling head is positioned within one of the first and second portions of the sleeve at the overlapping portion. For some applications, the plurality of tissue anchors includes: (a) a plurality of first tissue anchors of a first configuration, coupled to the sleeve at intervals along a first longitudinally-contiguous portion of the loop; and (b) a plurality of second tissue anchors of a second configuration different from the first configuration, coupled to the sleeve at intervals along a second longitudinally-contiguous portion of the loop different from the first longitudinally-contiguous portion, which second longitudinally contiguous portion includes the longitudinally overlapping portion. The first and second tissue anchors are optionally configured as described below.
For some applications, the overlapping portion has a length of between 5 and 60 mm.
For some applications, the contracting member does not extend along the first portion of the sleeve, and does not extend along the second portion of the sleeve.
For some applications, the first site is a first longitudinal distance from the first sleeve end; the second site is at a second longitudinal distance from the second sleeve end, which first and second longitudinal distances are measured when the sleeve is in a straight, relaxed, non-contracted state; and at least one of the first and second longitudinal distances, taken separately, is at least 18 mm.
For any of the applications described above, the contracting mechanism may include a housing and a rotatable structure positioned within the housing, which housing is disposed at the first site of the sleeve, and the rotatable structure and the longitudinal contracting member may be arranged such that rotation of the rotatable structure longitudinally contracts the sleeve.
For any of the applications described above, at least three of the tissue anchors may be coupled to the sleeve alongside the contracting member, longitudinally between the first and second sites, exclusive.
For any of the applications described above, the sleeve may be substantially longitudinally non-extensible.
There is further provided, in accordance with an application of the present invention, apparatus including an implantable structure, which includes:
a flexible sleeve, having first and second sleeve ends;
a contracting assembly, which is configured to longitudinally contract the sleeve, and which includes:
a plurality of tissue anchors, one or more of which are coupled to the sleeve at respective third sites longitudinally between the second site and the second sleeve end, exclusive.
For some applications, at least two of the tissue anchors are coupled to the sleeve at respective third sites longitudinally between the second member end and the second sleeve end, exclusive.
For some applications, the second site is at least 5 mm from the second sleeve end, such as at least 9 mm, e.g., at least 18 mm, measured when the sleeve is in a straight, relaxed, non-contracted state.
For some applications, the second site is at a longitudinal distance from the second sleeve end, which distance is no greater than 30% of a total length of the sleeve, the distance and length measured when the sleeve is in the straight, relaxed, non-contracted state.
For some applications, a first portion of the sleeve longitudinally extends from the first sleeve end toward the first site, a second portion of the sleeve longitudinally extends from the second sleeve end toward the second site, and the sleeve is arranged in a closed loop, such that the first and second portions of the sleeve together define a longitudinally overlapping portion of the sleeve. For some applications, at least one of the tissue anchors penetrates both the first and second portions of the sleeve at the overlapping portion. For some applications, the at least one of the tissue anchors includes a coupling head and a tissue coupling element, the tissue coupling element penetrates both the first and second portions of the sleeve at the overlapping portion, and the coupling head is positioned within one of the first and second portions of the sleeve at the overlapping portion.
For some applications, the overlapping portion has a length of between 5 and 60 mm. For some applications, the contracting member does not extend along the first portion of the sleeve, and does not extend along the second portion of the sleeve.
For any of the applications described above, the contracting mechanism may include a housing and a rotatable structure positioned within the housing, which housing is disposed at the first site of the sleeve, and the rotatable structure and the longitudinal contracting member may be arranged such that rotation of the rotatable structure longitudinally contracts the sleeve.
For any of the applications described above, at least three of the tissue anchors may be coupled to the sleeve alongside the contracting member, longitudinally between the first and second sites, exclusive.
For any of the applications described above, the implantable structure may be configured such that the contracting assembly applies a longitudinal contracting force only between the first and the second sites.
For any of the applications described above, the sleeve may be substantially longitudinally non-extensible.
There is still further provided, in accordance with an application of the present invention, apparatus including an implantable structure, which includes:
a flexible sleeve, having first and second sleeve ends; and
a contracting assembly, which includes:
a plurality of tissue anchors, one or more of which are coupled to the sleeve at respective third sites selected from the group of sites consisting of: one or more sites longitudinally between the first site and the first sleeve end, exclusive, and one or more sites longitudinally between the second site and the second sleeve end, exclusive.
For some applications, at least one of the third sites is longitudinally between the first site and the first sleeve end, exclusive. For some applications, at least two of the third sites are longitudinally between the first site and the first sleeve end, exclusive.
For some applications, at least one of the third sites is longitudinally between the second site and the second sleeve end, exclusive. For some applications, at least two of the third sites are longitudinally between the second site and the second sleeve end, exclusive.
For some applications, at least one of the third sites is longitudinally between the first site and the first sleeve end, exclusive, and at least one of the third sites is longitudinally between the second site and the second sleeve end, exclusive.
For some applications, the first site is a first longitudinal distance from the first sleeve end; the second site is at a second longitudinal distance from the second sleeve end, which first and second longitudinal distances are measured when the sleeve is in a straight, relaxed, non-contracted state; and at least one of the first and second longitudinal distances, taken separately, is at least 5 mm. For some applications, the first distance is at least 5 mm. Alternatively or additionally, for some applications, the second distance is at least 5 mm. For some applications, at least one of the first and second longitudinal distances, taken separately, is at least 9 mm, such as at least 18 mm.
For some applications, a first portion of the sleeve longitudinally extends from the first sleeve end toward the first site, a second portion of the sleeve longitudinally extends from the second sleeve end toward the second site, and the sleeve is arranged in a closed loop, such that the first and second portions of the sleeve together define a longitudinally overlapping portion of the sleeve. For some applications, at least one of the tissue anchors penetrates both the first and second portions of the sleeve at the overlapping portion. For some applications, the at least one of the tissue anchors includes a coupling head and a tissue coupling element, the tissue coupling element penetrates both the first and second portions of the sleeve at the overlapping portion, and the coupling head is positioned within one of the first and second portions of the sleeve at the overlapping portion.
For some applications, the overlapping portion has a length of between 5 and 60 mm. For some applications, the contracting member does not extend along the first portion of the sleeve, and does not extend along the second portion of the sleeve.
For any of the applications described above, the contracting mechanism may include a housing and a rotatable structure positioned within the housing, which housing is disposed at the first site of the sleeve, and the rotatable structure and the longitudinal contracting member may be arranged such that rotation of the rotatable structure applies the longitudinal contracting force only between the first and the second sites.
For any of the applications described above, at least three of the tissue anchors may be coupled to the sleeve alongside the contracting member, longitudinally between the first and second sites, exclusive.
For any of the applications described above, the sleeve may be substantially longitudinally non-extensible.
There is additionally provided, in accordance with an application of the present invention, apparatus including an implantable structure, which includes:
a flexible sleeve, having first and second sleeve ends; and
a contracting assembly, which is configured to longitudinal contract the sleeve, and which includes:
wherein (a) the first member end of the first contracting member and the first member end of the second contracting member are coupled to the contracting mechanism, (b) the second member end of the first longitudinal contracting member is coupled to the sleeve at a first site that is a first longitudinal distance from the first sleeve end, and (c) the second member end of the second longitudinal contracting member is coupled to the sleeve at a second site that is a second longitudinal distance from the second sleeve end, wherein the contracting mechanism is disposed at a third site of the sleeve that is longitudinally between the first and second sites, exclusive, and wherein the first and second longitudinal distances are measured when the sleeve is in a straight, relaxed, non-contracted state, and at least one of the first and second longitudinal distances, taken separately, is at least 5 mm.
For some applications, the implantable structure further includes a plurality of tissue anchors, one or more of which are coupled to the sleeve at respective fourth sites selected from the group of sites consisting of: one or more sites longitudinally between the first site and the first sleeve end, exclusive, and one or more sites longitudinally between the second site and the second sleeve end, exclusive. For some applications, at least three of the tissue anchors are coupled to the sleeve alongside the contracting member, longitudinally between the first and second sites, exclusive.
For some applications, each of the first and second longitudinal distances is at least 5 mm. Alternatively, for some applications, one of the first and second longitudinal distances is at least 5 mm, and the other of the first and second longitudinal distances is less than 5 mm, such as equal to 0 mm.
For any of the applications described above, the contracting mechanism may include a housing and a rotatable structure positioned within the housing, which housing is disposed at the third site of the sleeve, and the rotatable structure and the longitudinal contracting member may be arranged such that rotation of the rotatable structure longitudinally contracts the sleeve.
For any of the applications described above, each of the first and second longitudinal contracting members includes at least one wire.
There is yet additionally provided, in accordance with an application of the present invention, apparatus including an implantable structure, which includes:
a flexible sleeve, arranged as a loop;
a plurality of first tissue anchors of a first configuration, coupled to the sleeve at intervals along a first longitudinally-contiguous portion of the loop; and
a plurality of second tissue anchors of a second configuration different from the first configuration, coupled to the sleeve at intervals along a second longitudinally-contiguous portion of the loop different from the first longitudinally-contiguous portion.
For some applications, the first and second configurations are different from each other in size. For some applications, the first tissue anchors include first coupling heads and first tissue coupling elements, respectively, the second tissue anchors include second coupling heads and second tissue coupling elements, respectively, and lengths of the first tissue coupling elements are greater than lengths of the second tissue coupling elements. For some applications, the implantable structure includes more first tissue anchors than second tissue anchors, such as at least twice as many first tissue anchors as second tissue anchors.
For some applications, the first and second tissue coupling elements are shaped so as to define a shape selected from the group consisting of: a helix, a spiral, and a screw shaft, and the lengths of the first and second coupling elements are measured along a longitudinal axis of the shape. For some applications, each of the second tissue coupling elements is shaped so as to define no more than two turns.
For some applications, the first tissue anchors include first coupling heads and first tissue coupling elements, respectively, the second tissue anchors include second coupling heads and second tissue coupling elements, respectively; the first and second tissue coupling elements are shaped so as to define a shape selected from the group consisting of: a helix, a spiral, and a screw shaft; and each of the second tissue coupling elements has fewer turns than does each of the first tissue coupling elements.
For some applications, each of the second tissue coupling elements is selected from the group consisting of: a harpoon anchor, an anchor including spiked arms, a mesh shaped so as to define two discs, an anchor including a barbed shaft. For some applications, each of the second tissue coupling elements includes a suture.
For any of the applications described above, the flexible sleeve may be shaped so as to define an integrally closed loop having no sleeve ends.
For any of the applications described above, the flexible sleeve may be shaped so as to define first and second sleeve ends, which are coupled to each other to form the loop. For some applications, the first and second sleeve ends are coupled to each other at an overlapping portion.
There is also provided, in accordance with an application of the present invention, apparatus including an implantable structure, which includes:
a flexible sleeve, having first and second sleeve ends;
a contracting assembly, which is configured to longitudinally contract the sleeve;
an elongated linking member, having a first and second linking member ends, which second linking member end includes a first coupling element, wherein the linking member is coupled to the sleeve such that (a) at least a portion of the linking member is disposed within the sleeve, and (b) the first linking member end is longitudinally between the second linking member end and the first sleeve end, exclusive; and
a second coupling element, which is configured to be coupleable to the first coupling element, and which is coupled to the implantable structure within 1.5 cm of the first sleeve end, measured when the sleeve is fully longitudinally extended.
For some applications, the implantable structure further includes a plurality of tissue anchors, at least two of which are coupled to the sleeve at respective, different longitudinal sites alongside the linking member.
For some applications, the contracting assembly includes a contracting mechanism and a longitudinal contracting member, and the contracting mechanism is coupled to the sleeve within 1.5 cm of the first sleeve end. For some applications, the second coupling element is coupled to the contracting mechanism.
For some applications, the linking member is configured as a spring. For some applications, the linking member is curved.
For some applications, the linking member has a length of between 2 and 6 cm.
For some applications, the linking member includes metal, such as Nitinol.
For some applications, the linking member is substantially longitudinally non-extensible.
For some applications, at least 30% of a length of the linking member is disposed within the sleeve.
For some applications, the flexible sleeve is a first flexible sleeve, and the implantable structure further includes a second flexible sleeve, and at least 20% of a length of the linking member is disposed within the second flexible sleeve.
For some applications, at least one of the first and second coupling elements includes a hook. For some applications, at least one of the first and second coupling elements includes a loop.
For any of the applications described above, the longitudinal contracting member may include at least one wire.
For any of the applications described above, the implantable structure may further include one or more contraction-restricting elements coupled to at least a contraction-restricted portion of the implant structure, each of which contraction-restricting elements includes a coiled element, a portion of which is non-compressible.
There is further provided, in accordance with an application of the present invention, apparatus including an implantable structure, which includes:
a flexible sleeve, which includes a plurality of radiopaque markers, positioned along the sleeve at respective longitudinal sites; and
a plurality of tissue anchors, which are configured to be coupled to the sleeve.
For some applications, the radiopaque markers include a radiopaque ink.
For some applications, at least three of the radiopaque markers are longitudinally spaced at a constant interval. For some applications, at least three of the anchors are coupled to the sleeve, longitudinally spaced at the constant interval.
For some applications, the radiopaque markers have respective edges selected from the group consisting of: respective proximal edges, and respective distal edges; the radiopaque markers include first, second, and third radiopaque markers, which first and second markers are adjacent, and which second and third markers are adjacent; and a first longitudinal distance between the selected edge of the first marker and the selected edge of the second marker equals a second longitudinal distance between the selected edge of the second marker and the selected edge of the first marker. For some applications, the anchors include first, second, and third anchors, which first and second anchors are adjacently coupled to the sleeve with the first longitudinal distance therebetween, and which second and third anchors are adjacently coupled to the sleeve with the second longitudinal distance therebetween.
For any of the applications described above, the implantable structure may include an annuloplasty ring, which is configured to be implanted along an annulus of an atrioventricular valve of a subject, and to contract the annulus as the sleeve is longitudinally contracted.
For any of the applications described above, the apparatus may further include a prosthetic heart valve, which is configured to be coupled to the sleeve.
There is still further provided, in accordance with an application of the present invention, a method including:
providing an implantable structure, which includes (a) a flexible sleeve and (b) a contracting assembly, which is configured to longitudinally contract the sleeve, and which includes (i) a contracting mechanism and (ii) one or more longitudinal contracting members coupled to the contracting mechanism;
placing (typically in a percutaneous procedure) the implantable structure completely around an annulus of an atrioventricular valve of a subject, such that none of the one or more longitudinal contracting members is positioned along an anterior portion of the annulus between fibrous trigones of the valve;
fastening the implantable structure to the annulus; and
actuating the contracting assembly to contract a longitudinal portion of the sleeve not positioned along the anterior portion of the annulus.
For some applications, providing the implantable structure includes providing the implantable structure in which the sleeve is shaped so as to define an integrally closed loop having no sleeve ends.
For some applications, providing the implantable structure includes providing the implantable structure in which the sleeve has first and second sleeve ends, and first and second portions that longitudinally extend from the first and the second sleeve ends, respectively; placing the implantable structure includes arranging the sleeve in a closed loop, such that the first and second portions of the sleeve together define a longitudinally overlapping portion of the sleeve positioned at least partially along the anterior portion of the annulus; and none of the one or more longitudinal contracting members is positioned along the overlapping portion of the sleeve. For some applications, fastening the implantable structure to the annulus includes fastening the sleeve to the annulus using a plurality of tissue anchors, at least one of which penetrates both the first and second portions of the sleeve at the overlapping portion.
For some applications, the at least one of the tissue anchors includes a coupling head and a tissue coupling element, and fastening includes fastening the sleeve to the annulus such that the tissue coupling element penetrates both the first and second portions of the sleeve at the overlapping portion, and the coupling head is positioned within one of the first and second portions of the sleeve at the overlapping portion.
For some applications, the plurality of tissue anchors includes a plurality of first tissue anchors of a first configuration, and a plurality of second tissue anchors of a second configuration different from the first configuration, and fastening includes: (a) coupling the first tissue anchors to the sleeve at intervals along a first longitudinally-contiguous portion of the loop positioned along a portion of the annulus other than the anterior portion of the annulus, and (b) coupling the second tissue anchors to the sleeve at intervals along a second longitudinally-contiguous portion of the loop positioned along the anterior portion of the annulus. The first and second tissue anchors are optionally configured as described below. The For some applications, the contracting member does not extend along the first portion of the sleeve, and does not extend along the second portion of the sleeve.
For some applications, placing includes placing the implantable structure such that the one or more longitudinal contracting members are positioned along a non-anterior portion of the annulus, which non-anterior portion does not reach either of the fibrous trigones.
For some applications, the contracting mechanism includes a housing and a rotatable structure positioned within the housing, which housing is disposed at the first site of the sleeve, and actuating the contracting assembly includes rotating the rotatable structure to longitudinally contract the sleeve.
There is additionally provided, in accordance with an application of the present invention, a method including:
providing an implantable structure, which includes (a) a flexible sleeve, having first and second sleeve ends, and (b) a contracting assembly, which is configured to longitudinally contract the sleeve, and which includes (i) a contracting mechanism, which is disposed longitudinally at a first site of the sleeve, and (ii) a longitudinal contracting member, having (x) a first member end, (y) a second member end, which is coupled to the sleeve longitudinally at a second site, which is longitudinally between the first site and the second sleeve end, exclusive, and (z) a first member end portion, which (1) extends from the first member end toward the second member end along only a longitudinal portion of the contracting member, and (2) is coupled to the contracting mechanism;
placing (typically in a percutaneous procedure) the implantable structure at least partially around an annulus of an atrioventricular valve of a subject;
using a plurality of tissue anchors, fastening the implantable structure to the annulus, including coupling one or more of the tissue anchors to the sleeve and tissue of the annulus at respective third sites longitudinally between the second site and the second sleeve end, exclusive; and
actuating the contracting assembly to contract a longitudinal portion of the sleeve.
For some applications, coupling the one or more tissue anchors includes coupling at least two of the tissue anchors to the sleeve and the tissue at respective third sites longitudinally between the second member end and the second sleeve end, exclusive.
For some applications, providing the implantable structure includes providing the implantable structure in which the second site is at least 5 mm from the second sleeve end, measured when the sleeve is in a straight, relaxed, non-contracted state.
For some applications, providing the implantable structure includes providing the implantable structure in which the second site is at a longitudinal distance from the second sleeve end, which distance is no greater than 30% of a total length of the sleeve, the distance and length measured when the sleeve is in the straight, relaxed, non-contracted state.
For some applications, a first portion of the sleeve longitudinally extends from the first sleeve end toward the first site, a second portion of the sleeve longitudinally extends from the second sleeve end toward the second site, and placing the implantable structure includes arranging the sleeve in a closed loop, such that the first and second portions of the sleeve together define a longitudinally overlapping portion of the sleeve. For some applications, placing the implantable structure includes placing the implantable structure such that the overlapping portion is positioned along an anterior portion of the annulus between fibrous trigones of the valve. For some applications, fastening includes coupling at least one of the tissue anchors to the tissue such that the anchor penetrates both the first and second portions of the sleeve at the overlapping portion. For some applications, the at least one of the tissue anchors includes a coupling head and a tissue coupling element, and fastening includes fastening the sleeve to the annulus such that the tissue coupling element penetrates both the first and second portions of the sleeve at the overlapping portion, and the coupling head is positioned within one of the first and second portions of the sleeve at the overlapping portion.
For some applications, providing the implantable structure includes providing the implantable structure in which the overlapping portion has a length of between 5 and 60 mm. For some applications, providing the implantable structure includes providing the implantable structure in which the contracting member does not extend along the first portion of the sleeve, and does not extend along the second portion of the sleeve.
For some applications, the contracting mechanism includes a housing and a rotatable structure positioned within the housing, which housing is disposed at the first site of the sleeve, and actuating the contracting assembly includes rotating the rotatable structure to longitudinally contract the sleeve.
For some applications, coupling includes coupling at least three of the tissue anchors to the sleeve alongside the contracting member, longitudinally between the first and second sites, exclusive.
For some applications, actuating includes actuating the contracting assembly to apply a longitudinal contracting force only between the first and the second sites.
There is yet additionally provided, in accordance with an application of the present invention, a method including:
providing an implantable structure, which includes (a) a flexible sleeve, having first and second sleeve ends, and (b) a contracting assembly, which includes (i) a contracting mechanism, which is disposed longitudinally at a first site of the sleeve, and (ii) a longitudinal contracting member, having (x) a first member end, (y) a second member end, which is coupled to the sleeve longitudinally at a second site, which is longitudinally between the first site and the second sleeve end, exclusive, and (z) a first member end portion, which (1) extends from the first member end toward the second member end along only a longitudinal portion of the contracting member, and (2) is coupled to the contracting mechanism, wherein the contracting mechanism is configured to apply a longitudinal contracting force only between the first and the second sites; and
placing (typically in a percutaneous procedure) the implantable structure at least partially around an annulus of an atrioventricular valve of a subject;
using a plurality of tissue anchors, fastening the implantable structure to the annulus, including coupling one or more of the tissue anchors to the sleeve and tissue of the annulus at respective third sites selected from the group of sites consisting of: one or more sites longitudinally between the first site and the first sleeve end, exclusive, and one or more sites longitudinally between the second site and the second sleeve end, exclusive; and
actuating the contracting assembly to contract a longitudinal portion of the sleeve.
For some applications, at least one of the third sites is longitudinally between the first site and the first sleeve end, exclusive. For some applications, at least two of the third sites are longitudinally between the first site and the first sleeve end, exclusive.
For some applications, at least one of the third sites is longitudinally between the second site and the second sleeve end, exclusive. For some applications, at least two of the third sites are longitudinally between the second site and the second sleeve end, exclusive.
For some applications, at least one of the third sites is longitudinally between the first site and the first sleeve end, exclusive, and at least one of the third sites is longitudinally between the second site and the second sleeve end, exclusive.
For some applications, providing the implantable structure includes providing the implantable structure in which the first site is a first longitudinal distance from the first sleeve end, the second site is at a second longitudinal distance from the second sleeve end, which first and second longitudinal distances are measured when the sleeve is in a straight, relaxed, non-contracted state, and at least one of the first and second longitudinal distances, taken separately, is at least 5 mm. For some applications, the first distance is at least 5 mm. Alternatively or additionally, for some applications, the second distance is at least 5 mm.
For some applications, a first portion of the sleeve longitudinally extends from the first sleeve end toward the first site, a second portion of the sleeve longitudinally extends from the second sleeve end toward the second site, and placing the implantable structure includes arranging the sleeve in a closed loop, such that the first and second portions of the sleeve together define a longitudinally overlapping portion of the sleeve. For some applications, placing the implantable structure includes placing the implantable structure such that the overlapping portion is positioned along an anterior portion of the annulus between fibrous trigones of the valve.
For some applications, fastening includes coupling at least one of the tissue anchors to the tissue such that the anchor penetrates both the first and second portions of the sleeve at the overlapping portion. For some applications, the at least one of the tissue anchors includes a coupling head and a tissue coupling element, and fastening includes fastening the sleeve to the annulus such that the tissue coupling element penetrates both the first and second portions of the sleeve at the overlapping portion, and the coupling head is positioned within one of the first and second portions of the sleeve at the overlapping portion.
For some applications, providing the implantable structure includes providing the implantable structure in which the overlapping portion has a length of between 5 and 60 mm. For some applications, providing the implantable structure includes providing the implantable structure in which the contracting member does not extend along the first portion of the sleeve, and does not extend along the second portion of the sleeve.
For some applications, the contracting mechanism includes a housing and a rotatable structure positioned within the housing, which housing is disposed at the first site of the sleeve, and actuating the contracting assembly includes rotating the rotatable structure to longitudinally contract the sleeve.
For some applications, coupling includes coupling at least three of the tissue anchors to the sleeve alongside the contracting member, longitudinally between the first and second sites, exclusive.
There is also provided, in accordance with an application of the present invention, a method including:
providing an implantable structure, which includes (a) a flexible sleeve, having first and second sleeve ends, and (b) a contracting assembly, which is configured to longitudinal contract the sleeve, and which includes (i) a contracting mechanism, (ii) a first longitudinal contracting member, which has first and second member ends, and a first member end portion, which extends from the first member end toward the second member end along only a longitudinal portion of the first contracting member, and (iii) a second longitudinal contracting member, which has first and second member ends, and a first member end portion, which extends from the first member end toward the second member end along only a longitudinal portion of the second contracting member, wherein (a) the first member end of the first contracting member and the first member end of the second contracting member are coupled to the contracting mechanism, (b) the second member end of the first longitudinal contracting member is coupled to the sleeve at a first site that is a first longitudinal distance from the first sleeve end, (c) the second member end of the second longitudinal contracting member is coupled to the sleeve at a second site that is a second longitudinal distance from the second sleeve end, (d) the contracting mechanism is disposed at a third site of the sleeve that is longitudinally between the first and second sites, exclusive, and (e) the first and second longitudinal distances are measured when the sleeve is in a straight, relaxed, non-contracted state, and at least one of the first and second longitudinal distances, taken separately, is at least 5 mm;
placing (typically in a percutaneous procedure) the implantable structure at least partially around an annulus of an atrioventricular valve of a subject;
fastening the implantable structure to the annulus; and
actuating the contracting assembly to contract two longitudinal portions of the sleeve.
For some applications, fastening includes fastening the implantable structure to the annulus using a plurality of tissue anchors, including coupling one or more of the tissue anchors to the sleeve and tissue of the annulus at respective fourth sites selected from the group of sites consisting of: one or more sites longitudinally between the first site and the first sleeve end, exclusive, and one or more sites longitudinally between the second site and the second sleeve end, exclusive. For some applications, fastening includes coupling at least three of the tissue anchors to the sleeve alongside the contracting member, longitudinally between the first and second sites, exclusive.
For some applications, each of the first and second longitudinal distances is at least 5 mm.
For some applications, one of the first and second longitudinal distances is at least 5 mm, and the other of the first and second longitudinal distances is less than 5 mm, such as equal to 0 mm.
For any of the applications described above, the contracting mechanism may include a housing and a rotatable structure positioned within the housing, which housing is disposed at the third site of the sleeve, and actuating the contracting assembly may include rotating the rotatable structure to longitudinally contract the sleeve.
There is further provided, in accordance with an application of the present invention, a method including:
placing (typically in a percutaneous procedure) a flexible sleeve as a loop completely around an annulus of an atrioventricular valve of a subject, such that (a) a first longitudinally-contiguous portion of the loop is positioned along a portion of the annulus other than an anterior portion of the annulus between fibrous trigones of the valve, and (b) a second longitudinally-contiguous portion of the loop is positioned along the anterior portion of the annulus;
coupling a plurality of first tissue anchors of a first configuration to the sleeve and tissue of the annulus at intervals along the first longitudinally-contiguous portion of the loop; and
coupling a plurality of second tissue anchors of a second configuration different from the first configuration to the sleeve and the tissue at intervals along the second longitudinally-contiguous portion of the loop.
For some applications, the first and second configurations are different from each other in size. For some applications, the first tissue anchors included first coupling heads and first tissue coupling elements, respectively, the second tissue anchors include second coupling heads and second tissue coupling elements, respectively, and lengths of the first tissue coupling elements are greater than lengths of the second tissue coupling elements. For some applications, coupling the first and the second tissue anchors includes coupling more first tissue anchors than second tissue anchors. For some applications, coupling the first and the second tissue anchors includes coupling at least twice as many first tissue anchors as second tissue anchors.
For some applications, the first and second tissue coupling elements are shaped so as to define a shape selected from the group consisting of: a helix, a spiral, and a screw shaft, and the lengths of the first and second coupling elements are measured along a longitudinal axis of the shape. For some applications, each of the second tissue coupling elements is shaped so as to define no more than two turns.
For some applications, the first tissue anchors include first coupling heads and first tissue coupling elements, respectively; the second tissue anchors include second coupling heads and second tissue coupling elements, respectively; the first and second tissue coupling elements are shaped so as to define a shape selected from the group consisting of: a helix, a spiral, and a screw shaft; and each of the second tissue coupling elements has fewer turns than does each of the first tissue coupling elements.
For some applications, each of the second tissue coupling elements is selected from the group consisting of: a harpoon anchor, an anchor including spiked arms, a mesh shaped so as to define two discs, an anchor including a barbed shaft.
For some applications, each of the second tissue coupling elements includes a suture.
For some applications, the flexible sleeve is shaped so as to define an integrally closed loop having no sleeve ends.
For some applications, the flexible sleeve is shaped so as to define first and second sleeve ends, and placing includes placing the flexible sleeve includes coupling the first and the second sleeve ends to each other to form the loop. For some applications, coupling the first and the second sleeve ends includes coupling the first and the second sleeve ends to each other at an overlapping portion.
There is still further provided, in accordance with an application of the present invention, a method including:
For some applications, fastening includes fastening the sleeve to the annulus using a plurality of tissue anchors, including coupling at least two of the anchors to the sleeve and tissue of the annulus at respective, different longitudinal sites alongside the linking member.
For some applications, the contracting assembly includes a contracting mechanism and a longitudinal contracting member, and the contracting mechanism is coupled to the sleeve within 1.5 cm of the first sleeve end. For some applications, the second coupling element is coupled to the contracting mechanism.
For some applications, the linking member is configured as a spring. For some applications, the linking member is curved.
For some applications, the linking member has a length of between 2 and 6 cm.
For some applications, the linking member includes metal, such as Nitinol.
For some applications, the linking member is substantially longitudinally non-extensible.
For some applications, at least 30% of a length of the linking member is disposed within the sleeve.
For some applications, the flexible sleeve is a first flexible sleeve, and the implantable structure further includes a second flexible sleeve, and at least 20% of a length of the linking member is disposed within the second flexible sleeve.
For some applications, at least one of the first and second coupling elements includes a hook. For some applications, at least one of the first and second coupling elements includes a loop.
There is additionally provided, in accordance with an application of the present invention, a method including:
placing (typically in a percutaneous procedure), at least partially around an annulus of an atrioventricular valve of a subject, a flexible sleeve, which includes a plurality of radiopaque markers, positioned along the sleeve at respective longitudinal sites;
generating a radiographic image of the sleeve; and
using the radiographic image, coupling a plurality of tissue anchors to the sleeve and tissue of the annulus.
For some applications, coupling includes using the radiographic image to enable setting a desired distance between the anchors along the sleeve.
For some applications, the radiopaque markers include a radiopaque ink.
For some applications, at least three of the radiopaque markers are longitudinally spaced at a constant interval. For some applications, at least three of the anchors are coupled to the sleeve, longitudinally spaced at the constant interval.
For some applications, the radiopaque markers have respective edges selected from the group consisting of: respective proximal edges, and respective distal edges; the radiopaque markers include first, second, and third radiopaque markers, which first and second markers are adjacent, and which second and third markers are adjacent; and a first longitudinal distance between the selected edge of the first marker and the selected edge of the second marker equals a second longitudinal distance between the selected edge of the second marker and the selected edge of the first marker. For some applications, the anchors include first, second, and third anchors, and coupling includes adjacently coupling the first and the second anchors to the sleeve with the first longitudinal distance therebetween, and adjacently coupling the second and the third anchors to the sleeve with the second longitudinal distance therebetween.
There is also provided, in accordance with some applications of the present invention, apparatus, including:
an implant structure configured to treat a native atrioventricular valve of a patient, the implant structure including:
a contracting mechanism coupled to the implant structure and configured to contract at least a contraction-facilitated portion of the implant structure.
For some applications, the implant structure has a length of between 50 mm and 150 mm.
For some applications, the implant structure has a diameter of between 1 mm and 10 mm.
For some applications, the apparatus is configured to be implanted along an annulus of a mitral valve of the patient in a manner in which the implant structure is formed into at least a portion of an annuloplasty ring.
For some applications, the closure element includes a closure mechanism that includes one or more strips coupled to the sleeve in the vicinity of the at least one end of the sleeve, and the one or more strips have a tendency to be in a closed state in which the one or more strips close around at least a portion of the opening.
For some applications, the apparatus further includes a delivery tool advanceable within the lumen of the sleeve through the opening, and the tool is configured to expand the one or more strips while advanceable within the lumen of the sleeve and to facilitate positioning of the one or more strips in the closed state when removed from within the lumen of the sleeve.
For some applications, the apparatus further includes a contracting member coupled to the sleeve that facilitates contraction of the contraction-facilitated portion of the implant structure, the contracting member having a first portion thereof that is coupled to the contracting element.
For some applications, the contracting member is threaded through the sleeve one or more times to facilitate generally-even contraction of the implant structure.
For some applications, the apparatus further includes one or more contraction-restricting elements coupled to at least a contraction-restricted portion of the implant structure, the one or more contraction-restricting elements being configured to restrict contraction of at least the contraction-restricted portion of the implant structure beyond a predetermined amount.
For some applications, the one or more contraction-restricting elements is coupled to an outer surface of the implant structure.
For some applications, each one of the one or more contraction-restricting elements includes a segment having at least a portion thereof that is non-compressible along a longitudinal axis of the segment.
For some applications, at least one of contraction-restricting elements is disposed adjacently to one or more contraction-facilitated elements that are compressible along the longitudinal axis of the segment and facilitate contraction of respective portions of the implant structure in vicinities of the one or more contraction-facilitating elements.
For some applications, each one of the contraction restriction-elements is configured to restrict contraction of the contraction-restricted portion of the implant structure while facilitating radial movement of the contraction-restricted portion of the implant structure.
For some applications, at least one of the contraction-restricting elements includes a coiled element, and at least a portion of the coiled element is non-compressible.
For some applications, the coiled element includes a shape-memory material and is configured to be generally straightened from a coiled state during delivery of the implant structure to an implantation site of a body of the patient.
For some applications, the coiled element includes an elongate coiled element disposed within the lumen of the sleeve.
For some applications, the coiled element includes an elongate coiled element that is coupled to a portion of an outer surface of the sleeve and is disposed alongside the portion of the outer surface of the sleeve.
For some applications, the implant is configured for implantation along a native annulus of the native atrioventricular valve of the patient in a manner in which the contraction-restricted portion of the implant structure is disposed along a portion of the annulus at a posterior leaflet of the valve, and the contraction-restricting element is coupled to the contraction-restricted portion.
For some applications, the contraction restriction-element is configured to restrict contraction of the contraction-restricted portion while facilitating radial movement of the contraction-restricted portion.
For some applications:
the closure element includes at least one end flap that is disposed at the at least one end of the sleeve, and
the first portion of the contracting member is coupled to the end flap in a manner in which, in response to at least initial actuation of the contracting mechanism, the contracting member draws the end flap at least partially over the opening at the at least one end of the sleeve.
For some applications, the one or more contraction-restricting elements each have a length of between 3 and 120 mm.
For some applications:
the one or more contraction-restricting elements are coupled to the contracting member in a vicinity of the first portion thereof,
the one or more contraction-restricting elements are disposed along the implant structure at a distance of between 3 and 45 mm from the at least one end of the sleeve,
the contraction-restricted portion of the implant structure is between 3 and 45 mm from the at least one end of the sleeve, and
the one or more contraction-restricting elements are configured to restrict contraction of the contraction-restricted portion of the implant structure during contraction of a remaining portion of the implant structure by the contracting member.
For some applications, the contracting mechanism is disposed at a first portion of the implant structure, and the contracting member extends along the implant structure from the first portion thereof to the at least one end of the sleeve.
For some applications, the one or more contraction-restricting elements are disposed in a vicinity of the at least one end of the sleeve, and the contracting member is looped through a portion of the flap and extends back toward the one or more contraction-restricting elements.
For some applications, the contracting mechanism includes a rotatable structure, and the actuation includes rotation of the rotatable structure in a first rotational direction in order to actuate the contracting member to draw the flap over the opening.
For some applications, in response to rotation of the rotatable structure in a second rotational direction that is opposite the first rotational direction, the contracting member draws the end flap at least partially away from the opening at the at least one end of the sleeve.
For some applications:
the at least one end of the sleeve defines a first free end of the implant structure,
the implant structure is shaped so as to define a second free end,
the apparatus is configured to be implanted along an annulus of an atrioventricular valve of the patient, and
in response to actuation of the contracting mechanism, the first and second free ends of the implant structure are drawn toward one another.
For some applications, the apparatus is configured to be implanted along an annulus of a mitral valve of the patient,
For some applications, the contracting mechanism includes a rotatable structure, and the actuation includes rotation of the rotatable structure in a first rotational direction to contract the implant structure.
For some applications, in response to rotation of the rotatable structure in a second rotational direction that is opposite the first rotational direction, the contracting member expands the implant structure.
For some applications, in response to rotation of the rotatable structure in a first rotational direction, successive portions of the contracting member advance in a first advancement direction with respect to the rotatable structure and contact the rotatable structure.
For some applications, the rotatable structure includes a spool, and, in response to the rotation of the spool in the first rotational direction, the contracting member is configured to be wound around the spool.
For some applications, in response to continued advancement of the contracting member in the first advancement direction by continued rotation of the rotatable structure in the first rotational direction, the at least one end of the sleeve is pulled toward the contracting mechanism.
For some applications:
the implant structure is configured to be implanted along an annulus of a mitral valve of the patient,
the contracting member is configured to contract the implant structure in response to the rotation of the rotatable structure in the first rotational direction, and
the implant structure is configured to contract the annulus in response to the contraction of the implant structure.
For some applications, the successive portions of the contracting member are configured to be advanced in a second advancement direction with respect to the rotatable structure and thereby to facilitate expansion of the implant structure in response to rotation of the rotatable structure in a second rotational direction, the second rotational direction being opposite the first rotational direction, and the second advancement direction being opposite the first advancement direction.
For some applications:
For some applications, the apparatus further includes a mechanical element having a planar surface coupled to the lower surface of the rotatable structure, the mechanical element being shaped to provide:
For some applications, the apparatus further includes: one or more tissue anchors; and
a deployment manipulator tube, which is configured to be removably positioned at least partially within the lumen of the sleeve, such that the deployment manipulator tube extends out of the at least one end of the sleeve; and
an anchor driver which is reversibly coupleable to the one or more tissue anchors and which is configured to be at least partially positioned within the deployment manipulator tube, and, while so positioned, to deploy the one or more tissue anchors through a wall of the sleeve.
For some applications, the anchor driver is deflectable within the sleeve of the implant structure, and the apparatus further includes one or more stiffening elements, the one or more stiffening elements being threaded through one or more portions of the sleeve in order to maintain relative positioning of the manipulator tube relative to the implant structure during deflection of the anchor driver within the sleeve.
For some applications, the manipulator tube is deflectable within the sleeve of the implant structure, and the one or more stiffening elements are configured to maintain relative positioning of the implant structure relative to the manipulator tube during deflection of the manipulator tube.
For some applications, the apparatus further includes a pusher tube, which is configured to pass over a portion of the deployment manipulator tube, such that a distal end of the pusher tube is in contact with the at least one end of the sleeve.
For some applications, the distal end of the pusher tube is removably coupled to the at least one end of the sleeve.
For some applications, the pusher tube includes one or more coupling elements, which are configured to removably couple the distal end of the pusher tube to the at least one end of the sleeve.
For some applications, the apparatus is configured such that:
when the deployment manipulator tube is positioned within the lumen of the sleeve, the deployment manipulator tube causes the coupling elements to engage the sleeve, thereby removably coupling the distal end of the pusher tube to the at least one end of the sleeve, and
when the deployment manipulator tube is withdrawn from the sleeve, the coupling elements disengage from the sleeve, thereby decoupling the distal end of the pusher tube from the at least one end of the sleeve.
For some applications, the coupling elements are configured to have a natural tendency to flex inwards toward a central longitudinal axis of the sleeve that passes through the at least one end of the sleeve, and the deployment manipulator tube, when positioned within the lumen of the sleeve, pushes the coupling elements outwards away from the longitudinal axis, thereby causing the coupling elements to engage the sleeve.
There is further provided, in accordance with some applications of the present invention, apparatus, including:
an implant structure configured to treat a native atrioventricular valve of a patient, the implant structure including:
an anchor delivery tool advanceable through the opening and within the lumen of the sleeve when the closure element does not facilitate closure of the opening.
There is additionally provided in accordance with some applications of the present invention, apparatus, including:
an implant structure configured to treat a native atrioventricular valve of a patient, the implant structure having a length of between 50 mm and 150 mm and a diameter of between 1 mm and 10 mm, the implant structure including:
There is further provided, in accordance with some applications of the present invention, a method, including:
positioning an implant structure along an annulus of an atrioventricular valve of a patient, the implant structure including a sleeve having a lumen and at least one end, the at least one end being shaped so as to define an opening;
fastening at least a portion of the implant structure to the annulus; and
closing the opening of the at least one end of the sleeve by actuating a closure element of the implant structure to close.
For some applications, positioning the implant structure along the annulus of the atrioventricular valve includes transcatheterally positioning the implant structure along the annulus of the atrioventricular valve.
For some applications, the method further includes driving one or more tissue anchors through a wall of the sleeve from within the lumen of the sleeve.
For some applications, positioning the implant structure along the annulus of the atrioventricular valve includes positioning the implant structure along the annulus in a manner in which the implant structure is formed into a least a portion of an annuloplasty ring.
For some applications, the closure element includes a closure mechanism that includes one or more strips coupled to the sleeve in a vicinity of the at least one end of the implant structure, the one or more strips have a tendency to be in a closed state in which the one or more strips close around at least a portion of the opening, and the method further includes:
expanding the one or more strips from the closed state by introducing a tool within the lumen of the sleeve, and
facilitating positioning of the one or more strips in the closed state by extracting the tool from within the lumen of the sleeve.
For some applications, fastening includes:
anchoring a first location of the implant structure to a first trigone of the valve; and
anchoring a second location of the implant structure to a second trigone of the valve.
For some applications, anchoring the first location includes anchoring a first free end of the implant structure to the first trigone, and anchoring the second location includes anchoring a second free end of the implant structure to the second trigone.
For some applications, the method further includes contracting at least a first portion of the implant structure by actuating a contracting mechanism coupled to the implant structure.
For some applications, the method further includes restricting the contracting of at least a second portion of the implant structure that is less than the entire implant structure, during ongoing contracting of the first portion of the implant structure.
For some applications, restricting the contracting of the second portion of the implant structure includes restricting contraction of a contraction-restricted portion of the implant structure that has a length of between 3 mm and 120 mm.
For some applications, restricting the contracting includes coupling to the second portion of the implant structure a segment having at least a portion thereof that is non-compressible along a longitudinal axis of the segment.
For some applications, coupling the segment to the second portion of the implant structure includes coupling the segment to an outer surface of the implant structure in a vicinity of the second portion of the implant structure.
For some applications, coupling the segment to the outer surface of the implant structure includes restricting contraction of the portion of the implant structure while facilitating radial movement of the portion of the implant structure.
For some applications, positioning the implant structure along the annulus of the atrioventricular valve includes positioning the implant structure in a manner in which the second portion of the implant structure is disposed along a portion of the annulus at a posterior leaflet of the valve, and restricting contraction of the second portion of the implant structure includes restricting contraction of the portion of the annulus at the posterior leaflet of the valve.
For some applications, restricting the contracting of the second portion of the implant structure includes advancing into at least a portion of the lumen of the sleeve, a segment having at least a portion thereof that is non-compressible along a longitudinal axis of the segment.
For some applications, advancing the segment into the portion of the lumen of the sleeve includes advancing a segment that is disposed adjacently to one or more portions that are compressible along the longitudinal axis of the segment.
For some applications, advancing the segment into the portion of the lumen of the sleeve includes advancing a coiled segment into the portion of the sleeve.
For some applications, the method further includes, prior to advancing the coiled segment within the sleeve, advancing the coiled segment toward the sleeve in a generally straightened configuration, and advancing the coiled segment into the portion of the sleeve includes allowing the segment to form a coil within the sleeve.
For some applications, advancing the segment into the portion of the lumen of the sleeve includes restricting contraction of the second portion of the implant structure while facilitating radial movement of the second portion of the implant structure.
For some applications, positioning the implant structure along the annulus of the atrioventricular valve includes positioning the implant structure in a manner in which the second portion of the implant structure is disposed along a portion of the annulus at a posterior leaflet of the valve, and restricting contraction of the second portion of the implant structure includes restricting contraction of the portion of the annulus at the posterior leaflet of the valve.
For some applications, restricting the contracting of the second portion of the implant structure includes restricting contraction of a contraction-restricted portion of the implant structure that is between 3 and 45 mm from the at least one end of the sleeve, while facilitating contraction of a contraction-facilitated portion of the implant structure.
For some applications:
the at least one end of the sleeve defines a first free end of the implant structure,
the implant structure defines a second free end, and
the method further includes:
For some applications:
fastening the implant structure to the first trigone includes fastening the first free end of the of the implant structure to the first trigone,
fastening the implant structure to the second trigone includes fastening the second free end of the of the implant structure to the second trigone,
fastening the at least the portion of implant structure to the annulus includes fastening the entire implant structure along the annulus between the first and second trigones, and
contracting the first portion of the implant structure includes contracting the contraction-facilitated portion of the implant structure that is between the second end and the contraction-restricted portion of the implant structure.
For some applications:
fastening the implant structure to the first trigone includes:
anchoring the implant structure to the second trigone includes anchoring the second free end of the of the implant structure to the second trigone.
For some applications:
fastening the first free end of the of the implant structure to the portion of the atrial wall includes fastening the contraction-restricted portion of the implant structure to the portion of the atrial wall,
fastening the portion of the implant structure to the annulus includes fastening the contraction-facilitated portion of the implant to a posterior portion of the annulus between the first and second trigones, and
contracting the implant structure includes contracting the contraction-facilitated portion of the implant structure that is between the first and second trigones.
For some applications:
the atrioventricular valve includes a mitral valve;
the at least one end of the sleeve defines a first end of the implant structure,
the implant structure is shaped so as to define a second end, and positioning the implant structure along the annulus includes:
For some applications, contracting the first portion of the implant structure includes drawing the first and second ends of the implant structure toward one another.
For some applications, actuating the contracting mechanism includes rotating a rotatable structure of the contracting mechanism, and contracting the implant includes rotating the rotatable structure in a first rotational direction.
For some applications, the method further includes locking the contracting mechanism during a period that is subsequent to the rotating of the rotating structure.
For some applications, the closure element includes a flap at a vicinity of the opening of the sleeve, and the method further includes at least partially drawing the flap over the opening during a first period, by rotating the rotating mechanism in the first rotational direction.
For some applications, the method further includes, during a second period, drawing the end flap at least partially away from the opening at the at least one end of the sleeve by rotating the rotatable structure in a second rotational direction that is opposite the first rotational direction.
For some applications, responsively to rotating the rotatable structure, advancing in a first advancement direction with respect to the rotatable structure successive portions of a contracting member that is coupled to the implant structure, the contracting member is and is configured to contract the implant structure.
For some applications, the rotatable structure includes a spool, and advancing the successive portions of the contracting member in the first advancement direction includes winding the successive portions of the contracting member around the spool.
For some applications, contracting the first portion of the implant structure includes rotating further the rotatable member and advancing further successive portions of the contracting member in the first advancement direction, and the contracting includes drawing the at least one end of the sleeve toward the contracting mechanism.
For some applications, contracting the implant structure includes contracting the annulus of the atrioventricular valve.
For some applications, the method further includes expanding the implant structure by advancing the successive portions of the contracting member in a second advancement direction that is opposite the first advancement direction by rotating the rotatable structure in a second rotational direction that is opposite the first rotational direction.
For some applications, fastening the at least the portion of the implant structure to the annulus includes:
removably positioning a deployment manipulator tube through the opening and at least partially within the lumen of the sleeve of the implant structure, such that the deployment manipulator tube extends out of the at least one end of the sleeve; and
driving one or more tissue anchors through a wall of the sleeve from within the lumen of the sleeve.
For some applications:
driving the one or more anchors includes advancing through the deployment manipulator tube an anchor driver that is reversibly couplable to the one or more anchors,
exposing a distal end of the anchor driver from within a distal end of the deployment manipulator tube; and
deflecting through the sleeve the distal end of the anchor driver.
For some applications, the method further includes maintaining relative positioning of the implant structure relative to the manipulator tube during the deflecting by applying a force to one or more stiffening elements that are threaded through the sleeve of the implant structure.
For some applications, the method further includes placing a pusher tube over the deployment manipulator tube such that a distal end of the pusher tube is in contact with the at least one end of the sleeve.
For some applications, the at least one end of the sleeve includes a proximal end of the sleeve, and the method further includes withdrawing the sleeve from the deployment manipulator tube in a distal direction, and, while withdrawing, pushing the pusher tube against the proximal end of the sleeve.
For some applications, the method further includes, following the withdrawing, removably coupling the distal end of the pusher tube to the proximal end of the sleeve.
For some applications, removably coupling includes using one or more one or more coupling elements of the pusher tube to removably couple the distal end of the pusher tube to the proximal end of the sleeve.
For some applications, removably coupling includes positioning the deployment manipulator tube within the lumen of the sleeve such that the deployment manipulator tube causes the coupling elements to engage the sleeve, and the method further includes decoupling the distal end of the pusher tube from the proximal end of the sleeve by withdrawing the deployment manipulator tube from the sleeve such that the coupling elements disengage from the sleeve.
For some applications, positioning the implant structure along the annulus, and closing the opening of the at least one end of the sleeve include positioning the implant structure along the annulus, and closing the opening of the at least one end of the sleeve during a single procedure.
For some applications, positioning the implant structure along the annulus, and closing the opening of the at least one end of the sleeve include positioning the implant structure along the annulus, and closing the opening of the at least one end of the sleeve via a single catheter.
There is further provided, in accordance with some applications of the present invention, apparatus, including:
an annuloplasty structure configured for implantation along an annulus of an atrioventricular valve of a heart of a subject, the structure including:
For some applications, the coiled element is shaped such that a pitch of the coiled element at the second portion is smaller than a pitch of the coiled element at the first portion.
For some applications, a radius of curvature at a center of the first portion is smaller than a radius of curvature at a center of the second portion, when no external force is applied to the annuloplasty structure.
For some applications, the annuloplasty structure includes an annuloplasty ring.
For some applications, the annuloplasty structure includes a partial annuloplasty ring.
For some applications, the apparatus further includes a contraction-restricting element configured to be coupled to the second portion of the coiled element, and the second portion is configured to be flexible and less longitudinally compressible than the first portion at least in part by virtue of the contraction-restricting element being coupled thereto.
For some applications, the contraction-restricting element includes an element selected from the group consisting of: a suture, a staple, a ratchet mechanism, and a bracket.
For some applications, a total length of the first portion includes less than 50% of a resting length of the coiled element.
For some applications, a total length of the first portion includes less than 30% of a resting length of the coiled element.
For some applications, the valve includes a native mitral valve of the subject, and the structure is configured for implantation along the native mitral valve in a manner in which at least the second portion of the implant structure is disposed along a portion of the annulus at a posterior leaflet of the valve.
For some applications, the second portion is configured to restrict contraction of the second portion while facilitating radial movement of the second portion of the implant structure.
For some applications,
the atrioventricular valve includes a mitral valve,
the coiled element includes a plurality of second portions, and
the annuloplasty structure is configured for implantation along the annulus in a manner in which:
For some applications, the combined length of the first and second of the second portions is 10-50 mm.
For some applications, the annuloplasty structure is configured for implantation along the annulus in a manner in which a third one of the second portions is disposed along a portion of the annulus at a posterior leaflet of the valve.
For some applications, a length of the third one of the second portions is 3-120 mm.
For some applications, a length of the third one of the second portions includes more than 20% of a resting length of the coiled element.
For some applications, the annuloplasty structure includes:
a sleeve, the sleeve having first and second end portions, respectively, and a body portion that is between the first and second end portions; and
a contracting member that extends along the body portion between the first and second end portions of the sleeve, the contracting member having first and second end portions, the first end portion of the contracting member being coupled to the sleeve in a vicinity of the first end portion thereof, and the second end portion of the contracting member being coupled to the sleeve in a vicinity of the second end portion thereof,
the coiled element being configured to be coupled to the sleeve.
For some applications, the annuloplasty structure has a length of between 50 mm and 150 mm.
For some applications, the annuloplasty structure has a diameter of between 1 mm and 10 mm.
For some applications, the annuloplasty structure is configured to be implanted along an annulus of a mitral valve of the subject in a manner in which the annuloplasty structure is formed into at least a portion of an annuloplasty ring.
For some applications, the annuloplasty structure includes a partial annuloplasty ring having first and second free ends, the first end of the sleeve defining the first free end of the partial annuloplasty ring, and the second end of the sleeve defining the second free end of the partial annuloplasty ring.
For some applications, the coiled element includes a shape-memory material configured to be generally straightened from a coiled state during delivery of the annuloplasty structure to an implantation site of a body of the subject.
For some applications, the sleeve defines a lumen, and the coiled element includes an elongate coiled element disposed within the lumen of the sleeve.
For some applications, the coiled element includes an elongate coiled element that is configured to be coupled to a portion of an outer surface of the sleeve and rest alongside the portion of the outer surface of the sleeve.
There is additionally provided, in accordance with some applications of the present invention, apparatus, including:
an implant structure that is contractible at least in part, the implant structure including a sleeve, the sleeve having first and second end portions, respectively, and a body portion that is between the first and second end portions;
a contracting member that extends along the body portion between the first and second end portions of the sleeve, the contracting member having first and second end portions, the first end portion of the contracting member being coupled to the sleeve in a vicinity of the first end portion thereof, and the second end portion of the contracting member being coupled to the sleeve in a vicinity of the second end portion thereof; and
at least one contraction-restricting element that is coupled to the sleeve and configured to restrict contraction of a contraction-restricted portion of the implant structure during contraction of a remaining portion of the implant structure by the contracting member,
the one or more contraction-restricting elements being coupled to the first end portion of the contracting member and disposed along the implant structure at a distance of between 3 and 45 mm from the first end of the sleeve,
the contraction-restricting element being configured to restrict contraction of the contraction-restricted portion of the implant structure during contraction of a remaining portion of the implant structure by the contracting member.
For some applications, the implant is configured for implantation along a native annulus of a native atrioventricular valve of a patient in a manner in which at least the contraction-restricted portion of the implant structure is disposed along a portion of the annulus in a vicinity of a trigone of the valve, and the contraction-restriction element is coupled to the contraction-restricted portion.
For some applications, the apparatus further includes a contracting mechanism coupled to the implant structure and configured to contract at least a contraction-facilitated portion of the implant structure.
For some applications, the contracting mechanism is disposed at a first portion of the implant structure, and the contracting member extends along the implant structure toward the second end of the sleeve.
There is additionally provided, in accordance with some applications of the present invention, a method, including:
For some applications, coupling the contraction-restricting element to the contraction-restricted portion of the annuloplasty structure includes coupling the contraction-restricting element to a portion of the annuloplasty structure disposed along a portion of the annulus at a posterior leaflet of the valve.
For some applications, coupling the contraction-restricting element to the contraction-restricted portion of the annuloplasty structure includes coupling the contraction-restricting element to an outer surface of the annuloplasty structure.
For some applications, coupling the contraction-restricting element to the contraction-restricted portion of the annuloplasty structure includes restricting contraction of the contraction-restricted portion of the annuloplasty structure while facilitating radial movement of the contraction-restricted portion of the annuloplasty structure.
For some applications, positioning the annuloplasty structure along the annulus of the atrioventricular valve includes positioning the annuloplasty structure in a manner in which the contraction-restricted portion of the annuloplasty structure is disposed along a portion of the annulus at a posterior leaflet of the valve, and coupling the contraction-restricting element to the contraction-restricted portion of the annuloplasty structure includes restricting contraction of the contraction-restricted portion of the annulus at the posterior leaflet of the valve.
For some applications, coupling the contraction-restricting element to the contraction-restricted portion of the annuloplasty structure includes advancing into at least a portion of a lumen of the sleeve of the annuloplasty structure, a segment having at least a portion thereof that is non-compressible along a longitudinal axis of the segment.
For some applications, advancing the segment into the portion of the lumen of the sleeve includes advancing a segment that is disposed adjacently to one or more portions that are compressible along the longitudinal axis of the segment.
For some applications, advancing the segment into the portion of the lumen of the sleeve includes restricting contraction of the contraction-restricted of the annuloplasty structure while facilitating radial movement of the contraction-restricted portion of the annuloplasty structure.
For some applications, advancing the segment into the portion of the lumen of the sleeve includes advancing a coiled segment into the portion of the sleeve.
For some applications, the method further includes, prior to advancing the coiled segment within the sleeve, advancing the coiled segment toward the sleeve in a generally straightened configuration, and advancing the coiled segment into the portion of the sleeve includes allowing the segment to form a coil within the sleeve.
For some applications, fastening the annuloplasty structure to the annulus includes:
removably positioning a deployment manipulator tube through the opening and at least partially within the lumen of the sleeve of the annuloplasty structure, such that the deployment manipulator tube extends out of the at least one end of the sleeve; and
For some applications:
driving the one or more anchors includes advancing through the deployment manipulator tube an anchor driver that is reversibly couplable to the one or more anchors,
exposing a distal end of the anchor driver from within a distal end of the deployment manipulator tube; and
deflecting through the sleeve the distal end of the anchor driver.
For some applications, the method further includes maintaining relative positioning of the annuloplasty structure relative to the manipulator tube during the deflecting by applying a force to one or more stiffening elements that are threaded through the sleeve of the annuloplasty structure.
For some applications, coupling the contraction-restricting element to the contraction-restricted portion includes coupling the contraction-restricting element to a portion of the annuloplasty structure that is between 3 and 45 mm from at least one end of the sleeve, while facilitating contraction of the contraction-facilitated portion of the annuloplasty structure.
For some applications:
the at least one end of the sleeve defines a first free end of the annuloplasty structure,
the annuloplasty structure defines a second free end, and
fastening the annuloplasty structure to the annulus includes:
contracting the first portion of the annuloplasty structure includes contracting the contraction-facilitated portion of the annuloplasty structure that is between the first and second trigones.
For some applications:
the at least one end of the sleeve defines a first free end of the annuloplasty structure,
the annuloplasty structure defines a second free end, and
fastening the annuloplasty structure to the annulus includes:
For some applications:
fastening the annuloplasty structure to the first trigone includes fastening the first free end of the of the annuloplasty structure to the first trigone,
fastening the annuloplasty structure to the second trigone includes fastening the second free end of the of the annuloplasty structure to the second trigone,
fastening the annuloplasty structure to the annulus includes fastening the entire annuloplasty structure along the annulus between the first and second trigones, and
contracting the contraction-facilitated portion of the annuloplasty structure includes contracting a portion of the annuloplasty structure that is between the second end and the contraction-restricted portion of the annuloplasty structure.
For some applications:
fastening the annuloplasty structure to the first trigone includes:
fastening the annuloplasty structure to the second trigone includes fastening the second free end of the of the annuloplasty structure to the second trigone.
For some applications:
the atrioventricular valve includes a mitral valve;
the annuloplasty structure is shaped so as to define a first end and a second end, and
positioning the annuloplasty structure along the annulus includes:
For some applications, contracting the first portion of the annuloplasty structure includes drawing the first and second ends of the annuloplasty structure toward one another.
For some applications, fastening includes:
anchoring a first location of annuloplasty structure to a first trigone of the valve; and
anchoring a second location of the annuloplasty structure to a second trigone of the valve.
For some applications, anchoring the first location includes anchoring a first free end of the annuloplasty structure to the first trigone, and anchoring the second location includes anchoring a second free end of the annuloplasty structure to the second trigone.
The present invention will be more fully understood from the following detailed description of embodiments thereof taken together with the drawings, in which:
For some applications, implantable structure 22 comprises a partial annuloplasty ring. In these applications, sleeve 26 is configured to be placed only partially around the valve annulus (i.e., to assume a C-shape), and, once anchored in place, to be contracted so as to circumferentially tighten the valve annulus. For other applications, sleeve 26 is configured to be implanted entirely around the valve annulus in a closed loop, such as described hereinbelow with reference to
Implantable structure 22 further comprises a contracting assembly 40, which facilitates contracting of the implantable structure. Contracting assembly 40 comprises a contracting mechanism 28, and a longitudinal contracting member 30, which is coupled to contracting mechanism 28, extends along a portion of the sleeve, and is typically flexible. For example, contracting member 30 may comprise at least one wire. Contracting assembly 40 is described in more detail hereinbelow. In addition, the implantable structure typically comprises a plurality of tissue anchors 38, typically between about 5 and about 20 anchors, such as about 10 or about 16 anchors. In
Flexible sleeve 26 may comprise a braided, knitted, or woven mesh or a tubular structure comprising ePTFE. For some applications, the braid comprises metal and fabric fibers. The metal fibers, which may comprise Nitinol for example, may help define the shape of the sleeve, e.g., hold the sleeve open to provide space for passage and manipulation of deployment manipulator 24 within the sleeve. The fabric fibers may promote tissue growth into the braid. Typically, sleeve 26 is substantially longitudinally non-extensible, i.e., a length thereof is substantially constant, i.e., cannot be longitudinally stretched, under normal usage conditions. Alternatively, the sleeve is somewhat elastic, which gives the sleeve a tendency to longitudinally contract, thereby helping tighten the sleeve. For example, the sleeve may be bellows- or accordion-shaped.
For some applications, the sleeve is configured to have a tendency to assume a straight shape when in its relaxed, non-contracted state. This straightness may help the surgeon locate the next site for each subsequent anchor during the implantation procedure. For example, because the sleeve assumes a generally straight shape, the sleeve may help provide an indication of distance between adjacent anchoring sites. For some applications, the sleeve is configured to have a controllably variable stiffness. For example, a somewhat stiff wire may be placed in the sleeve to provide the stiffness, and subsequently be removed at the conclusion of the implantation procedure when the stiffness is no longer useful.
For some applications, sleeve 26 comprises a plurality of radiopaque markers 39, which are positioned along the sleeve at respective longitudinal sites. The markers may provide an indication in a radiographic image (such as a fluoroscopy image) of how much of the sleeve has been deployed at any given point during an implantation procedure, in order to enable setting a desired distance between anchors 38 along the sleeve. For some applications, the markers comprise a radiopaque ink.
Typically, at least a portion (e.g., at least three, such as all) of the longitudinal sites are longitudinally spaced at a constant interval. Typically, the longitudinal distance between the distal edges of adjacent markers, and/or the distance between the proximal edges of adjacent markers, is set equal to the desired distance between adjacent anchors. For example, the markers may comprise first, second, and third markers, which first and second markers are adjacent, and which second and third markers are adjacent, and the distance between the proximal and/or distal edges of the first and second markers equal the corresponding distance between the proximal and/or distal edges of the second and third markers. For example, the distance may be between 3 and 15 mm, such as 6 mm, and the longitudinal length of each marker may be between 0.1 and 14 mm, such as 2 mm. (If, for example, the distance were 6 mm and the length were 2 mm, the longitudinal gaps between adjacent markers would have lengths of 4 mm.)
(In this context, in the specification and in the claims, “proximal” means closer to the orifice through which system 20 is originally placed into the body of the patient, and “distal” means further from this orifice.)
Longitudinal contracting member 30 comprises a wire, a ribbon, a rope, or a band, which typically comprises a flexible and/or superelastic material, e.g., nitinol, polyester, HDPE, stainless steel, or cobalt chrome. For some applications, the wire comprises a radiopaque material. For some applications, longitudinal contracting member 30 comprises a braided polyester suture (e.g., TICRON™). For some applications, longitudinal contracting member 30 is coated with polytetrafluoroethylene (PTFE). For some applications, contracting member 30 comprises a plurality of wires that are intertwined to form a rope structure. For some applications, implantable structure 22 comprises a plurality of contracting members 30, which may extend along generally the same longitudinal portion of sleeve 26, or along respective, different portions of sleeve 26 (e.g., as described hereinbelow with reference to
For some applications, contracting member 30 is positioned at least partially within a lumen of the sleeve 26, such as entirely within the lumen (as shown in
For some applications of the present invention, contracting mechanism 28 comprises a rotatable structure, such as a spool 46. The rotatable structure is arranged such that rotation thereof applies a longitudinal contracting force, thereby contracting at least a longitudinal portion of implantable structure 22. Typically, in these applications, contracting mechanism 28 further comprises a housing 44 in which the rotatable structure, e.g., the spool, is positioned. Contracting member 30 has first and second member ends, and a first member end portion, which extends from the first member end toward the second member end along only a longitudinal portion of the contracting member. For some applications, the first member end portion, e.g., the first member end of contracting member 30, is coupled to contracting mechanism 28, such as the rotatable structure, e.g., the spool (alternatively, although the first member end portion is coupled to the contracting mechanism, the first member end protrudes beyond the contracting mechanism). For example, spool 46 may be shaped to provide a hole 42 or other coupling mechanism for coupling the first end of contracting member 30 to the spool, and thereby to contracting mechanism 28. Contracting assembly 40 is arranged such that rotation of the spool winds a portion of the contracting member around the spool. Alternatively, contracting member 30 may comprise at least one wire (e.g., exactly one wire) that passes through a coupling mechanism of spool 46, in order to couple the wire to the spool. The ends of the wire are brought together, and together serve as a second end 53 of contracting member 30. In this configuration, approximately the longitudinal center of the wire serves as the first end of the contracting member.
Alternatively, contracting mechanism 28 may comprise a ratchet contracting mechanism, which typically comprises a ratchet-coupling housing. Contracting member 30 is shaped so as to define engaging structures, such as grooves or teeth. Techniques may be used that are described in International Application PCT/IL2009/000593, filed Jun. 15, 2009, which published as PCT Publication WO 10/004546, and in U.S. application Ser. No. 12/996,954, which published as US Patent Application Publication 2011/0166649, in the national stage thereof, all of which applications and publications are incorporated herein by reference.
Further alternatively, contracting mechanism 28 may comprise a housing or other structure (e.g., a ring or an eyelet) which is shaped so as to define an opening therethrough. Contracting member 30 is drawn through the opening (such that the first member end protrudes beyond the opening), and, once a desired length has been achieved, is locked, such as using a locking bead, or by crimping or knotting.
Contracting member 30 extends along less than the entire length of sleeve 26. Contracting mechanism 28 (e.g., housing 44 thereof) is disposed at a first site 34 of sleeve 26 that is a first longitudinal distance D1 from a first end of the sleeve, either a proximal end 49 of sleeve 26, as shown in
Typically, contracting member 30 extends along (i.e., a distance along the sleeve between first and second sites 34 and 36 equals) no more than 80% of the length of the sleeve, e.g., no more than 60% or no more than 50% of the length. Typically, contracting member 30 extends along no more than 80% of a circumference of the loop when the sleeve is placed around the annulus (i.e., the total length of the loop less the length of any overlapping portion). Typically, contracting member 30 extends along (i.e., a distance along the sleeve between first and second sites 34 and 36 equals) at least 20% of the length of the sleeve, e.g., at least than 40% or at least than 50% of the length. Typically, contracting member 30 extends along at least 20% of the circumference of the loop when the sleeve is placed around the annulus, e.g., at least 30% or at least 50%.
For some applications, first longitudinal distance D1, measured when sleeve 26 is in a straight, relaxed, non-contracted state, is at least 3 mm, e.g., at least 5 mm, such as at least 9 mm, e.g., at least 14 mm; no greater than 20 mm, such as no greater than 15 mm; and/or between 5 and 20 mm, such as between 9 and 15 mm. Alternatively or additionally, for some applications, second longitudinal distance D2, measured when sleeve 26 is in a straight, relaxed, non-contracted state, is at least 3 mm, e.g., at least 5 mm, such as at least 9 mm, e.g., at least 14 mm; no greater than 20 mm, such as no greater than 15 mm; and/or between 5 and 20 mm, such as between 9 and 15 mm. Further alternatively or additionally, first longitudinal distance D1, measured when sleeve 26 is in a straight, relaxed, non-contracted state, is no greater than 20%, such as no greater than 10% of a total length of the sleeve, measured when sleeve 26 is in a straight, relaxed, non-contracted state. Further alternatively or additionally, second longitudinal distance D2, measured when sleeve 26 is in a straight, relaxed, non-contracted state, is no greater than 30%, such as no greater than 20%, e.g., no greater than 10% of the total length of the sleeve measured, when sleeve 26 is in a straight, relaxed, non-contracted state. For some applications, the total length of the sleeve, measured when the sleeve is in a straight, relaxed, non-contracted state is at least 5 cm, no more than 25 cm, and/or between 5 and 25 cm. For some applications in which the sleeve is implanted in a closed loop, the total length of the sleeve is selected to be between 1.3 and 1.4 times a circumference of the annulus, in order to provide overlapping portion 114, described hereinbelow with reference to
For some applications, at least one of tissue anchors 38 (e.g., exactly one, at least two, exactly two, at least three, exactly three, or at least four, or no more than four) is coupled to sleeve 26 longitudinally between contracting mechanism 28 (e.g., housing 44 thereof) and the first sleeve end (i.e., the end of the sleeve to which contracting mechanism 28 is closest), exclusive, and at least 3, such as at least 6, of tissue anchors 38 are coupled to the sleeve alongside contracting member 30, longitudinally between first site 34 and second site 36 (second member end 53), exclusive. (As used in the present application, including in the claims, “exclusive,” when used with respect to a range of locations, means excluding the endpoints of the range.)
Alternatively or additionally, for some applications, at least one of tissue anchors 38 (e.g., exactly one, at least two, exactly two, at least three, exactly three, or at least four, or no more than four) is coupled to sleeve 26 longitudinally between second site 36 (second member end 53) and the second sleeve end (i.e., the end of the sleeve to which second member end 53 is closest), exclusive, and at least 3, such as at least 6, of tissue anchors 38 are coupled to the sleeve alongside contracting member 30, longitudinally between first site 34 and second site 36 (second member end 53), exclusive.
In the exemplary configuration shown in
Providing the one or more anchors beyond first and second sites 34 and 36 (i.e., beyond the contracting portion of contracting member 30) generally distributes force applied by contraction of contracting assembly 40 over these anchors. In contrast, in some configurations of implantable structure 22 in which anchors are not provided beyond first and second sites 34 and 36, the force applied by the contracting assembly is applied predominantly to the single anchor nearest the first end of the contracting member, and the single anchor nearest to second end of the contracting member.
For some applications, anchors 38 are positioned along sleeve 26 with a longitudinal distance of between 4.5 and 9 mm, such as 6 mm, between each pair of longitudinally-adjacent anchors.
It is noted that the anchors may be positioned as described above by a surgeon during an implantation procedure, such as described hereinbelow with reference to
Reference is now made to
The procedure typically begins by advancing a semi-rigid guidewire 102 into a right atrium 120 of the patient, as shown in
As show in
For some applications, sheath 104 is advanced through an inferior vena cava 122 of the patient (as shown) and into right atrium 120 using a suitable point of origin typically determined for a given patient.
Sheath 104 is advanced distally until the sheath reaches the interatrial septum.
As shown in
The advancement of sheath 104 through the septum and into the left atrium is followed by the extraction of the dilator and needle 106 from within sheath 104, as shown in
As shown in
As shown in
As shown in
For some applications, in order to provide the second and subsequent anchors, anchor driver 68 is withdrawn from the subject's body via sheath 104 (typically while leaving outer tube 66 of the deployment manipulator in place in the sleeve), provided with an additional anchor, and then reintroduced into the subject's body and into the outer tube. Alternatively, the entire deployment manipulator, including the anchor driver, is removed from the body and subsequently reintroduced upon being provided with another anchor. Further alternatively, deployment manipulator 24 is configured to simultaneously hold a plurality of anchors, and to deploy them one at a time at the selected sites. Yet further alternatively, the entire deployment manipulator, including the anchor driver, is removed from the body and subsequently reintroduced upon being provided with another anchor. Further alternatively, deployment manipulator 24 is configured to simultaneously hold a plurality of anchors, and to deploy them one at a time at the selected sites.
As shown in
For applications in which contracting mechanism 28 comprises spool 46, a rotation tool is typically used to rotate spool 46 of contracting mechanism 28, in order to tighten implantable structure 22. For some applications, the rotation tool is used that is described and shown in the above-mentioned '604 publication, with reference to
Spool 46 typically comprises a locking mechanism that prevents rotation of the spool after contracting member 30 has been tightened. For example, locking techniques may be used that are described and shown in US Application Publication 2010/0161047, which is incorporated herein by reference, with reference to
For some applications, a rotation handle is used to tighten the implantable structure, such as described and shown in the above-mentioned '604 publication, with reference to
For some applications, sleeve 26 is filled with a material (e.g., polyester, polytetrafluoroethylene (PTFE), polyethylene terephthalate (PET), or expanded polytetrafluoroethylene (ePTFE)) after being implanted. The material is packed within at least a portion, e.g., 50%, 75%, or 100%, of the lumen of sleeve 26. The filler material functions to prevent (1) formation within the lumen of sleeve 26 of clots or (2) introduction of foreign material into the lumen which could obstruct the sliding movement of contracting member 30. Typically, sleeve 26 comprises DACRON™.
For some applications, proximal end 49 of sleeve 26 is closed upon completion of the implantation procedure. For some applications, in order to close sleeve 26, a closure element 290 is coupled to proximal end 49 of sleeve 26, as described hereinbelow with reference to
For some applications, following initial contraction of implantable structure 22 during the implantation procedure, the structure may be further contracted or relaxed at a later time after the initial implantation, such as between several weeks and several months after the initial implantation. Using real-time monitoring, tactile feedback and optionally in combination with fluoroscopic imaging, a rotation tool or anchor driver of a deployment manipulator may be reintroduced into the heart and used to contract or relax implantable structure 22.
Reference is made to
Reference is now made to
In this configuration, sleeve 26 is implanted in a closed loop. More particularly, a first portion 110 of sleeve 26 longitudinally extends from the first sleeve end (i.e., the end of the sleeve to which contracting mechanism 28, e.g., housing 44 thereof, is closest) toward contracting mechanism 28, e.g., housing 44 thereof (but typically does not extend all of the way to the contracting mechanism), and a second portion 112 of the sleeve longitudinally extends from the second sleeve end (i.e., the end of the sleeve to which second member end 53 is closest) toward second member end 53 (but typically does not extend all of the way to the second member end). As shown in
For some applications, at least one of tissue anchors 38 (labeled as 38E in
This configuration of implantable structure 22 may be implanted using the procedure described hereinabove with reference to
For some applications, during the implantation procedure, the first sleeve end (i.e., the end of the sleeve to which contracting mechanism 28, e.g., housing 44 thereof, is closest) is placed along at least a portion of anterior portion 116 and first portion 110 is extended along this portion. At least one anchor 38D is deployed through the wall of first portion 110 of sleeve 26 into cardiac tissue at the anterior portion of the annulus. Additional anchors 38A and/or 38C are deployed through the wall of the sleeve around the non-anterior remainder of the annulus, including the posterior portion thereof, as described hereinabove with reference to
A portion of the sleeve is placed on at least a portion of anterior portion 116 of the annulus, and, typically, one or more anchors 38B are deployed through the wall of the sleeve into tissue at the anterior portion of the annulus.
The sleeve is further extended around the annulus until second portion 112 overlaps with previously-deployed first portion 110 at overlapping portion 114, forming a complete ring. At least one anchor 38E is deployed from within second portion 112 through the wall of the sleeve and into the cardiac tissue, typically at anterior portion 116 of the annulus, or at a portion of the annulus near anterior portion 116. Typically, anchor 38E is deployed such that it additionally passes through previously-deployed first portion 110 (passing through the wall of first portion 110 twice). (Optionally, anchors 38B and/or 38E are of a different configuration than anchors 38A, 38C, and/or 38D, such as described hereinbelow with reference to
Alternatively, the second sleeve end (i.e., the end of the sleeve to which second member end 53 is closest) is first placed at least partially along anterior portion 116, in which case second portion 112 is deployed before first portion 110, and anchor 38E is deployed from within first portion 110.
The sleeve may be deployed in either a clockwise direction or a counterclockwise direction, as viewed from the atrium.
Contracting assembly 40 is actuated, e.g., the rotatable structure of contracting mechanism 28 is rotated, in order to tighten implantable structure 22, as described hereinabove with reference to
For some applications, the non-contractible portion of sleeve 26, or non-contraction-facilitated portion (the portion without contracting member 30) extends somewhat beyond one or both of trigones 142 or 144 (in the posterior direction, away from anterior portion 116 of the annulus), such as up to 20 mm, such as up to 10 mm. In general, since the non-contractible portions of the sleeve are preset, the surgeon is able to decide during the implantation procedure the lengths of the anterior non-contractible area and the posterior contractible area, by selecting the length of overlapping portion 114. The greater the length of overlapping portion 114, the greater the relative length of the posterior contractible portion, and the lesser the relative length of the non-contractible portion.
For some applications, at least one anchor 38C is coupled to cardiac tissue on the posterior side of right fibrous trigone 144, between the trigone and the end of contracting member 30. Similarly, at least one anchor 38C may be coupled to cardiac tissue on the posterior side of left fibrous trigone 142, between the trigone and the other end of contracting member 30 (which, for some applications, is coupled to contracting mechanism 28, as shown in
For some applications, at least one (either one or both) of first and second longitudinal distances D1 and D2 (described hereinabove with reference to
Reference is still made to
For these applications, anchors 38 include a plurality of first tissue anchors of a first configuration, and a plurality of second tissue anchors of a second configuration different from the first configuration. (The first tissue anchors are labeled 38A and 38C in
For these applications, sleeve 26 is typically arranged as a loop. For example, as described hereinabove with reference to
Reference is now made to
As mentioned above, for some applications, longitudinal member 86 comprises a wire, which may comprise metal. Because the wire is fairly stiff, the wire generally maintains its direction and orientation with respect to contracting mechanism 28. The wire thus readily guides the tubes to the contracting mechanism such that the tubes have a desired orientation and position with respect to the contracting mechanism.
Longitudinal member 86 is removably coupled to contracting mechanism 28, typically to a central portion of an upper surface 50 of spool 46. For some applications, a distal portion 88 of longitudinal member 86 is shaped so as to define a screw thread 90 (i.e., a mechanical structure that is coupled to member 86 at a distal end portion thereof). Distal portion 88 is screwed into a threaded opening 92 of upper surface 50, in order to removably couple longitudinal member 86 to contracting mechanism 28. Typically, the distal portion is initially coupled to the contracting mechanism before implant structure 22 is placed into an atrium of the patient. As described below, the distal portion is decoupled from the contracting mechanism after spool 46 has been rotated to tighten implant structure 22. For some applications, distal portion 88 comprises a discrete element that is fixed to longitudinal member 86, while for other application, distal portion 88 is integral with longitudinal member 86.
For some applications, rotation tool 80 comprises an inner (first) tube 98, an intermediate (second) tube 96, and, optionally, an outer (third) tube 94. Rotation of each of the tubes is independently controlled, such as using techniques described in U.S. patent application Ser. No. 12/689,635 to Zipory et al. (published as US 2010/0280604), entitled, “Over-wire rotation tool,” filed Jan. 19, 2010, which is incorporated herein by reference. For some applications, a distal portion of each of tubes 94, 96, and 98 that enters the patient's body comprises braided plastic, and a proximal portion of each of the tubes that does not enter the patient's body comprises a hard material, such as metal (not shown). For example, the distal and proximal portions may have lengths of between 50 and 100 cm and between 50 and 350 cm, respectively. Distal-most portions 94D, 96D, and 98D, respectively, of the distal portions typically comprise a hard material, such as metal, in order to engage other elements, as described immediately below. Typically, the distal-most portions comprise separate elements that are coupled to their respective tubes. For example, the distal-most portions may have lengths of between 1 and 10 mm.
Intermediate tube 96 is configured to rotate spool 46. To this end, intermediate tube 96 (such as distal-most portion 96D thereof) is configured to engage upper surface 50 of spool 46. To enable such engagement, the upper surface typically is shaped so as to define one or more indentations 99 (e.g., grooves), in which corresponding protrusions at the distal end of intermediate tube 96 are positioned, such as by gently rotating tube 96 (or all of the tubes) until such engagement occurs. (Spring may be provided to assist with such engagement.) The radius of intermediate tube 96 is approximately equal to the distance of each of the indentations from a center of upper surface 50, so that the protrusions at the distal end of the tube are aligned with the indentations. Alternatively, the upper surface defines one or more protrusions, which engage indentations on the distal end of tube 96 (configuration not shown). Indentations 99 or the protrusions thus serve as driving interface 48.
Rotation of intermediate tube 96 causes corresponding rotation of spool 46, thereby winding contracting member 30 around the spool, and tightening the contracting member.
An outer tube 94, if provided, is configured to prevent rotation of spool housing 44 during rotation of spool 46. To this end, outer tube 94 (such as distal-most portion 94D thereof) is configured to engage an upper surface 160 of spool housing 44. To enable such engagement, the upper surface typically is shaped so as to define one or more indentations 162 (e.g., grooves), in which corresponding protrusions at the distal end of outer tube 94 are positioned, such as by gently rotating the tube (or all of the tubes) until such engagement occurs. (Springs may be provided to assist with such engagement.) The radius of outer tube 94 is approximately equal to the distance of each of the indentations from a center of spool housing 44, so that the protrusions at the distal end of the tube are aligned with the indentations. Alternatively, the upper surface defines one or more protrusions, which engage indentations on the distal end of tube 94 (configuration not shown).
During rotation of intermediate tube 96 for rotating spool 46, outer tube 94 is held rotationally stationary, thereby stabilizing spool housing 44 and enabling spool 46 to rotate with respect to housing 44 either in a first rotational direction or a second rotational direction that is opposite the first rotational direction. For example, when distal portion 88 is rotated in the first rotational direction, contracting member 30 is wound around spool 46, and when distal portion 88 is rotated in the second rotational direction, contracting member 30 is unwound from around spool 46. As described hereinabove, tool 80 is slid within sheath 89.
Inner tube 98 is configured to decouple longitudinal member 86 from spool 46 after contracting member 30 has been sufficiently wound around the spool, as described above. To this end, a distal portion of the inner tube (such as distal-most portion 98D thereof) is shaped so as to engage a distal portion of longitudinal member 86, which is typically shaped so as to couple with the distal portion of the inner tube.
Rotation of inner tube 98, while intermediate tube 96 is prevented from rotating and thus prevents rotation of spool 46, causes corresponding rotation of longitudinal member 86, and unscrews the longitudinal member from spool 46. Longitudinal member 86 and spool 46 are typically configured such that this unscrewing rotation is in the opposite direction of the rotation of the spool that tightens the contracting member. For example, clockwise rotation of the spool (looking down on the spool) may wind the contracting member around the spool, while counterclockwise rotation of longitudinal member 86 may unscrew the longitudinal member from the spool. To enable the engagement of inner tube 98 with the distal portion of the longitudinal member, the distal portion may include a flat portion.
As shown, spool 46 is shaped to define driving interface 48. For some applications, driving interface 48 is female. For example, the interface may be shaped to define a channel which extends through the cylindrical portion of spool 46 from an opening provided by an upper surface 178 (shown below in
For some applications, a distal portion of a rotation tool 80, engages spool 46 via driving interface 48 and rotates spool 46 in response to a rotational force applied to the rotation tool. The rotational force applied to the rotation tool rotates spool 46 via the portion of the rotation tool that engages driving interface 48 of spool 46.
Spool 46 typically comprises a locking mechanism that prevents rotation of the spool after contracting member 30 has been tightened. For example, locking techniques may be used that are described with reference to FIG. 4 of above-mentioned U.S. application Ser. No. 12/341,960 to Cabiri (published as US 2010/0161047), and/or with reference to FIGS. 6B, 7, and 8 of U.S. patent application Ser. No. 12/689,635 to Zipory et al. (published as US 2010/0280604), entitled, “Over-wire rotation tool,” filed Jan. 19, 2010, which are incorporated herein by reference.
Alternatively, for some applications, contracting mechanism 28 is configured to tighten contracting member 30, crimp the contracting member to hold the contracting member taut, and subsequently cut the excess length of the contracting member.
Distal portion 88 of rotation tool 80 has a head that is male (e.g., comprising a threaded screwdriver head, as shown) having, such as a slot-head, an Allen-head, a Phillips-head, a Robertson-head, or a hex-head. For some applications, distal portion 88 of rotation tool 80 has a head that is female (e.g., comprising a wrench head, having, for example, a square or hex opening), as appropriate for driving interface 48 provided. Typically, the rotation tool comprises a shaft (e.g., tube 94), at least a portion of which is flexible. For some applications, the rotation tool is used that is described in above-referenced U.S. patent application Ser. No. 12/341,960 (published as US 2010/0161047), with reference to
Reference is now made to
For some applications, as mentioned above, spool 46 comprises a locking mechanism 164 (
It is to be noted that the planar, mechanical element of locking mechanism 164 is shown by way of illustration and not limitation and that any suitable mechanical element having or lacking a planar surface but shaped to define at least one protrusion may be used together with locking mechanism 164.
A cap 170 is provided that is shaped so as to define a planar surface and an annular wall having an upper surface 186 that is coupled to, e.g., welded to, a lower surface of spool housing 44. The annular wall of cap 170 is shaped so as to define a recessed portion 172 of cap 170 that is in alignment with recessed portion 176 of spool housing 44.
For some applications, spool 46 of contracting mechanism 28 is shaped to provide a hole 42 or other coupling mechanism for coupling the first end portion of contracting member 30 to the spool, and thereby to contracting mechanism 28.
Reference is again made to
In the unlocked state shown in
Cap 170 functions to restrict distal pushing of depressible portion 168 beyond a desired distance so as to inhibit deformation of locking mechanism 164. For applications in which contracting mechanism 28 is implanted in heart tissue, cap 170 also provides an interface between contracting mechanism 28 and the heart tissue. This prevents interference of heart tissue on contracting mechanism 28 during the locking and unlocking thereof. Additionally, cap 170 prevents damage to heart tissue by depressible portion 168 as it is pushed downward.
In the locked state shown in
It is to be noted that although contracting mechanism 28 in
For some applications, system 20 further comprises a flexible pusher element, such as described and shown in US Patent Application Publication 2010/0286767, which is incorporated herein by reference, with reference to
For some applications of the present invention, system 20 is used to treat an atrioventricular valve other than the mitral valve, i.e., the tricuspid valve. For these applications, implantable structure 22 and other components of system 20 described hereinabove as being placed in the left atrium are instead placed in the right atrium. Although implantable structure 22 is described hereinabove as being placed in an atrium, for some application the implantable structure is instead placed in either the left or right ventricle.
Reference is now made to
As described hereinabove, second end 53 of contracting member 30 is coupled to the sleeve at a second site 36 that is a longitudinal distance from end 49 of sleeve 26, which end 49 is longitudinally opposite the end 51 of sleeve 26. A first end portion 530 of contracting member 30 is coupled to contracting mechanism 28 at first site 34 of sleeve 26. Thus, as described hereinabove, rotation of the rotatable structure of contracting mechanism 28, or other actuation of contracting assembly 40, typically applies a longitudinal contracting force only between first and second sites 34 and 36, which longitudinally contracts at least a portion, e.g. all, of the sleeve only between first and second sites 34 and 36.
As described hereinabove, one or more anchors 38 is coupled to the sleeve in the portion of sleeve between site 36 and end 49 of sleeve 26. It is to be noted that even though only one anchor is shown (i.e., anchor 534), more than one anchor may be coupled to the portion of sleeve between site 36 and end 49 of sleeve 26. Additionally, the next-most-proximal anchor 532 may be disposed under site 36. Thus, a proximal-most anchor 534 is coupled to the sleeve in a non-contracting-member portion 510, that is between site 36 and end 49 of sleeve 26 and has excess portions of sleeve 26 which are not anchored to the annulus.
Force-distributing element 540 typically comprises a longitudinally-non-compressible element (e.g., a cylindrical element, as shown), which comprises one or more protrusions 542 for coupling element 540 to sleeve 26. Typically, protrusions 542 puncture sleeve 26, which typically comprises a braided mesh. Typically, force-distributing element is advanceable within sleeve 26 following implantation thereof via anchors 38. Typically, element 540 spans over both anchors 532 and 534 in order to distribute forces between anchors 532 and 534. Protrusions 542 are constrainable within an oversheath (not shown) which is advanced within the lumen of sleeve 26 in order to advance element 540 within the sleeve. Oversheath is then removed to expose protrusions 542 in order to enable protrusions 542 to protrude and engage sleeve 26, as shown. For some applications, protrusions 542 are constrainable because the entire element 540 comprises a stent or tube which is constrainable within the oversheath. Typically, element 540 is rigid along a longitudinal axis of sleeve 26 but is flexible along a plane perpendicular to the axis. For such applications, element 540 may comprise a solid, but flexible cylindrical element, or may comprise a tightly-coiled element which does not compress along the longitudinal axis. For some applications element 540 is entirely rigid. Typically, element 540 comprises a metal (e.g., nitinol, stainless steel, or any other biocompatible material). Typically, element 540 comprises a tube, a coiled element, or a stent shaped so as to define a lumen. Alternatively, element 540 does not comprise a lumen and is solid (e.g., a rod).
For some applications, force-distributing element 540 has a length of at least 3 mm, e.g., at least 8 mm, or at least 16 mm.
Force-distributing element 540 generally distributes force applied by contraction of contracting assembly 40 (i.e., mechanism 28 and member 30) over anchors 532 and 534 (and/or any other additional anchor disposed between site 36 and end 49).
As is described hereinbelow with reference to
For some applications, coupling elements 29 are configured to have a natural tendency to flex inwards toward a central longitudinal axis of tube 33, and the tube 66, when positioned within the lumen of sleeve 26, pushes coupling elements 29 outwards away from the longitudinal axis, thereby causing coupling elements 29 to engage sleeve 26. For example, coupling elements 29 may be curved to define outwardly-directed ends that push against or pierce sleeve 26. Such pushing against or piercing engages sleeve 26, which, as mentioned above, may comprise braided or woven fabric. Upon removal of tube 66 from within sleeve 26, coupling elements 29 are allowed to assume their natural inwardly-flexed position, thereby releasing sleeve 26 from coupling elements 29 (i.e., when elements 29 move away from openings 538), and decoupling the sleeve from implant-advancement tube 33.
Reference is now made to
Typically, approximating element 551 changes a spatial orientation of at least a portion of a portion of sleeve 26 that is between the structural, reference-force component (e.g., force-distributing element 540) and end 49, or to non-contracting-member portion 510. For some applications, this portion of the portion includes end 49. For other applications, this portion includes the entire portion of sleeve 26 that is between the structural, reference-force component. For such applications, portion 510 defines, at least in part, excess portions of sleeve 26 which do not need to be anchored to the annulus of the valve. For example, only a portion of sleeve 26 may be anchored along the annulus of the valve, leaving excess portions of sleeve 26. In such an instance, approximating element 551 changes the spatial orientation of the excess portion of sleeve 26 so as to reposition such excess portion, either by compressing the excess portion (as shown in
Typically, the structural, reference component (e.g., force-distributing element 540, in
Following anchoring of implant structure 22, element 540 is positioned within the lumen of sleeve 26, as described hereinabove, in order to distribute forces between the proximal anchors 532 and 534, and also to function as the structural, reference component for approximating element 551. Then screw shaft 552 is screwed into place with respect to thread 554, either on its own, or coupled to plug 550. Plug 550 functions to close the opening provided by proximal end 49 of sleeve following the removal of deployment manipulator 24 (not shown).
As shown in
Typically, a distal end of spring 560 is coupled to the structural, reference component (e.g., force-distributing element 540, in
For some applications, deflecting element 570 functions as a stiffening element which prevents twisting of sleeve 26 during the anchoring of sleeve 26 to the annulus.
As shown, implant structure 22 comprises a contracting-member-receiving element 574 which is coupled to sleeve 26 via protrusions 542 and through which a distal portion of contracting member 30 slides. As shown by way of illustration and not limitation, receiving element 574 comprises force distributing element 540 (described hereinabove with reference to
It is to be noted that deflection element 570 may be used independently or in combination with any one of approximating elements 551 shown herein, namely, shaft 553 and thread 552 (shown in
Strips 282a and 282b are typically coupled to (e.g., by being threaded through) portions of proximal end 49 (i.e., a first free end) of sleeve 26 of structure 281 in the vicinity of an opening 25. Proximal end 49 of sleeve 26 is shaped so as to define an opening 25 for passage therethrough of manipulator 24 (described hereinabove) into a lumen of sleeve 26. Strips 282a and 282b define generally arcuate elements which comprise a flexible material (e.g., nitinol). Strips 282a and 282b have a tendency to close and assume the configuration shown in
Strips 282a and 282b are coupled to respective strings 284 which couple strips 282a and 282b to sleeve 26. Strings 284 are crimped together by a crimp 286.
As shown in
Sleeve 26 is typically configured to be placed only partially around the valve annulus (i.e., to assume a C-shape), and, once anchored in place, to be contracted so as to circumferentially tighten the valve annulus. Alternatively, implant structure 133 is configured to be placed entirely around the valve annulus. In order to tighten the annulus, implant structure 133 comprises a contracting mechanism 28 that actuates a flexible elongated contracting member 30 which extends along implant structure 133. As shown, contracting member 30 is threaded one or more times through sleeve 26. For applications in which implant structure 133 comprises a partial annuloplasty ring as shown, sleeve 26 comprises first and second free ends, respectively (i.e., proximal and distal ends 49 and 51, respectively). Proximal end 49 (i.e., a first free end) of sleeve 26 is shaped so as to define an opening 25 for passage therethrough of manipulator 24 into a lumen of sleeve 26. Proximal end 49 is shaped so as to provide a first end flap 27 which is coupled to (e.g., by being looped through) a portion of contracting member 30. When contracting mechanism 28 is actuated, contracting member 30 is pulled or released in order to close or open flap 27 over opening 25. Thus, implant structure 133 comprises a closure element (e.g., closure element 290) for closing opening 25. For such an application, closure element 290 comprises flap 27 and the portion of contracting member 30 coupled thereto. Typically, closure element 290 is remotely-controlled by the operating physician.
Following the closing of flap 27 over opening 25, contracting mechanism 28 facilitates contracting of implant structure 133. Contracting mechanism 28 is described in more detail hereinbelow. In addition, system 131 comprises a plurality of tissue anchors, typically between about 5 and about 20 anchors, such as about 10 or about 16 anchors. The anchors are configured to be deployed through the wall of sleeve 26 by anchor deployment manipulator 24. The insertion of the anchors into the sleeve and deployment of the anchors into cardiac tissue is described in detail hereinbelow.
It is noted that although closure element 290 is shown in
Typically, the closure elements described herein reduce the likelihood of a thrombosis forming inside sleeve 26, by closing opening 25, relative to if opening 25 were left opened. Alternatively or additionally, the closure elements described herein are used to close opening 25 for a different reason.
Typically, the closure of opening 25 (e.g., using the closure elements described herein) and the deployment of implant structure 133 is performed during a single procedure, e.g., by deploying the implant structure and closing opening 25 via a single catheter. For some applications (not shown), sleeve 26 defines openings 25 at first and second ends thereof, and closure elements are used to close the openings at the first and second ends of the sleeve.
Flexible sleeve 26 may comprise a braided, knitted, or woven mesh or a tubular structure comprising ePTFE or DACRON™. For some applications, the braid comprises metal and fabric fibers. The metal fibers, which may comprise Nitinol for example, may help define the shape of the sleeve, e.g., hold the sleeve open to provide space for passage and manipulation of deployment manipulator 24 within the sleeve. The fabric fibers may promote tissue growth into the braid. Optionally, the sleeve is somewhat elastic, which gives the sleeve a tendency to longitudinally contract, thereby helping tighten the sleeve. For example, the sleeve may be bellows-shaped or accordion-shaped.
Reference is now made to
As shown, sleeve 26 is configured to have a controllably variable stiffness. For example, one or more generally stiff stiffening elements 136 (shown in
Elongated contracting member 30 comprises a wire, a ribbon, a rope, or a band, which typically comprises a flexible and/or superelastic material, e.g., nitinol, polyester, stainless steel, or cobalt chrome. For some applications, the wire comprises a radiopaque material. For some applications, contracting member 30 comprises a braided polyester suture (e.g., TICRON™). For some applications, contracting member 30 is coated with polytetrafluoroethylene (PTFE). For some applications, contracting member 30 comprises a plurality of wires that are intertwined to form a rope structure.
By being threaded or sewn through sleeve 26, contracting member 30 is positioned at least partially within a lumen of the sleeve 26 alternatingly inside and outside of the sleeve along the length of the sleeve. Optionally, sleeve 26 defines an internal channel within which member 30 is positioned (configuration not shown). Alternatively, the contracting member is disposed outside the lumen of the sleeve, such as alongside an outer wall of the sleeve. For example, sleeve 26 may define an external channel within which member 30 is positioned, or the sleeve may comprise or be shaped so as to define external coupling elements, such as loops or rings (configuration not shown). For some applications, contracting member 30 is positioned approximately opposite the portion of sleeve 26 through which the anchors are deployed, as described hereinabove.
For some applications of the present invention, contracting mechanism 28 comprises a rotatable structure, such as a spool. The rotatable structure is arranged such that rotation thereof contracts implant structure 133. For some applications, a first end portion of contracting member 30 is coupled to the spool (e.g., by being looped through a portion of the spool). For some applications, contracting mechanism 28 further comprises a housing 44 that houses the rotatable structure, e.g., the spool. A braided fabric mesh 41 surrounds housing 44 so as to facilitate implantation thereof and induce fibrosis around housing 44. The spool is positioned in a vicinity of (e.g., within 1 cm of) end 51 of sleeve 26, as shown. As shown, a second end portion of contracting member 30 is coupled to sleeve 26 in a vicinity of (e.g., within 0.5 cm of) end 49 of the sleeve 26, opposite end 51 to which the contracting mechanism 28 is positioned. Typically, contracting mechanism 28 is sutured to sleeve 26 by coupling threads 31.
In the configuration shown, the second end portion of contracting member 30 is looped through a portion of flap 27 and extends back toward end 51 of sleeve 26. The second end portion of contracting member 30 is coupled to sleeve 26 in a vicinity of proximal end 49 of the sleeve at a distance of between 0.2 cm and 2 cm from end 49. Since contracting member 30 is looped through a portion of contracting mechanism 28, the free ends of contracting member 30 are brought together, and together serve as the second end portion of contracting member 30. Alternatively, contracting member 30 is not looped through a portion of contracting mechanism 28, a first end of contracting member 30 is fixedly coupled to contracting mechanism 28, while a second end of contracting member 30 defines the second end portion that is coupled to the portion of sleeve 26.
The second end portion of member 30 is coupled to sleeve 26 by contraction-restricting elements 138, e.g., crimping elements 132 and 134. Crimping elements 132 and 134 restrict contraction of a contraction-restricted portion 52 (or non-contraction-facilitated portion) of sleeve 26 that has a length of between 5 mm and 30 mm. For some applications, the crimping elements are disposed such that the contraction-restricted portion of the sleeve is between 3 and 45 mm from one end of the sleeve. The remaining portion of sleeve 26, i.e., a contraction-facilitated portion 153 (or contractible portion) is contractible and expandable in response to respective tightening or loosening of contracting member 30 responsively to the actuation of contracting mechanism 28. Thus, while contraction of implant structure 133 is being ongoing (i.e., while contraction-facilitated portion 153 is being contracted), contraction-restricted portion 52 is restricted from being contracted. For some applications, contraction-restriction portions, each having a length of between 5 mm and 30 mm are disposed, are disposed in the vicinity of both ends of sleeve 26.
Rotation of the spool of contracting mechanism 28 in a first rotational direction winds a portion of contracting member 30 around the spool, thereby pulling the far end of implant structure 133 toward the spool and shortening and tightening implant structure 133.
Alternatively, in some configurations, contracting mechanism 28 is positioned at an intermediary position along the sleeve, rather than in a vicinity of one of the ends. For these configurations, contracting member 30 comprises two contracting members, which are respectively connected to the two ends of the sleeve, and both of which are connected to the spool. Rotating the spool contracts both contracting members. These configurations may be implemented using techniques described in U.S. patent application Ser. No. 12/341,960 to Cabiri (published as US 2010/0161047), which is incorporated herein by reference, with reference to
For other applications, contracting member 30 comprises at least one wire (e.g., exactly one wire) that passes through a coupling mechanism of the spool of contracting mechanism 28, in order to couple the wire to the spool. As described hereinabove, the free ends of contracting member 30 are brought together, and together serve as the second end portion of contracting member 30, and may be coupled to one of the several locations of sleeve 26 mentioned hereinabove. In this configuration, approximately the longitudinal center of the wire serves as first end of the contracting member.
For some applications, coupling elements 29 are configured to have a natural tendency to flex inwards toward a central longitudinal axis of tube 33, and the tube 66, when positioned within the lumen of sleeve 26, pushes coupling elements 29 outwards away from the longitudinal axis, thereby causing coupling elements 29 to engage sleeve 26. For example, coupling elements 29 may be curved to define outwardly-directed ends that push against or pierce sleeve 26. Such pushing against or piercing engages sleeve 26, which, as mentioned above, may comprise braided or woven fabric. Upon removal of tube 66 from within sleeve 26, coupling elements 29 are allowed to assume their natural inwardly-flexed position, thereby releasing sleeve 26 from the coupling elements, and decoupling the sleeve from implant-advancement tube 33.
As shown in
For some applications, at least one of anchors 38 is deployed from a distal end 60 of deployment manipulator 24 while the distal end is positioned such that a central longitudinal axis 62 through distal end 60 of deployment manipulator 24 forms an angle of between about 45 and 90 degrees with the wall of sleeve 26 at the point at which the anchor penetrates the wall, such as between about 75 and 90 degrees, e.g., about 90 degrees (as shown hereinabove with reference to
This anchor-penetration point is typically at a portion of the sleeve that extends distally beyond distal end 64 of deployment manipulator 24. Typically, all of the anchors are deployed at such angles, with the possible exception of the first anchor deployed near the distal end of the sleeve.
Reference is now made to
For some applications, outer tube 66 of deployment manipulator 24 is steerable, as known in the catheter art. To provide steering functionality to deployment manipulator 24, outer tube 66 typically comprises one or more steering wires, the pulling and releasing of which cause deflection of the distal tip of the tube.
For some applications of the present invention, each of tissue coupling elements 76 is shaped so as to define a longitudinal axis 78 (shown in
For some applications, the plurality of anchors are applied using the deployment manipulator by loading a first one of the anchors onto the anchor driver, and deploying the anchor into the cardiac tissue. The anchor driver is withdrawn from the patient's body (typically while leaving outer tube 66 of the deployment manipulator in place in the sleeve), and a second one of the anchors is loaded onto the anchor driver. The anchor driver is reintroduced into the outer tube of the deployment manipulator, and the second anchor is deployed. These steps are repeated until all of the anchors have been deployed. Alternatively, the entire deployment manipulator, including the anchor driver, is removed from the body and subsequently reintroduced after being provided with another anchor. Techniques for use with the refillable deployment manipulator may be practiced in combination with techniques described in U.S. patent application Ser. No. 12/689,635 to Zipory et al. (published as US 2010/0280604), entitled, “Over-wire rotation tool,” filed Jan. 19, 2010, which is incorporated herein by reference, and with techniques described in PCT Patent Application PCT/IL2010/000358 to Zipory et al. (published as WO 10/128503), entitled, “Deployment techniques for annuloplasty ring,” filed May 4, 2010, which is incorporated herein by reference. Further alternatively, the deployment manipulator is configured to simultaneously hold a plurality of anchors, and to deploy them one at a time.
Reference is again made to
Typically, the first anchor 38 is deployed most distally in sleeve 26 (generally at or within a few millimeters of end 51 of sleeve 26), and each subsequent anchor is deployed more proximally, such that sleeve 26 is gradually pulled off (i.e., withdrawn from) deployment manipulator 24 in a distal direction during the anchoring procedure. Typically, as the sleeve is pulled off the deployment manipulator, the deployment manipulator is moved generally laterally along the cardiac tissue, as shown in
The pushing of sleeve 26 distally from manipulator 24 is facilitated by implant-advancement tube 33. Implant-advancement tube 33 passes over outer tube 66 of manipulator 24, and pushes gently in a distal direction on proximal end 49 of sleeve 26. The implant-advancement tube is held in place against proximal end 49 of sleeve 26, typically by an external control handle (not shown for clarity of illustration) that is coupled to respective proximal ends of manipulator 24, tube 66, anchor driver 68, and implant-advancement tube 33. In order to release sleeve 26, outer tube 66 is retracted proximally, while implant-advancement tube 33 remains in place to apply a reference force to sleeve 26 with respect to outer tube 66, helping advance and release sleeve 26 from outer tube 66, as tube 66 is withdrawn. If the implant-advancement tube were not provided, the wall of sleeve 26 might snag on outer tube 66 (as mentioned above, the sleeve may comprise braided or woven fabric). In addition, if such snagging occurs, gentle pushing with the implant-advancement tube in the distal direction may help free the snag.
In the configuration shown in
During the anchoring procedure, stiffening element 136 maintains relative dispositions of manipulator and/or anchor driver 68 with respect to sleeve 26. As shown, stiffening element 136 is threaded along sleeve 26. The relative stiffness of stiffening element 136 to the flexibility of sleeve 26 maintains sleeve 26 in a relative spatial configuration in which contracting member 30 remains above tube 66 of manipulator 24 and/or anchor driver 68. In such a manner, stiffening element 136 helps ensure that anchors 38 do not interfere with contracting member 30 and that the portion of sleeve 26 that is opposite contracting member 30 is anchored to the annulus. Stiffening element 136 is loosely coupled (i.e., is not fixed by being knotted or otherwise fastened) to a distal end 35 thereof (shown in
Following the anchoring of sleeve 26 by anchoring a suitable number of anchors around a desired portion of the annulus of the valve, sleeve 26 is slid off of manipulator 24 and decoupled from coupling elements 29 in order to release sleeve 26 from coupling elements 29. Proximal withdrawal of outer tube 66 from sleeve 26 (into or through implant-advancement tube 33) allows coupling elements 29 to assume their natural inwardly-flexed position, thereby releasing sleeve 26 from the coupling elements, and decoupling the sleeve from the implant-advancement tube. As described hereinabove, sleeve 26 is advanced off deployment manipulator 24, including outer tube 66, in a distal direction during the anchoring procedure. Outer tube 66 of deployment manipulator 24 is proximally withdrawn completely from the sleeve at the conclusion of the anchoring procedure. The flexing of the coupling elements releases the sleeve at the conclusion of the procedure. As implant-advancement tube 33 is decoupled from sleeve 26 and is withdrawn proximally, implant-advancement tube 33 pulls on stiffening element 136 in order to entirely decouple, by unthreading stiffening element 136 from sleeve 26.
Reference is now made to
As shown in
Reference is now made to
Reference is now made to
For some applications, longitudinal member 86 is looped through contracting mechanism 28, and both ends of the longitudinal member are brought together and extend outside of the patient's body. The longitudinal member is decoupled from the contracting mechanism by releasing one end of the longitudinal member, and pulling on the other end to draw the longitudinal member away from the contracting mechanism.
For some applications, contracting mechanism 28 is positioned in a vicinity of (e.g., within 1 cm of) distal end 51 of sleeve 26, and access to driving interface 48 is provided from outside sleeve 26, as shown in
For some applications in which access to driving interface 48 is provided from outside sleeve 26, the rotation tool is initially removably attached to the driving interface, prior to the commencement of the implantation procedure, and is subsequently decoupled from the driving interface after the rotatable structure has been rotated. In these applications, contracting mechanism 28 may be positioned in a vicinity of distal end 51 or proximal end 49 of sleeve 26, or at an intermediate location along the sleeve. Optionally, at least a portion of a shaft of the rotation tool is positioned within a sheath 89 which advances through an access sheath that is disposed within the vasculature of the patient.
In
Reference is now made to
It is to be noted, as shown that first anchor 137 is anchored to the annulus in a vicinity of first trigone 142 (e.g., at first trigone 142), and second anchor 129 is anchored to the annulus in a vicinity of second trigone 144 (e.g., at second trigone 144).
Reference is now made to
Reference is made to
Typically, helical tissue coupling element 200 has an inner diameter D3 of at least 1.5 mm, no greater than 2.5 mm, and/or between 1.5 and 2.5 mm, e.g., 1.8 mm, along an entire length thereof along a central longitudinal axis 210 of the anchor (although the inner diameter is shown as being constant along the entire length of coupling element 200, the inner diameter optionally varies along the length of the coupling element). An outer diameter D4 of helical tissue coupling element 200 may be, for example, at least 2.4 mm, no greater than 5 mm, and/or between 2.4 and 5 mm, e.g., 2.4 mm.
Tool-engaging head 202 is shaped so as to define an engaging opening 212 that passes entirely through the tool-engaging head along axis 210. The engaging opening is typically at least partially non-circular, such as in order to engage a rotating deployment element of a deployment tool. For example, as shown in
A portion of the deployment element may pass partially or completely through distal non-engaging surface 222, without engaging this surface. The non-engaging surface may serve as a shoulder, which pushes against the tissue, providing resistance when the anchor has been sufficiently screwed into the tissue. Optionally, the deployment element does not pass entirely through distal non-engaging surface 222, such that the deployment element does not press against or into the tissue. Alternatively, the deployment element may protrude slightly from the distal non-engaging surface 222, when no force is applied to the deployment element by the tissue. Optionally, when the anchor is pressed against the tissue, inner spaces in the tool-engagement head 202 of the anchor allow the deployment element to sink into the anchor, and not press against the tissue. Engaging opening 212 typically has a cross-sectional area (perpendicular to axis 210) of at least 0.8 mm2, such as at least 1.2 mm2.
For some applications, a proximal-most portion 224 of helical tissue coupling element 200, at the end which is fixed to tool-engaging head 202, is generally straight and oriented generally parallel to axis 210, i.e., at angle of between 0 and 15 degrees with the axis, such as 0 degrees. Proximal-most portion 224 typically has a length of between 0.5 and 2 mm, such as about 1 mm.
The outer perimeter of tool-engaging head 202 is typically circular, and an outer diameter D5 of tool-engaging head 202 may be, for example, at least 2 mm, no greater than 7 mm, and/or between 2 and 7 mm, such as between 2.5 and 5 mm, e.g., 2.4 mm, 2.5 mm, or 3 mm.
The outer diameter of anchor 38A may be, for example, at least 2 mm, no greater than 7 mm, and/or between 2 and 7 mm, such as between 2.5 and 5 mm. The entire length of anchor 38A, measured along axis 210, is typically at least 2.5 mm, no greater than 10 mm, and/or between 2.5 and 10 mm, such as between 3 and 4.5 mm. A length L1 of tissue coupling element 200, measured along axis 210, may be at least 2.5 mm, no greater than 10 mm, and/or between 2.5 and 10 mm, such as between 3 and 4.5 mm. Typically, helical tissue coupling element 200 has between 3 and 5 turns.
The proximal end of tissue coupling element 200 is typically fixed to tool-engaging head 202 near the outer perimeter of the tool-engaging head, such that the tissue coupling element does not block engaging opening 212. For example, as labeled in the top-view of the anchor in
Anchor 38A, including both helical tissue coupling element 200 and tool-engaging head 202, is thus shaped so as to provide a channel along the entire length of the anchor, through which a flexible inner shaft can pass, and through which a rotating deployment element can pass when in its radially-compressed state. More generally, as shown in
Reference is made to
For some applications, each of tissue coupling element 200 of first tissue anchor 38A and tissue coupling element 200 of second tissue anchor 38B is shaped so as to define a shape selected from the group consisting of: a helix, a spiral, and a screw shaft, and the lengths of the coupling elements are measured along a longitudinal axis of the shape. Alternatively or additionally, the tissue coupling element of second tissue anchor 38B has fewer turns than does the tissue coupling element of first tissue anchor 38A.
For some applications, such as when second tissue anchors 38B are helical, second tissue anchors 38B alternatively or additionally differ from first tissue anchors 38A in that tissue coupling elements 200 of second tissue anchors 38B are rectangular in cross-section, rather than circular, which may provide a greater tissue surface contact area. Alternatively or additionally, helical second tissue anchors 38B may be shaped so as to define barbs, such as described hereinbelow with reference to
Reference is made to
Reference is made to
Reference is made to
Reference is made to
Reference is made to
For some applications, second tissue anchors 38B comprise sutures which are placed using a delivery tool.
Reference is made to
For some applications, third tissue anchor 38C comprises a suture which is placed using a delivery tool.
Reference is made to
Typically, contracting member 30 does not extend along the portion of sleeve 26 deployed along anterior portion 116 of the annulus. The portion of the sleeve deployed along anterior portion 116 of the annulus (between the trigones) is thus non-contractible. Tightening of implantable structure 22 therefore tightens at least a portion of the posterior portion of the annulus, while preserving the length of anterior portion 116 of the annulus. (The anterior portion of the annulus should generally not be contracted because its tissue is part of the skeleton of the heart.) However, the portion of the sleeve deployed along the anterior portion of the annulus prevents dilation of the anterior annulus, because the sleeve is anchored at both ends of the anterior annulus, and, as mentioned above, the sleeve typically comprises a longitudinally non-extensible material. This deployment configuration may help prevent long-term resizing of the anterior annulus, which sometimes occurs after implantation of partial annuloplasty rings, such as C-bands.
For some applications, the non-contractible portion of sleeve 26 (the portion without contracting member 30) extends somewhat beyond one or both of trigones 142 or 144 (in the posterior direction, away from anterior portion 116 of the annulus), such as up to 20 mm, such as up to 10 mm.
For some applications, at least one anchor 38 is coupled to cardiac tissue on the posterior side of right fibrous trigone 144, between the trigone and the end of contracting member 30. Similarly, at least one anchor 38 may be coupled to cardiac tissue on the posterior side of left fibrous trigone 142, between the trigone and the other end of contracting member 30 (which, for some applications, is coupled to contracting mechanism 28, as shown in
Reference is now made to
Linking member 250 has first and second linking member ends 252 and 254. Second linking member end 254 comprises (e.g., is shaped so as to define, or is fixed to) a first coupling element 256. First linking member end 252 is disposed longitudinally between second linking member end 252 and a first sleeve end (either proximal end 49, as shown, or distal end 51, not shown), exclusive. Second linking member 254 either protrudes from the second end of the sleeve, or is recessed within the second end of the sleeve (as shown, the second end of the sleeve is distal end 51). A longitudinal portion of linking member 250 in a vicinity of first linking member end 252 is coupled to the sleeve. For example, the portion may be threaded through the fabric of the sleeve, and/or sewn (e.g., sutured) to the fabric of the sleeve to hold the linking member in place during deployment, and the linking member may be held in place after implantation by one or more of anchors 38. Optionally, the linking member is not initially coupled to the sleeve, but is instead held in place by a delivery tool during the implantation procedure, until being coupled to the sleeve by one or more of the anchors, for example. The coupled longitudinal portion may have a length of between 2 and 10 mm, and optionally includes first linking member end 252 of the linking member.
Implantable structure 22 further comprises a second coupling element 260, which is configured to be coupleable to first coupling element 256. Second coupling element 260 typically is coupled to implantable structure 22 within 1.5 cm of the first end of sleeve 26 (opposite the end mentioned above near which first linking member end 252 is fixed), measured when the sleeve is fully longitudinally extended. As mentioned above, in the configuration shown in
For some applications, such as shown in
Typically, linking member 250 is substantially longitudinally non-extensible, i.e., its length is fixed. Typically, linking member 250 comprises metal, such as Nitinol or stainless steel. For some applications, the linking member has a length of at least 2 cm, no more than 6 cm, and/or between 2 and 6 cm.
For some applications, the linking member is configured as a spring, which is typically curved, so as to be elastic in a radial direction, i.e., to be compressible like a bow or deflected beam. In these applications, the linking member is oriented such that it is pressed by elasticity against the anterior portion of the mitral annulus, i.e., the outer wall of the aorta, thereby holding the sleeve covering the linking member against the aortic wall.
For some applications, at least two of tissue anchors 38 are coupled to sleeve 26 at respective, different longitudinal sites alongside linking member 250, within 6 cm of first linking member end 252, such as within 2 to 6 cm of the first end. These tissue anchors may help set the proper direction of curvature of the linking member, for applications in which the linking member is curved.
Reference is made to
Reference is now made to
Implantable structure 22 is implanted along the annulus of the native mitral valve, such as described hereinabove with reference to
As shown in
For some applications, delivery tube 332 is also advanceable within the lumen of sleeve 26 (not shown for clarity of illustration).
As shown in
As shown in
As shown in
As shown in
It is to be noted that one contraction-restricting portion 300 and two contractible portions 301a and 301b are shown in
In the configuration shown in
For some applications, the implantable structures described herein are configured such that the contraction-restricted portions and the contractible portions of the implantable structures are disposed adjacent to respective portions of the mitral annulus, so as to facilitate reshaping of the mitral annulus in a desired manner. The lengths of the contraction-restricted portions and the contractible portions typically correspond to the corresponding portions of the mitral annulus. Typically, upon placement of the implantable structures described herein at the mitral annulus, contraction-restricted portions 352 and contractible portions 353 are asymmetrically disposed with respect to the mitral annulus. Further typically, lengths of the contraction-restricted portions and the contractible portions are not equal to one another. Alternatively, lengths of the contraction-restricted portions and the contractible portions are equal to one another.
Reference is again made to
Reference is now made to
Typically, segment 268 is coupled to sleeve 26 by being sutured thereto via sutures 264, by way of illustration and not limitation, typically before implant structure 22 is advanced within the body of the patient. Segment 268 may be coupled to sleeve 26 using any suitable coupling technique. Segment 268 is typically coupled to sleeve 26 prior to advancing implant structure 22 within the body of the patient.
Segment 268 is typically coupled to portion of sleeve 26 designated for implantation along the annulus of the valve at the posterior leaflet. Alternatively or additionally, segment 268 is coupled to a portion of the sleeve designated for implantation in a vicinity of one or both trigones 144 and 142. The coupling of segment 268 to the portion of sleeve 26 defines contraction-restricted portion 352 of structure 22, while the remaining portions of sleeve 26 not coupled to segment 268 define contractible portions 353a and 353b of structure 22. In general, the techniques described hereinabove with respect to contraction-restricting portion 300, with reference to
Following the implantation of structure 22 along the annulus, portions of implantable structure 22 are contracted using contracting assembly 40, as described hereinabove. During the ongoing contraction of structure 22 responsively to the actuation of contracting assembly 40, contractible portions 353a and 353b are contracted, while contraction-restricting portion 300 restricts longitudinal contraction of contraction-restricted portion 352, but facilitates radial movement of portion 352 toward the center of the valve (i.e., in the direction as indicated by the arrows). This radial movement of portion 352 brings the posterior leaflet toward the anterior leaflet.
Following the contracting of structure 22 by mechanism 28, the opening at proximal end 49 of implantable structure 22 may be closed, such as by closure element 290, described hereinabove with reference to
It is to be noted that although contraction-restricting segment 268 is shown in
For some applications, a healthcare professional places the contraction-restricting element around given portions of the coiled element intra-procedurally, the portions of the coiled element corresponding to respective portions of a subject's mitral annulus. For example, subsequent to determining the size of the subject's mitral valve, and before placing the implantable structure inside the patient's body, the healthcare professional may place contraction-restricting element around given portions of the coiled element, in order to reduce the contractibility of the portions. For some applications, the healthcare professional applies sutures to the coiled element while the element is disposed inside the sizer. For some applications, the sizer is used to guide the suturing and to prevent the healthcare professional from placing a suture through contracting member 30.
Implant structure 262 is generally similar to implant structure 22, as described hereinabove with reference to
Reference is now made to
Reference is now made to
For some applications, structure 371 comprises a linear, elongate structure in a resting configuration thereof. Prior to implantation, first and second ends 372 and 374 of structure 371 are welded or otherwise attached to coupling members 378 and 380, respectively, thereby facilitating the formation of structure 371 into a substantially ring-shaped structure. As described in U.S. patent application Ser. No. 12/341,960 to Cabiri (published as US 2010/0161047), structure 371 typically comprises a body portion (e.g., coiled element 390) defining a lumen for housing flexible member 382. A first end of flexible member 382 is coupled to contracting mechanism 28, while a second end of flexible member 382 is coupled to second end 304 of structure 371.
As shown, structure 371 defines a substantially ring-shaped configuration, e.g., a “D”-shaped configuration, as shown, which conforms to the shape of the annulus of a mitral valve of the subject. Prior to contracting of structure 371, the coiled element 390 is relaxed and structure 371 defines a first perimeter thereof. Coiled element provides contraction-restricting elements 138 which comprise a material in a configuration in which portions 49 are flexible and less longitudinally compressible, e.g., not longitudinally compressible, with respect to a contractible portion 201 of coiled element 390, for example, as described hereinabove. Contraction-restricting elements 138 are configured to be disposed in the vicinity of the trigones of the mitral valve of the heart, e.g., along the fibrous portion of the annulus that is between the trigones when structure 371 is anchored, sutured, fastened or otherwise coupled to the annulus of the mitral valve. Contraction-restricting elements 138 impart rigidity to structure 371 in the portion thereof that is disposed between the fibrous trigones such that structure 371 better mimics the conformation and functionality of the mitral valve.
Typically, both contraction-restricting elements 138 have a combined length of 10-50 mm.
Structure 371 defines contractible portion 201 and contraction-restricting elements 138. Typically, a radius of curvature at a center of the contractible portion of coiled element 390 is smaller than a radius of curvature at a center of contraction-restricting elements 138, when no external force is applied to the annuloplasty structure.
It is to be noted that contractible portion 201 and contraction-restricting elements 138 of structure 371 comprise a coiled element by way of illustration and not limitation. For example, contractible portion 201 and contraction-restricting elements 138 may comprise stent-like struts, or a braided mesh. In either configuration, contraction-restricting elements 138 are chronically longitudinally compressed in a resting state of structure 371.
For some applications coiled element 390 is used in combination with implant structure 22 (described with reference to
Reference is now made to
Contracting mechanism 28, e.g., the rotatable structure, such as spool 46, is positioned at an intermediary third site along the sleeve, longitudinally between first and second sites 39A and 39B, exclusive. For example, the contracting mechanism may be positioned a longitudinal distance from one of the ends of the sleeve, which longitudinal distance equals between 30% and 70% of the length of the sleeve. Contracting mechanism 28 and longitudinal members 30A and 30B are arranged to longitudinal contract the sleeve, for example, are arranged such that rotation of the rotatable structure longitudinally contracts the sleeve, such as by winding contracting members 30A and 30B around the spool, thereby contracting both of the longitudinal contracting members.
For some applications, at least one (either one or both) of the first and second longitudinal distances, taken separately, when measured when the sleeve is in a straight, relaxed, non-contracted state, is at least 3 mm, e.g., at least 5 mm, such as at least 9 mm, e.g., at least 14 mm. For some applications, each of the first and second longitudinal distances is at least 3 mm, e.g., at least 5 mm, such as at least 9 mm, e.g., at least 14 mm. For some application, one of the first and second longitudinal distances is at least 3 mm, such as at least 5 mm (e.g., at least 9 mm, or at least 14 mm), and the other of the first and second longitudinal distances is less than 5 mm, such as less than 3 mm, e.g., is equal to 0 mm.
For some applications, the techniques of this configuration are implemented using techniques described in US Patent Application Publication 2010/0161047, which is incorporated herein by reference, with reference to
Reference is made to
Valve 410 further comprises an annular base 432, to which artificial leaflets 430 are coupled. Annular base 432 is configured to be couplable to base ring 422 during an implantation procedure. For example, as show in
Base ring 422 implements one or more of the techniques of implantable structure 22 described hereinabove. In particular, base ring 422 may be coupled to the annulus of the native diseased valve using the anchoring techniques described hereinabove. In addition, base ring 422 typically comprises sleeve 26 and contracting mechanism 28, which may, for some applications, comprise a rotatable structure 46, such as a spool, which is typically implemented using techniques described herein. The contracting mechanism is arranged to contract base ring 422, e.g., the rotatable structure is arranged such that rotation thereof contracts base ring 422, typically using techniques described herein. Such tightening may serve to couple base ring 422 to annular base 432, as shown in
For some applications, as shown in
Valve prosthesis assembly 400 is typically implanted in a minimally invasive transcatheter or percutaneous procedure. The procedure begins with the introduction and implantation of base ring 422 into the heart, such as using techniques for implanting implantable structure 22, described hereinabove with reference to
Reference is now made to
It is to be noted that the positioning of contraction-restricting element(s) 138 may be placed along implant structures 22, 133, 262, 281, and 371 is anywhere along implant structures 22, 133, 222, 262, 281, and 371.
For some applications, following initial contraction of implant structures 22, 133, 222, 262, 281, and 371 during the implantation procedure, implant structures 22, 133, 222, 262, 281, and 371 may be further contracted or relaxed at a later time after the initial implantation, such as between several weeks and several months after the initial implantation. Using real-time monitoring, tactile feedback and optionally in combination with fluoroscopic imaging, a rotation tool or anchor driver 68 of deployment manipulator 24 is reintroduced into the heart and used to contract or relax implant structures 22, 133, 222, 262, 281, and 371.
Although implant structures 22, 133, 222, 262, 281, and 371 has been described hereinabove as comprising a partial annuloplasty ring, for some applications of the present invention, implant structure 22 instead comprises a full annuloplasty ring. Implant structures 22, 133, 222, 262, 281, and 371 may comprise an annular portion of a structure, a ring, or a partial ring, which facilitate coupling thereto of a prosthetic valve which replaces the native atrioventricular valve. Typically, implant structures 22, 133, 222, 262, 281, and 371 function to treat (e.g., facilitate repair or replacement of) the native atrioventricular valve of the patient.
For some applications of the present invention, systems 20, 131, 261, 220, 260, and 280, and 370 are used to treat an atrioventricular valve other than the mitral valve, i.e., the tricuspid valve. For these applications, implant structures 22, 133, 222, 262, 281, and 371 and other components of systems 20, 131, 261, 220, 260, and 280, and 370 described hereinabove as being placed in the left atrium are instead placed in the right atrium. Although implant structures 22, 133, 222, 262, 281, and 371 are described hereinabove as being placed in an atrium, for some application implant structures 22, 133, 222, 262, 281, and 371 are instead placed in either the left or right ventricle.
Features of implant structures 22, 133, 222, 262, 281, and 371 described with reference to respective figures are not limited to the prostheses shown in those figures. Rather, features of the implant structures shown in any of the figures could be used in combination with any of the other features described herein, mutatis mutandis. Examples of the features that may be combined with each other include, but are not limited to:
Reference is now made to
Typically, the closure elements described herein reduce the likelihood of a thrombosis forming inside sleeve 26, by closing the opening of the sleeve end, relative to if the opening were left opened. Alternatively or additionally, the closure elements described herein are used to close the opening for a different reason.
Typically, the closure of the opening (e.g., using the closure elements described herein) and the deployment of implant structure 22 is performed during a single procedure, e.g., by deploying the implant structure and closing the opening via a single catheter. For some applications (not shown), sleeve 26 defines openings at both thereof, and closure elements are used to close the openings at both of the ends of the sleeve.
Reference is now made to
Reference is now made to
For some applications, the scope of the present invention includes embodiments described in the following applications, which are incorporated herein by reference. In an embodiment, techniques and apparatus described in one or more of the following applications are combined with techniques and apparatus described herein:
It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention includes both combinations and subcombinations of the various features described hereinabove, as well as variations and modifications thereof that are not in the prior art, which would occur to persons skilled in the art upon reading the foregoing description.
The present patent application is a continuation of U.S. patent application Ser. No. 16/601,289, filed Oct. 14, 2019, which published as US 2020/0038186, which is a continuation of U.S. patent application Ser. No. 15/474,543, filed Mar. 30, 2017, now U.S. Pat. No. 10,470,882, which is a continuation of U.S. patent application Ser. No. 14/128,756, filed Feb. 6, 2014, now U.S. Pat. No. 9,662,209, which is the US national phase application of PCT/IL2012/000250, filed Jun. 21, 2012, which claims priority from and is a continuation-in-part of: (a) U.S. patent application Ser. No. 13/167,444 to Reich et al., entitled, “Partially-adjustable annuloplasty structure,” filed Jun. 23, 2011, now U.S. Pat. No. 9,011,530; (b) U.S. patent application Ser. No. 13/167,476 to Hammer et al., entitled, “Closure element for use with annuloplasty structure,” filed Jun. 23, 2011, now U.S. Pat. No. 8,940,044; and (c) U.S. patent application Ser. No. 13/167,492 to Gross, et al., entitled, “Closed band for percutaneous annuloplasty,” filed Jun. 23, 2011, now U.S. Pat. No. 8,926,697. All of these applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3604488 | Wishart et al. | Sep 1971 | A |
3656185 | Carpentier | Apr 1972 | A |
3840018 | Heifetz | Oct 1974 | A |
3874388 | King et al. | Apr 1975 | A |
3881366 | Bradley et al. | May 1975 | A |
3898701 | La Russa | Aug 1975 | A |
4042979 | Angell | Aug 1977 | A |
4118805 | Reimels | Oct 1978 | A |
4214349 | Munch | Jul 1980 | A |
4261342 | Aranguren Duo | Apr 1981 | A |
4290151 | Massana | Sep 1981 | A |
4340091 | Skelton et al. | Jul 1982 | A |
4434828 | Trincia | Mar 1984 | A |
4473928 | Johnson | Oct 1984 | A |
4506669 | Blake, III | Mar 1985 | A |
4590937 | Deniega | May 1986 | A |
4602911 | Ahmadi | Jul 1986 | A |
4625727 | Leiboff | Dec 1986 | A |
4693248 | Failla | Sep 1987 | A |
4712549 | Peters et al. | Dec 1987 | A |
4778468 | Hunt et al. | Oct 1988 | A |
4803983 | Siegel | Feb 1989 | A |
4917698 | Carpentier et al. | Apr 1990 | A |
4935027 | Yoon | Jun 1990 | A |
4961738 | Mackin | Oct 1990 | A |
5042707 | Taheri | Aug 1991 | A |
5061277 | Carpentier et al. | Oct 1991 | A |
5064431 | Gilbertson et al. | Nov 1991 | A |
5104407 | Lam et al. | Apr 1992 | A |
5108420 | Marks | Apr 1992 | A |
5125895 | Buchbinder et al. | Jun 1992 | A |
5171252 | Friedland | Dec 1992 | A |
5195962 | Martin et al. | Mar 1993 | A |
5201880 | Wright et al. | Apr 1993 | A |
5258008 | Wilk | Nov 1993 | A |
5292326 | Green et al. | Mar 1994 | A |
5300034 | Behnke et al. | Apr 1994 | A |
5306296 | Wright et al. | Apr 1994 | A |
5325845 | Adair | Jul 1994 | A |
5327905 | Avitall | Jul 1994 | A |
5346498 | Greelis et al. | Sep 1994 | A |
5363861 | Edwards et al. | Nov 1994 | A |
5370685 | Stevens | Dec 1994 | A |
5383852 | Stevens-Wright | Jan 1995 | A |
5389077 | Melinyshyn et al. | Feb 1995 | A |
5411552 | Andersen et al. | May 1995 | A |
5449368 | Kuzmak | Sep 1995 | A |
5450860 | O'Connor | Sep 1995 | A |
5456674 | Bos et al. | Oct 1995 | A |
5464404 | Abela et al. | Nov 1995 | A |
5474057 | Makower et al. | Dec 1995 | A |
5474518 | Farrer Velazquez | Dec 1995 | A |
5477856 | Lundquist | Dec 1995 | A |
5478353 | Yoon | Dec 1995 | A |
5487746 | Yu et al. | Jan 1996 | A |
5501683 | Trott | Mar 1996 | A |
5565004 | Christoudias | Oct 1996 | A |
5593424 | Northrup, III | Jan 1997 | A |
5601572 | Middleman et al. | Feb 1997 | A |
5607462 | Imran | Mar 1997 | A |
5609598 | Laufer et al. | Mar 1997 | A |
5611794 | Sauer et al. | Mar 1997 | A |
5626607 | Malecki et al. | May 1997 | A |
5626609 | Zvenyatsky et al. | May 1997 | A |
5643317 | Pavonik et al. | Jul 1997 | A |
5669919 | Sanders et al. | Sep 1997 | A |
5674279 | Wright et al. | Oct 1997 | A |
5676653 | Taylor et al. | Oct 1997 | A |
5683402 | Cosgrove et al. | Nov 1997 | A |
5695504 | Gifford, III et al. | Dec 1997 | A |
5702397 | Goble et al. | Dec 1997 | A |
5702398 | Tarabishy | Dec 1997 | A |
5709695 | Northrup, III | Jan 1998 | A |
5716370 | Williamson, IV et al. | Feb 1998 | A |
5716397 | Myers | Feb 1998 | A |
5716417 | Girard et al. | Feb 1998 | A |
5727569 | Benetti et al. | Mar 1998 | A |
5728116 | Rosenman | Mar 1998 | A |
5730150 | Peppel et al. | Mar 1998 | A |
5741297 | Simon | Apr 1998 | A |
5749371 | Zadini et al. | May 1998 | A |
5752963 | Allard et al. | May 1998 | A |
5782746 | Wright | Jul 1998 | A |
5782844 | Yoon et al. | Jul 1998 | A |
5782862 | Bonutti | Jul 1998 | A |
5797960 | Stevens et al. | Aug 1998 | A |
5810882 | Bolduc et al. | Sep 1998 | A |
5824066 | Gross | Oct 1998 | A |
5830221 | Stein et al. | Nov 1998 | A |
5836311 | Borst et al. | Nov 1998 | A |
5843076 | Webster, Jr. et al. | Dec 1998 | A |
5843120 | Israel et al. | Dec 1998 | A |
5855590 | Malecki et al. | Jan 1999 | A |
5855614 | Stevens et al. | Jan 1999 | A |
5876373 | Giba et al. | Mar 1999 | A |
5885271 | Hamilton et al. | Mar 1999 | A |
5888247 | Benetti | Mar 1999 | A |
5891017 | Swindle et al. | Apr 1999 | A |
5891112 | Samson | Apr 1999 | A |
5894843 | Benetti et al. | Apr 1999 | A |
5921979 | Kovac et al. | Jul 1999 | A |
5935098 | Blaisdell et al. | Aug 1999 | A |
5944738 | Amplatz et al. | Aug 1999 | A |
5957835 | Anderson et al. | Sep 1999 | A |
5957953 | DiPoto et al. | Sep 1999 | A |
5961440 | Schweich, Jr. et al. | Oct 1999 | A |
5961539 | Northrup, III et al. | Oct 1999 | A |
5972020 | Carpentier et al. | Oct 1999 | A |
5980534 | Gimpelson | Nov 1999 | A |
5984959 | Robertson et al. | Nov 1999 | A |
5993459 | Larsen et al. | Nov 1999 | A |
6004329 | Myers et al. | Dec 1999 | A |
6010531 | Donlon et al. | Jan 2000 | A |
6017358 | Yoon et al. | Jan 2000 | A |
6042554 | Rosenman et al. | Mar 2000 | A |
6045497 | Schweich, Jr. et al. | Apr 2000 | A |
6050936 | Schweich, Jr. et al. | Apr 2000 | A |
6059715 | Schweich, Jr. et al. | May 2000 | A |
6074341 | Anderson et al. | Jun 2000 | A |
6074401 | Gardiner et al. | Jun 2000 | A |
6074417 | Peredo | Jun 2000 | A |
6086582 | Altman et al. | Jul 2000 | A |
6086600 | Kortenbach | Jul 2000 | A |
6102945 | Campbell | Aug 2000 | A |
6106550 | Magovern et al. | Aug 2000 | A |
6110200 | Hinnenkamp | Aug 2000 | A |
6120496 | Whayne et al. | Sep 2000 | A |
6132370 | Furnish et al. | Oct 2000 | A |
6132390 | Cookston et al. | Oct 2000 | A |
6143024 | Campbell et al. | Nov 2000 | A |
6159240 | Sparer et al. | Dec 2000 | A |
6162239 | Manhes | Dec 2000 | A |
6165119 | Schweich, Jr. et al. | Dec 2000 | A |
6165183 | Kuehn et al. | Dec 2000 | A |
6174332 | Loch et al. | Jan 2001 | B1 |
6182664 | Cosgrove | Feb 2001 | B1 |
6183411 | Mortier et al. | Feb 2001 | B1 |
6187040 | Wright | Feb 2001 | B1 |
6193732 | Frantzen et al. | Feb 2001 | B1 |
6193734 | Bolduc et al. | Feb 2001 | B1 |
6200315 | Gaiser et al. | Mar 2001 | B1 |
6210347 | Forsell | Apr 2001 | B1 |
6217610 | Carpentier et al. | Apr 2001 | B1 |
6228032 | Eaton et al. | May 2001 | B1 |
6231602 | Carpentier et al. | May 2001 | B1 |
6241743 | Levin et al. | Jun 2001 | B1 |
6251092 | Qin et al. | Jun 2001 | B1 |
6269819 | Oz et al. | Aug 2001 | B1 |
6269829 | Chen et al. | Aug 2001 | B1 |
6296656 | Bolduc et al. | Oct 2001 | B1 |
6312447 | Grimes | Nov 2001 | B1 |
6315784 | Djurovic | Nov 2001 | B1 |
6319281 | Patel | Nov 2001 | B1 |
6328746 | Gambale | Dec 2001 | B1 |
6332893 | Mortier et al. | Dec 2001 | B1 |
6355030 | Aldrich et al. | Mar 2002 | B1 |
6361559 | Houser et al. | Mar 2002 | B1 |
6368348 | Gabbay | Apr 2002 | B1 |
6402780 | Williamson, IV et al. | Jun 2002 | B2 |
6406420 | McCarthy et al. | Jun 2002 | B1 |
6406493 | Tu et al. | Jun 2002 | B1 |
6419696 | Ortiz et al. | Jul 2002 | B1 |
6451054 | Stevens | Sep 2002 | B1 |
6458076 | Pruitt | Oct 2002 | B1 |
6461336 | Larre | Oct 2002 | B1 |
6461366 | Seguin | Oct 2002 | B1 |
6468285 | Hsu et al. | Oct 2002 | B1 |
6470892 | Forsell | Oct 2002 | B1 |
6503274 | Howanec, Jr. et al. | Jan 2003 | B1 |
6508806 | Hoste | Jan 2003 | B1 |
6508825 | Selmon et al. | Jan 2003 | B1 |
6524338 | Gundry | Feb 2003 | B1 |
6527780 | Wallace et al. | Mar 2003 | B1 |
6530933 | Yeung et al. | Mar 2003 | B1 |
6530952 | Vesely | Mar 2003 | B2 |
6533772 | Sherts et al. | Mar 2003 | B1 |
6537290 | Adams et al. | Mar 2003 | B2 |
6537314 | Langberg et al. | Mar 2003 | B2 |
6544215 | Bencini et al. | Apr 2003 | B1 |
6547801 | Dargent et al. | Apr 2003 | B1 |
6554845 | Fleenor et al. | Apr 2003 | B1 |
6564805 | Garrison et al. | May 2003 | B2 |
6565603 | Cox | May 2003 | B2 |
6569198 | Wilson et al. | May 2003 | B1 |
6579297 | Bicek et al. | Jun 2003 | B2 |
6589160 | Schweich, Jr. et al. | Jul 2003 | B2 |
6592593 | Parodi et al. | Jul 2003 | B1 |
6602288 | Cosgrove et al. | Aug 2003 | B1 |
6602289 | Colvin et al. | Aug 2003 | B1 |
6613078 | Barone | Sep 2003 | B1 |
6613079 | Wolinsky et al. | Sep 2003 | B1 |
6619291 | Hlavka et al. | Sep 2003 | B2 |
6626899 | Houser et al. | Sep 2003 | B2 |
6626917 | Craig | Sep 2003 | B1 |
6626930 | Allen et al. | Sep 2003 | B1 |
6629534 | Goar et al. | Oct 2003 | B1 |
6629921 | Schweich, Jr. et al. | Oct 2003 | B1 |
6651671 | Donlon et al. | Nov 2003 | B1 |
6652556 | VanTassel et al. | Nov 2003 | B1 |
6682558 | Tu et al. | Jan 2004 | B2 |
6689125 | Keith et al. | Feb 2004 | B1 |
6689164 | Seguin | Feb 2004 | B1 |
6695866 | Kuehn et al. | Feb 2004 | B1 |
6702826 | Liddicoat et al. | Mar 2004 | B2 |
6702846 | Mikus et al. | Mar 2004 | B2 |
6706065 | Langberg et al. | Mar 2004 | B2 |
6709385 | Forsell | Mar 2004 | B2 |
6709456 | Langberg et al. | Mar 2004 | B2 |
6711444 | Koblish | Mar 2004 | B2 |
6719767 | Kimblad | Apr 2004 | B1 |
6719786 | Ryan et al. | Apr 2004 | B2 |
6723038 | Schroeder et al. | Apr 2004 | B1 |
6726716 | Marquez | Apr 2004 | B2 |
6726717 | Alfieri et al. | Apr 2004 | B2 |
6730121 | Ortiz et al. | May 2004 | B2 |
6749630 | McCarthy et al. | Jun 2004 | B2 |
6752813 | Goldfarb et al. | Jun 2004 | B2 |
6764310 | Ichihashi et al. | Jul 2004 | B1 |
6764510 | Vidlund et al. | Jul 2004 | B2 |
6764810 | Ma et al. | Jul 2004 | B2 |
6770083 | Seguin | Aug 2004 | B2 |
6786924 | Ryan et al. | Sep 2004 | B2 |
6786925 | Schoon et al. | Sep 2004 | B1 |
6790231 | Liddicoat et al. | Sep 2004 | B2 |
6797001 | Mathis et al. | Sep 2004 | B2 |
6797002 | Spence et al. | Sep 2004 | B2 |
6802319 | Stevens et al. | Oct 2004 | B2 |
6805710 | Bolling et al. | Oct 2004 | B2 |
6805711 | Quijano et al. | Oct 2004 | B2 |
6837867 | Kortelling | Jan 2005 | B2 |
6855126 | Flinchbaugh | Feb 2005 | B2 |
6855137 | Bon | Feb 2005 | B2 |
6858039 | McCarthy | Feb 2005 | B2 |
6884250 | Monassevitch et al. | Apr 2005 | B2 |
6893459 | Macoviak | May 2005 | B1 |
6908478 | Alferness et al. | Jun 2005 | B2 |
6908482 | McCarthy et al. | Jun 2005 | B2 |
6913614 | Marino et al. | Jul 2005 | B2 |
6918917 | Nguyen et al. | Jul 2005 | B1 |
6926730 | Nguyen et al. | Aug 2005 | B1 |
6939337 | Parker et al. | Sep 2005 | B2 |
6945956 | Waldhauser et al. | Sep 2005 | B2 |
6960217 | Bolduc | Nov 2005 | B2 |
6964684 | Ortiz et al. | Nov 2005 | B2 |
6964686 | Gordon | Nov 2005 | B2 |
6976995 | Mathis et al. | Dec 2005 | B2 |
6986775 | Morales et al. | Jan 2006 | B2 |
6989028 | Lashinski et al. | Jan 2006 | B2 |
6997951 | Solem et al. | Feb 2006 | B2 |
7004176 | Lau | Feb 2006 | B2 |
7007798 | Happonen et al. | Mar 2006 | B2 |
7011669 | Kimblad | Mar 2006 | B2 |
7011682 | Lashinski et al. | Mar 2006 | B2 |
7018406 | Seguin et al. | Mar 2006 | B2 |
7037334 | Hlavka et al. | May 2006 | B1 |
7048754 | Martin et al. | May 2006 | B2 |
7077850 | Kortenbach | Jul 2006 | B2 |
7077862 | Vidlund et al. | Jul 2006 | B2 |
7087064 | Hyde | Aug 2006 | B1 |
7101395 | Tremulis et al. | Sep 2006 | B2 |
7101396 | Artof et al. | Sep 2006 | B2 |
7112207 | Allen et al. | Sep 2006 | B2 |
7118595 | Ryan et al. | Oct 2006 | B2 |
7125421 | Tremulis et al. | Oct 2006 | B2 |
7150737 | Purdy et al. | Dec 2006 | B2 |
7159593 | McCarthy et al. | Jan 2007 | B2 |
7166127 | Spence et al. | Jan 2007 | B2 |
7169187 | Datta et al. | Jan 2007 | B2 |
7172625 | Shu et al. | Feb 2007 | B2 |
7175660 | Cartledge et al. | Feb 2007 | B2 |
7186262 | Saadat | Mar 2007 | B2 |
7186264 | Liddicoat et al. | Mar 2007 | B2 |
7189199 | McCarthy et al. | Mar 2007 | B2 |
7192443 | Solem et al. | Mar 2007 | B2 |
7220277 | Arru et al. | May 2007 | B2 |
7226467 | Lucatero et al. | Jun 2007 | B2 |
7226477 | Cox | Jun 2007 | B2 |
7226647 | Kasperchik et al. | Jun 2007 | B2 |
7229452 | Kayan | Jun 2007 | B2 |
7238191 | Bachmann | Jul 2007 | B2 |
7288097 | Seguin | Oct 2007 | B2 |
7294148 | McCarthy | Nov 2007 | B2 |
7311728 | Solem et al. | Dec 2007 | B2 |
7311729 | Mathis et al. | Dec 2007 | B2 |
7314485 | Mathis | Jan 2008 | B2 |
7316710 | Cheng et al. | Jan 2008 | B1 |
7329279 | Haug et al. | Feb 2008 | B2 |
7329280 | Bolling et al. | Feb 2008 | B2 |
7335213 | Hyde et al. | Feb 2008 | B1 |
7361190 | Shaoullan et al. | Apr 2008 | B2 |
7364588 | Mathis et al. | Apr 2008 | B2 |
7371210 | Brock et al. | May 2008 | B2 |
7377941 | Rhee et al. | May 2008 | B2 |
7390329 | Westra et al. | Jun 2008 | B2 |
7404824 | Webler et al. | Jul 2008 | B1 |
7431692 | Zollinger et al. | Oct 2008 | B2 |
7442207 | Rafiee | Oct 2008 | B2 |
7452376 | Lim et al. | Nov 2008 | B2 |
7455690 | Cartledge et al. | Nov 2008 | B2 |
7464712 | Oz et al. | Dec 2008 | B2 |
7485142 | Milo | Feb 2009 | B2 |
7485143 | Webler et al. | Feb 2009 | B2 |
7500989 | Solem et al. | Mar 2009 | B2 |
7507252 | Lashinski et al. | Mar 2009 | B2 |
7509959 | Oz et al. | Mar 2009 | B2 |
7510575 | Spenser et al. | Mar 2009 | B2 |
7510577 | Moaddeb et al. | Mar 2009 | B2 |
7527647 | Spence | May 2009 | B2 |
7530995 | Quijano et al. | May 2009 | B2 |
7549983 | Roue et al. | Jun 2009 | B2 |
7559936 | Levine | Jul 2009 | B2 |
7562660 | Saadat | Jul 2009 | B2 |
7563267 | Goldfarb et al. | Jul 2009 | B2 |
7563273 | Goldfarb et al. | Jul 2009 | B2 |
7569062 | Kuehn et al. | Aug 2009 | B1 |
7585321 | Cribier | Sep 2009 | B2 |
7588582 | Starksen et al. | Sep 2009 | B2 |
7591826 | Alferness et al. | Sep 2009 | B2 |
7604646 | Goldfarb et al. | Oct 2009 | B2 |
7608091 | Goldfarb et al. | Oct 2009 | B2 |
7608103 | McCarthy | Oct 2009 | B2 |
7618449 | Tremulis et al. | Nov 2009 | B2 |
7625403 | Krivoruchko | Dec 2009 | B2 |
7632303 | Stalker et al. | Dec 2009 | B1 |
7635329 | Goldfarb et al. | Dec 2009 | B2 |
7635386 | Gammie | Dec 2009 | B1 |
7655015 | Goldfarb et al. | Feb 2010 | B2 |
7666204 | Thomton et al. | Feb 2010 | B2 |
7682319 | Martin et al. | Mar 2010 | B2 |
7682369 | Seguin | Mar 2010 | B2 |
7686822 | Shayani | Mar 2010 | B2 |
7699892 | Rafiee et al. | Apr 2010 | B2 |
7704269 | St. Goar et al. | Apr 2010 | B2 |
7704277 | Zakay et al. | Apr 2010 | B2 |
7722666 | Lafontaine | May 2010 | B2 |
7731706 | Potter | Jun 2010 | B2 |
7736388 | Goldfarb et al. | Jun 2010 | B2 |
7744609 | Allen et al. | Jun 2010 | B2 |
7748389 | Salahieh et al. | Jul 2010 | B2 |
7753924 | Starksen et al. | Jul 2010 | B2 |
7753932 | Gingrich et al. | Jul 2010 | B2 |
7758596 | Oz et al. | Jul 2010 | B2 |
7758632 | Hojeibane et al. | Jul 2010 | B2 |
7780723 | Taylor | Aug 2010 | B2 |
7780726 | Seguin | Aug 2010 | B2 |
7803185 | Gabbay | Sep 2010 | B2 |
7824443 | Salahieh et al. | Nov 2010 | B2 |
7871368 | Zollinger et al. | Jan 2011 | B2 |
7871433 | Lattouf | Jan 2011 | B2 |
7883475 | Dupont et al. | Feb 2011 | B2 |
7883538 | To et al. | Feb 2011 | B2 |
7892281 | Seguin et al. | Feb 2011 | B2 |
7927370 | Webler et al. | Apr 2011 | B2 |
7927371 | Navia et al. | Apr 2011 | B2 |
7942927 | Kaye et al. | May 2011 | B2 |
7947056 | Griego et al. | May 2011 | B2 |
7955315 | Feinberg et al. | Jun 2011 | B2 |
7955377 | Melsheimer | Jun 2011 | B2 |
7981123 | Seguin | Jul 2011 | B2 |
7981152 | Webler et al. | Jul 2011 | B1 |
7988724 | Salahieh et al. | Aug 2011 | B2 |
7992567 | Hirotsuka et al. | Aug 2011 | B2 |
7993368 | Gambale et al. | Aug 2011 | B2 |
7993397 | Lashinski et al. | Aug 2011 | B2 |
8012201 | Lashinski et al. | Sep 2011 | B2 |
8034103 | Burriesci et al. | Oct 2011 | B2 |
8052592 | Goldfarb et al. | Nov 2011 | B2 |
8052750 | Tuval et al. | Nov 2011 | B2 |
8057493 | Goldfarb et al. | Nov 2011 | B2 |
8062355 | Figulla et al. | Nov 2011 | B2 |
8070804 | Hyde et al. | Dec 2011 | B2 |
8070805 | Vidlund et al. | Dec 2011 | B2 |
8075616 | Solem et al. | Dec 2011 | B2 |
8096985 | Legaspi et al. | Jan 2012 | B2 |
8100964 | Spence | Jan 2012 | B2 |
8104149 | McGarity | Jan 2012 | B1 |
8123801 | Milo | Feb 2012 | B2 |
8133239 | Oz et al. | Mar 2012 | B2 |
8142493 | Spence et al. | Mar 2012 | B2 |
8142495 | Hasenkam et al. | Mar 2012 | B2 |
8142496 | Berreklouw | Mar 2012 | B2 |
8147542 | Maisano et al. | Apr 2012 | B2 |
8152844 | Rao et al. | Apr 2012 | B2 |
8163013 | Machold et al. | Apr 2012 | B2 |
8172856 | Eigler et al. | May 2012 | B2 |
8187299 | Goldfarb et al. | May 2012 | B2 |
8187324 | Webler et al. | May 2012 | B2 |
8202315 | Hlavka et al. | Jun 2012 | B2 |
8206437 | Bonhoeffer et al. | Jun 2012 | B2 |
8206439 | Gomez Duran | Jun 2012 | B2 |
8216301 | Bonhoeffer et al. | Jul 2012 | B2 |
8216302 | Wilson et al. | Jul 2012 | B2 |
8231671 | Kim | Jul 2012 | B2 |
8262725 | Subramanian | Sep 2012 | B2 |
8265758 | Policker et al. | Sep 2012 | B2 |
8277502 | Miller et al. | Oct 2012 | B2 |
8287584 | Salahieh et al. | Oct 2012 | B2 |
8287591 | Keldar et al. | Oct 2012 | B2 |
8292884 | Levine et al. | Oct 2012 | B2 |
8303608 | Goldfarb et al. | Nov 2012 | B2 |
8303653 | Bonhoeffer et al. | Nov 2012 | B2 |
8313525 | Tuval et al. | Nov 2012 | B2 |
8323334 | Deem et al. | Dec 2012 | B2 |
8328868 | Paul et al. | Dec 2012 | B2 |
8333777 | Schaller et al. | Dec 2012 | B2 |
8343173 | Starksen et al. | Jan 2013 | B2 |
8343174 | Goldfarb et al. | Jan 2013 | B2 |
8343213 | Salahieh et al. | Jan 2013 | B2 |
8348995 | Tuval et al. | Jan 2013 | B2 |
8348996 | Tuval et al. | Jan 2013 | B2 |
8349002 | Milo | Jan 2013 | B2 |
8353956 | Miller et al. | Jan 2013 | B2 |
8357195 | Kuehn | Jan 2013 | B2 |
8382829 | Call et al. | Feb 2013 | B1 |
8388680 | Starksen et al. | Mar 2013 | B2 |
8393517 | Milo | Mar 2013 | B2 |
8414643 | Tuval et al. | Apr 2013 | B2 |
8419825 | Burgler et al. | Apr 2013 | B2 |
8425404 | Wilson et al. | Apr 2013 | B2 |
8430926 | Kirson | Apr 2013 | B2 |
8449573 | Chu | May 2013 | B2 |
8449599 | Chau et al. | May 2013 | B2 |
8449606 | Eliasen et al. | May 2013 | B2 |
8454686 | Alkhatib | Jun 2013 | B2 |
8460368 | Taylor et al. | Jun 2013 | B2 |
8460370 | Zakay | Jun 2013 | B2 |
8460371 | Hlavka et al. | Jun 2013 | B2 |
8470028 | Thornton et al. | Jun 2013 | B2 |
8475491 | Milo | Jul 2013 | B2 |
8475525 | Maisano et al. | Jul 2013 | B2 |
8480730 | Maurer et al. | Jul 2013 | B2 |
8480732 | Subramanian | Jul 2013 | B2 |
8518107 | Tsukashima et al. | Aug 2013 | B2 |
8523940 | Richardson et al. | Sep 2013 | B2 |
8540767 | Zhang | Sep 2013 | B2 |
8545553 | Zipory et al. | Oct 2013 | B2 |
8551161 | Dolan | Oct 2013 | B2 |
8579965 | Bonhoeffer et al. | Nov 2013 | B2 |
8585755 | Chau et al. | Nov 2013 | B2 |
8585756 | Bonhoeffer et al. | Nov 2013 | B2 |
8591576 | Hasenkam et al. | Nov 2013 | B2 |
8608797 | Gross et al. | Dec 2013 | B2 |
8628569 | Benichou et al. | Jan 2014 | B2 |
8628571 | Hacohen et al. | Jan 2014 | B1 |
8641727 | Starksen et al. | Feb 2014 | B2 |
8652202 | Alon et al. | Feb 2014 | B2 |
8652203 | Quadri et al. | Feb 2014 | B2 |
8668733 | Haug et al. | Mar 2014 | B2 |
8679174 | Ottma et al. | Mar 2014 | B2 |
8685086 | Navia et al. | Apr 2014 | B2 |
8721665 | Oz et al. | May 2014 | B2 |
8728097 | Sugimoto et al. | May 2014 | B1 |
8728155 | Montorfano et al. | May 2014 | B2 |
8734467 | Miller et al. | May 2014 | B2 |
8734699 | Heideman et al. | May 2014 | B2 |
8740918 | Seguin | Jun 2014 | B2 |
8740920 | Goldfarb et al. | Jun 2014 | B2 |
8747463 | Fogarty et al. | Jun 2014 | B2 |
8771347 | DeBoer et al. | Jul 2014 | B2 |
8778017 | Eliasen et al. | Jul 2014 | B2 |
8778021 | Cartledge | Jul 2014 | B2 |
8784481 | Alkhatib et al. | Jul 2014 | B2 |
8790367 | Nguyen et al. | Jul 2014 | B2 |
8790394 | Miller et al. | Jul 2014 | B2 |
8795298 | Hernlund et al. | Aug 2014 | B2 |
8795355 | Alkhatib | Aug 2014 | B2 |
8795356 | Quadri et al. | Aug 2014 | B2 |
8795357 | Yohanan et al. | Aug 2014 | B2 |
8808366 | Braido et al. | Aug 2014 | B2 |
8808368 | Maisano et al. | Aug 2014 | B2 |
8834564 | Tuval et al. | Sep 2014 | B2 |
8840663 | Salahieh et al. | Sep 2014 | B2 |
8845717 | Khairkhahan et al. | Sep 2014 | B2 |
8845723 | Spence et al. | Sep 2014 | B2 |
8852261 | White | Oct 2014 | B2 |
8852272 | Gross et al. | Oct 2014 | B2 |
8858623 | Miller et al. | Oct 2014 | B2 |
8864822 | Spence et al. | Oct 2014 | B2 |
8870948 | Erzberger et al. | Oct 2014 | B1 |
8870949 | Rowe | Oct 2014 | B2 |
8876894 | Tuval et al. | Nov 2014 | B2 |
8876895 | Tuval et al. | Nov 2014 | B2 |
8888843 | Khairkhahan et al. | Nov 2014 | B2 |
8889861 | Skead et al. | Nov 2014 | B2 |
8894702 | Quadri et al. | Nov 2014 | B2 |
8911461 | Traynor et al. | Dec 2014 | B2 |
8911494 | Hammer et al. | Dec 2014 | B2 |
8926696 | Cabiri et al. | Jan 2015 | B2 |
8926697 | Gross et al. | Jan 2015 | B2 |
8932343 | Alkhatib et al. | Jan 2015 | B2 |
8932348 | Solem et al. | Jan 2015 | B2 |
8940044 | Hammer et al. | Jan 2015 | B2 |
8945177 | Dell et al. | Feb 2015 | B2 |
8945211 | Sugimoto | Feb 2015 | B2 |
8951285 | Sugimoto et al. | Feb 2015 | B2 |
8951286 | Sugimoto et al. | Feb 2015 | B2 |
8961595 | Alkhatib | Feb 2015 | B2 |
8961602 | Kovach et al. | Feb 2015 | B2 |
8979922 | Jayasinghe et al. | Mar 2015 | B2 |
8992604 | Gross et al. | Mar 2015 | B2 |
9005273 | Salahieh et al. | Apr 2015 | B2 |
9011520 | Miller et al. | Apr 2015 | B2 |
9011530 | Reich et al. | Apr 2015 | B2 |
9023100 | Quadri et al. | May 2015 | B2 |
9034032 | McLean et al. | May 2015 | B2 |
9072603 | Tuval et al. | Jul 2015 | B2 |
9107749 | Bobo et al. | Aug 2015 | B2 |
9119719 | Zipory et al. | Sep 2015 | B2 |
9125632 | Loulmet et al. | Sep 2015 | B2 |
9125742 | Yoganathan et al. | Sep 2015 | B2 |
9138316 | Bielefeld | Sep 2015 | B2 |
9173646 | Fabro | Nov 2015 | B2 |
9180005 | Lashinski et al. | Nov 2015 | B1 |
9180007 | Reich et al. | Nov 2015 | B2 |
9192472 | Gross et al. | Nov 2015 | B2 |
9198756 | Aklog et al. | Dec 2015 | B2 |
9198757 | Schroeder et al. | Dec 2015 | B2 |
9220507 | Patel et al. | Dec 2015 | B1 |
9226825 | Starksen et al. | Jan 2016 | B2 |
9259317 | Wilson et al. | Feb 2016 | B2 |
9265608 | Miller et al. | Feb 2016 | B2 |
9282972 | Patel et al. | Mar 2016 | B1 |
9301834 | Tuval et al. | Apr 2016 | B2 |
9308360 | Bishop et al. | Apr 2016 | B2 |
9326857 | Cartledge et al. | May 2016 | B2 |
9387071 | Tuval et al. | Jul 2016 | B2 |
9414921 | Miller et al. | Aug 2016 | B2 |
9427316 | Schweich, Jr. et al. | Aug 2016 | B2 |
9427327 | Parrish | Aug 2016 | B2 |
9439763 | Geist et al. | Sep 2016 | B2 |
9474606 | Zipory et al. | Oct 2016 | B2 |
9510837 | Seguin | Dec 2016 | B2 |
9510946 | Chau et al. | Dec 2016 | B2 |
9526613 | Gross et al. | Dec 2016 | B2 |
9561104 | Miller et al. | Feb 2017 | B2 |
9572660 | Braido et al. | Feb 2017 | B2 |
9579090 | Simms et al. | Feb 2017 | B1 |
9642704 | Tuval et al. | May 2017 | B2 |
9693865 | Gilmore et al. | Jul 2017 | B2 |
9700445 | Martin et al. | Jul 2017 | B2 |
9724084 | Groothuis et al. | Aug 2017 | B2 |
9730793 | Reich et al. | Aug 2017 | B2 |
9775963 | Miller | Oct 2017 | B2 |
9788941 | Hacohen | Oct 2017 | B2 |
9801720 | Gilmore et al. | Oct 2017 | B2 |
D809139 | Marsot et al. | Jan 2018 | S |
9889002 | Bonhoeffer et al. | Feb 2018 | B2 |
9907547 | Gilmore et al. | Mar 2018 | B2 |
9949824 | Bonhoeffer et al. | Apr 2018 | B2 |
10076327 | Ellis et al. | Sep 2018 | B2 |
10076415 | Metchik et al. | Sep 2018 | B1 |
10099050 | Chen et al. | Oct 2018 | B2 |
10105221 | Siegel | Oct 2018 | B2 |
10105222 | Metchik et al. | Oct 2018 | B1 |
10111751 | Metchik et al. | Oct 2018 | B1 |
10123873 | Metchik et al. | Nov 2018 | B1 |
10130475 | Metchik et al. | Nov 2018 | B1 |
10136993 | Metchik et al. | Nov 2018 | B1 |
10159570 | Metchik et al. | Dec 2018 | B1 |
10226309 | Ho et al. | Mar 2019 | B2 |
10231837 | Metchik et al. | Mar 2019 | B1 |
10238493 | Metchik et al. | Mar 2019 | B1 |
10238494 | McNiven et al. | Mar 2019 | B2 |
10238495 | Marsot et al. | Mar 2019 | B2 |
10299924 | Kizuka | May 2019 | B2 |
10368852 | Gerhardt et al. | Aug 2019 | B2 |
10376673 | Van Hoven et al. | Aug 2019 | B2 |
10575841 | Paulos | Mar 2020 | B1 |
20010005787 | Oz et al. | Jun 2001 | A1 |
20010021874 | Carpentier et al. | Sep 2001 | A1 |
20020013571 | Goldfarb et al. | Jan 2002 | A1 |
20020022862 | Grafton et al. | Feb 2002 | A1 |
20020082525 | Oslund et al. | Jun 2002 | A1 |
20020087048 | Brock et al. | Jul 2002 | A1 |
20020095139 | Keogh et al. | Jul 2002 | A1 |
20020103532 | Langberg et al. | Aug 2002 | A1 |
20020107531 | Schreck et al. | Aug 2002 | A1 |
20020120292 | Morgan | Aug 2002 | A1 |
20020151916 | Muramatsu et al. | Oct 2002 | A1 |
20020151970 | Garrison et al. | Oct 2002 | A1 |
20020169358 | Mortier et al. | Nov 2002 | A1 |
20020173811 | Tu et al. | Nov 2002 | A1 |
20020177904 | Huxel et al. | Nov 2002 | A1 |
20020183787 | Wahr et al. | Dec 2002 | A1 |
20020188301 | Dallara et al. | Dec 2002 | A1 |
20020188350 | Arru et al. | Dec 2002 | A1 |
20020198586 | Inoue | Dec 2002 | A1 |
20030018358 | Saadat | Jan 2003 | A1 |
20030050693 | Quijano et al. | Mar 2003 | A1 |
20030078465 | Pai et al. | Apr 2003 | A1 |
20030078653 | Vesely et al. | Apr 2003 | A1 |
20030083538 | Adams et al. | May 2003 | A1 |
20030093148 | Bolling et al. | May 2003 | A1 |
20030100943 | Bolduc | May 2003 | A1 |
20030105519 | Fasol et al. | Jun 2003 | A1 |
20030114901 | Loeb et al. | Jun 2003 | A1 |
20030120340 | Liska et al. | Jun 2003 | A1 |
20030144573 | Heilman et al. | Jul 2003 | A1 |
20030144657 | Bowe et al. | Jul 2003 | A1 |
20030171760 | Gambale | Sep 2003 | A1 |
20030187467 | Schreck | Oct 2003 | A1 |
20030199974 | Lee et al. | Oct 2003 | A1 |
20030204193 | Gabriel et al. | Oct 2003 | A1 |
20030204195 | Keane et al. | Oct 2003 | A1 |
20030208208 | Chu | Nov 2003 | A1 |
20030208231 | Williamson et al. | Nov 2003 | A1 |
20030229350 | Kay | Dec 2003 | A1 |
20030229395 | Cox | Dec 2003 | A1 |
20040002735 | Lizardi et al. | Jan 2004 | A1 |
20040003819 | St. Goar et al. | Jan 2004 | A1 |
20040010287 | Bonutti | Jan 2004 | A1 |
20040019359 | Worley et al. | Jan 2004 | A1 |
20040019377 | Taylor et al. | Jan 2004 | A1 |
20040024451 | Johnson et al. | Feb 2004 | A1 |
20040030382 | St. Goar et al. | Feb 2004 | A1 |
20040034365 | Lentz et al. | Feb 2004 | A1 |
20040039442 | St. Goar et al. | Feb 2004 | A1 |
20040044350 | Martin et al. | Mar 2004 | A1 |
20040044365 | Bachman | Mar 2004 | A1 |
20040049207 | Goldfarb et al. | Mar 2004 | A1 |
20040049211 | Tremulis et al. | Mar 2004 | A1 |
20040059413 | Argento | Mar 2004 | A1 |
20040068273 | Fariss et al. | Apr 2004 | A1 |
20040111095 | Gordon et al. | Jun 2004 | A1 |
20040122448 | Levine | Jun 2004 | A1 |
20040122514 | Fogarty et al. | Jun 2004 | A1 |
20040127981 | Rahdert et al. | Jul 2004 | A1 |
20040127982 | Machold et al. | Jul 2004 | A1 |
20040133274 | Webler et al. | Jul 2004 | A1 |
20040133374 | Kattan | Jul 2004 | A1 |
20040138744 | Lashinski et al. | Jul 2004 | A1 |
20040138745 | Macoviak et al. | Jul 2004 | A1 |
20040147943 | Kobayashi | Jul 2004 | A1 |
20040148019 | Vidlund et al. | Jul 2004 | A1 |
20040148020 | Vidlund et al. | Jul 2004 | A1 |
20040148021 | Cartledge | Jul 2004 | A1 |
20040176788 | Opolski | Sep 2004 | A1 |
20040181135 | Drysen | Sep 2004 | A1 |
20040181206 | Chiu et al. | Sep 2004 | A1 |
20040181238 | Zarbatany et al. | Sep 2004 | A1 |
20040181287 | Gellman | Sep 2004 | A1 |
20040186566 | Hindrichs et al. | Sep 2004 | A1 |
20040193191 | Starksen et al. | Sep 2004 | A1 |
20040210307 | Khairkhahan | Oct 2004 | A1 |
20040220593 | Greenhalgh | Nov 2004 | A1 |
20040243227 | Starksen et al. | Dec 2004 | A1 |
20040260317 | Bloom et al. | Dec 2004 | A1 |
20040260344 | Lyons et al. | Dec 2004 | A1 |
20040260393 | Rahdert et al. | Dec 2004 | A1 |
20040260394 | Douk et al. | Dec 2004 | A1 |
20040267358 | Reitan | Dec 2004 | A1 |
20050004668 | Aklog et al. | Jan 2005 | A1 |
20050010287 | Macoviak et al. | Jan 2005 | A1 |
20050010787 | Tarbouriech | Jan 2005 | A1 |
20050016560 | Voughlohn | Jan 2005 | A1 |
20050049618 | Masuda et al. | Mar 2005 | A1 |
20050049692 | Numamoto et al. | Mar 2005 | A1 |
20050055038 | Kelleher et al. | Mar 2005 | A1 |
20050055087 | Starksen | Mar 2005 | A1 |
20050060030 | Lashinski et al. | Mar 2005 | A1 |
20050065601 | Lee et al. | Mar 2005 | A1 |
20050070926 | Ortiz | Mar 2005 | A1 |
20050070999 | Spence | Mar 2005 | A1 |
20050075654 | Kelleher | Apr 2005 | A1 |
20050075727 | Wheatley | Apr 2005 | A1 |
20050090827 | Gedebou | Apr 2005 | A1 |
20050090834 | Chiang et al. | Apr 2005 | A1 |
20050096740 | Langberg et al. | May 2005 | A1 |
20050107871 | Realyvasquez et al. | May 2005 | A1 |
20050119734 | Spence et al. | Jun 2005 | A1 |
20050125002 | Baran et al. | Jun 2005 | A1 |
20050125011 | Spence et al. | Jun 2005 | A1 |
20050131533 | Alfieri et al. | Jun 2005 | A1 |
20050137686 | Salahieh et al. | Jun 2005 | A1 |
20050137688 | Salahieh et al. | Jun 2005 | A1 |
20050137690 | Salahieh et al. | Jun 2005 | A1 |
20050137695 | Salahieh et al. | Jun 2005 | A1 |
20050143767 | Kimura et al. | Jun 2005 | A1 |
20050159728 | Armour et al. | Jul 2005 | A1 |
20050159810 | Filsoufi | Jul 2005 | A1 |
20050165429 | Douglas et al. | Jul 2005 | A1 |
20050171601 | Cosgrove et al. | Aug 2005 | A1 |
20050177180 | Kaganov et al. | Aug 2005 | A1 |
20050177228 | Solem et al. | Aug 2005 | A1 |
20050187568 | Klenk et al. | Aug 2005 | A1 |
20050187613 | Bolduc et al. | Aug 2005 | A1 |
20050192596 | Jugenheimer et al. | Sep 2005 | A1 |
20050203549 | Realyvasquez | Sep 2005 | A1 |
20050203606 | VanCamp | Sep 2005 | A1 |
20050216039 | Lederman | Sep 2005 | A1 |
20050216079 | MaCoviak | Sep 2005 | A1 |
20050222665 | Aranyi | Oct 2005 | A1 |
20050234481 | Waller | Oct 2005 | A1 |
20050240199 | Martinek et al. | Oct 2005 | A1 |
20050245821 | Govari et al. | Nov 2005 | A1 |
20050251183 | Buckman et al. | Nov 2005 | A1 |
20050256532 | Nayak et al. | Nov 2005 | A1 |
20050267478 | Corradi et al. | Dec 2005 | A1 |
20050273138 | To et al. | Dec 2005 | A1 |
20050288778 | Shaoulian et al. | Dec 2005 | A1 |
20050288786 | Chanduszko | Dec 2005 | A1 |
20060004442 | Spenser et al. | Jan 2006 | A1 |
20060004443 | Liddicoat et al. | Jan 2006 | A1 |
20060020275 | Goldfarb et al. | Jan 2006 | A1 |
20060020326 | Bolduc et al. | Jan 2006 | A9 |
20060020327 | Lashinski et al. | Jan 2006 | A1 |
20060020333 | Lashinski et al. | Jan 2006 | A1 |
20060020336 | Liddicoat | Jan 2006 | A1 |
20060025787 | Morales et al. | Feb 2006 | A1 |
20060025858 | Alameddine | Feb 2006 | A1 |
20060030885 | Hyde | Feb 2006 | A1 |
20060041319 | Taylor et al. | Feb 2006 | A1 |
20060069429 | Spence et al. | Mar 2006 | A1 |
20060074486 | Liddicoat et al. | Apr 2006 | A1 |
20060085012 | Dolan | Apr 2006 | A1 |
20060089671 | Goldfarb et al. | Apr 2006 | A1 |
20060095009 | Lampropoulos et al. | May 2006 | A1 |
20060100649 | Hart | May 2006 | A1 |
20060106423 | Weisel et al. | May 2006 | A1 |
20060116757 | Lashinski et al. | Jun 2006 | A1 |
20060122633 | To et al. | Jun 2006 | A1 |
20060122647 | Callaghan et al. | Jun 2006 | A1 |
20060129166 | Lavelle | Jun 2006 | A1 |
20060142694 | Bednarek et al. | Jun 2006 | A1 |
20060149280 | Harvie et al. | Jul 2006 | A1 |
20060149368 | Spence | Jul 2006 | A1 |
20060161265 | Levine et al. | Jul 2006 | A1 |
20060173251 | Govari et al. | Aug 2006 | A1 |
20060178700 | Quinn | Aug 2006 | A1 |
20060184240 | Jimenez et al. | Aug 2006 | A1 |
20060184242 | Lichtenstein | Aug 2006 | A1 |
20060195134 | Crittenden | Aug 2006 | A1 |
20060206203 | Yang et al. | Sep 2006 | A1 |
20060224169 | Weisenburgh et al. | Oct 2006 | A1 |
20060241622 | Zergiebel | Oct 2006 | A1 |
20060241656 | Starksen et al. | Oct 2006 | A1 |
20060241748 | Lee et al. | Oct 2006 | A1 |
20060247763 | Slater | Nov 2006 | A1 |
20060259135 | Navia et al. | Nov 2006 | A1 |
20060271175 | Woolfson et al. | Nov 2006 | A1 |
20060276871 | Lamson et al. | Dec 2006 | A1 |
20060282161 | Huynh et al. | Dec 2006 | A1 |
20060287661 | Bolduc et al. | Dec 2006 | A1 |
20060287716 | Banbury et al. | Dec 2006 | A1 |
20070001627 | Lin et al. | Jan 2007 | A1 |
20070010800 | Weitzner et al. | Jan 2007 | A1 |
20070010877 | Salahieh et al. | Jan 2007 | A1 |
20070016286 | Herrmann et al. | Jan 2007 | A1 |
20070016287 | Cartledge et al. | Jan 2007 | A1 |
20070016288 | Gurskis et al. | Jan 2007 | A1 |
20070021779 | Garvin et al. | Jan 2007 | A1 |
20070021781 | Jervis et al. | Jan 2007 | A1 |
20070027533 | Douk | Feb 2007 | A1 |
20070027536 | Mihaljevic et al. | Feb 2007 | A1 |
20070032807 | Ortiz et al. | Feb 2007 | A1 |
20070032823 | Tegg | Feb 2007 | A1 |
20070038221 | Fine et al. | Feb 2007 | A1 |
20070038293 | St.Goar et al. | Feb 2007 | A1 |
20070038296 | Navia et al. | Feb 2007 | A1 |
20070039425 | Wang | Feb 2007 | A1 |
20070049942 | Hindrichs et al. | Mar 2007 | A1 |
20070049970 | Belef et al. | Mar 2007 | A1 |
20070051377 | Douk et al. | Mar 2007 | A1 |
20070055206 | To et al. | Mar 2007 | A1 |
20070060922 | Dreyfuss | Mar 2007 | A1 |
20070061010 | Hauser et al. | Mar 2007 | A1 |
20070066863 | Rafiee et al. | Mar 2007 | A1 |
20070078297 | Rafiee et al. | Apr 2007 | A1 |
20070080188 | Spence et al. | Apr 2007 | A1 |
20070083168 | Whiting et al. | Apr 2007 | A1 |
20070083235 | Jervis et al. | Apr 2007 | A1 |
20070093857 | Rogers et al. | Apr 2007 | A1 |
20070093890 | Eliasen et al. | Apr 2007 | A1 |
20070100427 | Perouse | May 2007 | A1 |
20070106328 | Wardle et al. | May 2007 | A1 |
20070112359 | Kimura et al. | May 2007 | A1 |
20070112422 | Dehdashtian | May 2007 | A1 |
20070112425 | Schaller et al. | May 2007 | A1 |
20070118151 | Davidson | May 2007 | A1 |
20070118154 | Crabtree | May 2007 | A1 |
20070118213 | Loulmet | May 2007 | A1 |
20070118215 | Moaddeb | May 2007 | A1 |
20070142907 | Moaddeb et al. | Jun 2007 | A1 |
20070156197 | Root et al. | Jul 2007 | A1 |
20070162111 | Fukamachi et al. | Jul 2007 | A1 |
20070173931 | Tremulis et al. | Jul 2007 | A1 |
20070191154 | Genereux et al. | Aug 2007 | A1 |
20070197858 | Goldfarb et al. | Aug 2007 | A1 |
20070198038 | Cohen et al. | Aug 2007 | A1 |
20070198082 | Kapadia et al. | Aug 2007 | A1 |
20070219558 | Deutsch | Sep 2007 | A1 |
20070239208 | Crawford | Oct 2007 | A1 |
20070244554 | Rafiee et al. | Oct 2007 | A1 |
20070244556 | Rafiee et al. | Oct 2007 | A1 |
20070255397 | Ryan et al. | Nov 2007 | A1 |
20070255400 | Parravicini et al. | Nov 2007 | A1 |
20070265491 | Krag et al. | Nov 2007 | A1 |
20070265700 | Eliasen et al. | Nov 2007 | A1 |
20070270679 | Nguyen et al. | Nov 2007 | A1 |
20070270755 | Von Oepen et al. | Nov 2007 | A1 |
20070276437 | Call et al. | Nov 2007 | A1 |
20070282375 | Hindrichs et al. | Dec 2007 | A1 |
20070282414 | Soltis et al. | Dec 2007 | A1 |
20070282429 | Hauser et al. | Dec 2007 | A1 |
20070293943 | Quinn | Dec 2007 | A1 |
20070295172 | Swartz | Dec 2007 | A1 |
20070299387 | Williams et al. | Dec 2007 | A1 |
20070299424 | Cumming et al. | Dec 2007 | A1 |
20080004697 | Lichtenstein et al. | Jan 2008 | A1 |
20080027483 | Cartledge et al. | Jan 2008 | A1 |
20080027555 | Hawkins | Jan 2008 | A1 |
20080035160 | Woodson et al. | Feb 2008 | A1 |
20080039743 | Fox et al. | Feb 2008 | A1 |
20080039935 | Buch et al. | Feb 2008 | A1 |
20080039953 | Davis et al. | Feb 2008 | A1 |
20080051703 | Thornton et al. | Feb 2008 | A1 |
20080058595 | Snoke et al. | Mar 2008 | A1 |
20080065011 | Marchand et al. | Mar 2008 | A1 |
20080065149 | Thielen et al. | Mar 2008 | A1 |
20080065204 | Macoviak et al. | Mar 2008 | A1 |
20080071366 | Tuval et al. | Mar 2008 | A1 |
20080077144 | Crofford | Mar 2008 | A1 |
20080082132 | Annest et al. | Apr 2008 | A1 |
20080086138 | Stone et al. | Apr 2008 | A1 |
20080086203 | Roberts | Apr 2008 | A1 |
20080091169 | Heideman et al. | Apr 2008 | A1 |
20080091257 | Andreas et al. | Apr 2008 | A1 |
20080097483 | Ortiz et al. | Apr 2008 | A1 |
20080097523 | Bolduc et al. | Apr 2008 | A1 |
20080103572 | Gerber | May 2008 | A1 |
20080140089 | Kogiso et al. | Jun 2008 | A1 |
20080140116 | Bonutti | Jun 2008 | A1 |
20080147093 | Roskopf et al. | Jun 2008 | A1 |
20080147112 | Sheets et al. | Jun 2008 | A1 |
20080149685 | Smith et al. | Jun 2008 | A1 |
20080167713 | Bolling | Jul 2008 | A1 |
20080167714 | St. Goar et al. | Jul 2008 | A1 |
20080177300 | Mas et al. | Jul 2008 | A1 |
20080177380 | Starksen et al. | Jul 2008 | A1 |
20080195126 | Solem | Aug 2008 | A1 |
20080195200 | Vidlund et al. | Aug 2008 | A1 |
20080208265 | Frazier et al. | Aug 2008 | A1 |
20080208332 | Lamphere et al. | Aug 2008 | A1 |
20080221672 | Lamphere et al. | Sep 2008 | A1 |
20080228030 | Godin | Sep 2008 | A1 |
20080228223 | Alkhatib | Sep 2008 | A1 |
20080234729 | Page et al. | Sep 2008 | A1 |
20080255427 | Satake et al. | Oct 2008 | A1 |
20080262480 | Stahler et al. | Oct 2008 | A1 |
20080262609 | Gross et al. | Oct 2008 | A1 |
20080275300 | Rothe et al. | Nov 2008 | A1 |
20080275469 | Fanton et al. | Nov 2008 | A1 |
20080275551 | Alfieri | Nov 2008 | A1 |
20080281353 | Aranyi et al. | Nov 2008 | A1 |
20080281411 | Berreklouw | Nov 2008 | A1 |
20080287862 | Weitzner et al. | Nov 2008 | A1 |
20080288044 | Osborne | Nov 2008 | A1 |
20080288062 | Andrieu et al. | Nov 2008 | A1 |
20080294247 | Yang et al. | Nov 2008 | A1 |
20080294251 | Annest et al. | Nov 2008 | A1 |
20080300537 | Bowman | Dec 2008 | A1 |
20080300629 | Surti | Dec 2008 | A1 |
20080312506 | Spivey et al. | Dec 2008 | A1 |
20080319455 | Harris et al. | Dec 2008 | A1 |
20090005863 | Goetz et al. | Jan 2009 | A1 |
20090024110 | Heideman et al. | Jan 2009 | A1 |
20090028670 | Garcia et al. | Jan 2009 | A1 |
20090043381 | Macoviak et al. | Feb 2009 | A1 |
20090054723 | Khairkhahan et al. | Feb 2009 | A1 |
20090054969 | Salahieh et al. | Feb 2009 | A1 |
20090062866 | Jackson | Mar 2009 | A1 |
20090076586 | Hauser et al. | Mar 2009 | A1 |
20090076600 | Quinn | Mar 2009 | A1 |
20090082797 | Fung et al. | Mar 2009 | A1 |
20090088837 | Gillinov et al. | Apr 2009 | A1 |
20090093877 | Keldar et al. | Apr 2009 | A1 |
20090099650 | Bolduc et al. | Apr 2009 | A1 |
20090105816 | Olsen et al. | Apr 2009 | A1 |
20090125102 | Cartledge et al. | May 2009 | A1 |
20090131880 | Speziali et al. | May 2009 | A1 |
20090156995 | Martin et al. | Jun 2009 | A1 |
20090163934 | Raschdorf, Jr. et al. | Jun 2009 | A1 |
20090166913 | Guo et al. | Jul 2009 | A1 |
20090171439 | Nissl | Jul 2009 | A1 |
20090177266 | Powell et al. | Jul 2009 | A1 |
20090177274 | Scorsin et al. | Jul 2009 | A1 |
20090187216 | Schmieding et al. | Jul 2009 | A1 |
20090222083 | Nguyen et al. | Sep 2009 | A1 |
20090234280 | Tah et al. | Sep 2009 | A1 |
20090248148 | Shaolian et al. | Oct 2009 | A1 |
20090254103 | Deutsch | Oct 2009 | A1 |
20090264994 | Saadat | Oct 2009 | A1 |
20090275902 | Heeps et al. | Nov 2009 | A1 |
20090287231 | Brooks et al. | Nov 2009 | A1 |
20090287304 | Dahlgren et al. | Nov 2009 | A1 |
20090299409 | Coe et al. | Dec 2009 | A1 |
20090326648 | Machold et al. | Dec 2009 | A1 |
20100001038 | Levin et al. | Jan 2010 | A1 |
20100010538 | Juravic et al. | Jan 2010 | A1 |
20100022823 | Goldfarb et al. | Jan 2010 | A1 |
20100023118 | Medlock et al. | Jan 2010 | A1 |
20100030014 | Ferrazzi | Feb 2010 | A1 |
20100030328 | Seguin et al. | Feb 2010 | A1 |
20100042147 | Janovsky et al. | Feb 2010 | A1 |
20100049213 | Serina et al. | Feb 2010 | A1 |
20100057192 | Celermajer | Mar 2010 | A1 |
20100063542 | van der Burg et al. | Mar 2010 | A1 |
20100063550 | Felix et al. | Mar 2010 | A1 |
20100069834 | Schultz | Mar 2010 | A1 |
20100076499 | McNamara et al. | Mar 2010 | A1 |
20100094248 | Nguyen et al. | Apr 2010 | A1 |
20100094314 | Hernlund et al. | Apr 2010 | A1 |
20100094317 | Goldfarb et al. | Apr 2010 | A1 |
20100106141 | Osypka et al. | Apr 2010 | A1 |
20100114180 | Rock et al. | May 2010 | A1 |
20100121349 | Meier et al. | May 2010 | A1 |
20100121434 | Paul et al. | May 2010 | A1 |
20100121435 | Subramanian et al. | May 2010 | A1 |
20100121437 | Subramanian et al. | May 2010 | A1 |
20100130989 | Bourque et al. | May 2010 | A1 |
20100130992 | Machold et al. | May 2010 | A1 |
20100152845 | Bloom et al. | Jun 2010 | A1 |
20100161042 | Maisano et al. | Jun 2010 | A1 |
20100161043 | Maisano et al. | Jun 2010 | A1 |
20100161047 | Cabiri | Jun 2010 | A1 |
20100168827 | Schultz | Jul 2010 | A1 |
20100168845 | Wright | Jul 2010 | A1 |
20100174358 | Rabkin et al. | Jul 2010 | A1 |
20100179574 | Longoria et al. | Jul 2010 | A1 |
20100217184 | Koblish et al. | Aug 2010 | A1 |
20100217382 | Chau et al. | Aug 2010 | A1 |
20100234935 | Bashiri et al. | Sep 2010 | A1 |
20100249497 | Peine et al. | Sep 2010 | A1 |
20100249908 | Chau et al. | Sep 2010 | A1 |
20100249915 | Zhang | Sep 2010 | A1 |
20100249920 | Bolling et al. | Sep 2010 | A1 |
20100262232 | Annest | Oct 2010 | A1 |
20100262233 | He | Oct 2010 | A1 |
20100280604 | Zipory et al. | Nov 2010 | A1 |
20100280605 | Hammer et al. | Nov 2010 | A1 |
20100286628 | Gross | Nov 2010 | A1 |
20100298929 | Thornton et al. | Nov 2010 | A1 |
20100305475 | Hinchliffe et al. | Dec 2010 | A1 |
20100324595 | Linder et al. | Dec 2010 | A1 |
20100324598 | Anderson | Dec 2010 | A1 |
20110004210 | Johnson et al. | Jan 2011 | A1 |
20110004298 | Lee et al. | Jan 2011 | A1 |
20110009956 | Cartledge et al. | Jan 2011 | A1 |
20110011917 | Loulmet | Jan 2011 | A1 |
20110026208 | Utsuro et al. | Feb 2011 | A1 |
20110029066 | Gilad et al. | Feb 2011 | A1 |
20110035000 | Nieminen et al. | Feb 2011 | A1 |
20110066231 | Cartledge et al. | Mar 2011 | A1 |
20110067770 | Pederson et al. | Mar 2011 | A1 |
20110071626 | Wright et al. | Mar 2011 | A1 |
20110082538 | Dahlgren et al. | Apr 2011 | A1 |
20110087146 | Ryan et al. | Apr 2011 | A1 |
20110093002 | Rucker et al. | Apr 2011 | A1 |
20110106247 | Miller et al. | May 2011 | A1 |
20110118832 | Punjabi | May 2011 | A1 |
20110137410 | Hacohen | Jun 2011 | A1 |
20110144576 | Rothe et al. | Jun 2011 | A1 |
20110144703 | Krause et al. | Jun 2011 | A1 |
20110202130 | Cartledge et al. | Aug 2011 | A1 |
20110208283 | Rust | Aug 2011 | A1 |
20110230941 | Markus | Sep 2011 | A1 |
20110230961 | Langer et al. | Sep 2011 | A1 |
20110238088 | Bolduc et al. | Sep 2011 | A1 |
20110245855 | Matsuoka et al. | Oct 2011 | A1 |
20110257433 | Walker | Oct 2011 | A1 |
20110257633 | Cartledge et al. | Oct 2011 | A1 |
20110257723 | McNamara | Oct 2011 | A1 |
20110264208 | Duffy et al. | Oct 2011 | A1 |
20110276062 | Bolduc | Nov 2011 | A1 |
20110288435 | Christy et al. | Nov 2011 | A1 |
20110295281 | Mizumoto et al. | Dec 2011 | A1 |
20110301498 | Maenhout et al. | Dec 2011 | A1 |
20120022557 | Cabiri et al. | Jan 2012 | A1 |
20120022633 | Olson et al. | Jan 2012 | A1 |
20120053628 | Sojka et al. | Mar 2012 | A1 |
20120065464 | Ellis et al. | Mar 2012 | A1 |
20120078355 | Zipory et al. | Mar 2012 | A1 |
20120078359 | Li et al. | Mar 2012 | A1 |
20120089022 | House et al. | Apr 2012 | A1 |
20120089125 | Scheibe et al. | Apr 2012 | A1 |
20120095552 | Spence et al. | Apr 2012 | A1 |
20120101571 | Thambar et al. | Apr 2012 | A1 |
20120109155 | Robinson et al. | May 2012 | A1 |
20120109160 | Martinez et al. | May 2012 | A1 |
20120116419 | Sigmon, Jr. | May 2012 | A1 |
20120123531 | Tsukashima | May 2012 | A1 |
20120150290 | Gabbay | Jun 2012 | A1 |
20120158021 | Morrill | Jun 2012 | A1 |
20120158023 | Mitelberg et al. | Jun 2012 | A1 |
20120179086 | Shank et al. | Jul 2012 | A1 |
20120191182 | Hauser et al. | Jul 2012 | A1 |
20120209318 | Qadeer | Aug 2012 | A1 |
20120226349 | Tuval et al. | Sep 2012 | A1 |
20120239142 | Liu et al. | Sep 2012 | A1 |
20120245604 | Tegzes | Sep 2012 | A1 |
20120271198 | Whittaker et al. | Oct 2012 | A1 |
20120277853 | Rothstein | Nov 2012 | A1 |
20120283757 | Miller et al. | Nov 2012 | A1 |
20120296349 | Smith et al. | Nov 2012 | A1 |
20120296417 | Hill et al. | Nov 2012 | A1 |
20120310330 | Buchbinder et al. | Dec 2012 | A1 |
20120323313 | Seguin | Dec 2012 | A1 |
20130030522 | Rowe et al. | Jan 2013 | A1 |
20130035759 | Gross et al. | Feb 2013 | A1 |
20130041314 | Dillon | Feb 2013 | A1 |
20130046373 | Cartledge et al. | Feb 2013 | A1 |
20130053884 | Roorda | Feb 2013 | A1 |
20130066341 | Ketai et al. | Mar 2013 | A1 |
20130066342 | Dell et al. | Mar 2013 | A1 |
20130072945 | Terada | Mar 2013 | A1 |
20130073034 | Wilson et al. | Mar 2013 | A1 |
20130079873 | Migliazza et al. | Mar 2013 | A1 |
20130085529 | Housman | Apr 2013 | A1 |
20130090724 | Subramanian et al. | Apr 2013 | A1 |
20130096673 | Hill et al. | Apr 2013 | A1 |
20130110254 | Osborne | May 2013 | A1 |
20130116776 | Gross et al. | May 2013 | A1 |
20130123910 | Cartledge et al. | May 2013 | A1 |
20130131791 | Hlavka et al. | May 2013 | A1 |
20130166017 | Cartledge et al. | Jun 2013 | A1 |
20130190798 | Kapadia | Jul 2013 | A1 |
20130190861 | Chau et al. | Jul 2013 | A1 |
20130190863 | Call et al. | Jul 2013 | A1 |
20130204361 | Adams et al. | Aug 2013 | A1 |
20130226289 | Shaolian et al. | Aug 2013 | A1 |
20130226290 | Yellin et al. | Aug 2013 | A1 |
20130231701 | Voss et al. | Sep 2013 | A1 |
20130268069 | Zakai et al. | Oct 2013 | A1 |
20130282059 | Ketai et al. | Oct 2013 | A1 |
20130289718 | Tsukashima et al. | Oct 2013 | A1 |
20130297013 | Klima et al. | Nov 2013 | A1 |
20130304093 | Serina et al. | Nov 2013 | A1 |
20130304197 | Buchbinder et al. | Nov 2013 | A1 |
20130325110 | Khalil et al. | Dec 2013 | A1 |
20130331930 | Rowe et al. | Dec 2013 | A1 |
20140031928 | Murphy et al. | Jan 2014 | A1 |
20140046433 | Kovalsky | Feb 2014 | A1 |
20140046434 | Rolando et al. | Feb 2014 | A1 |
20140052237 | Lane et al. | Feb 2014 | A1 |
20140058411 | Soutorine et al. | Feb 2014 | A1 |
20140067048 | Chau et al. | Mar 2014 | A1 |
20140067052 | Chau et al. | Mar 2014 | A1 |
20140067054 | Chau et al. | Mar 2014 | A1 |
20140081394 | Keranen et al. | Mar 2014 | A1 |
20140088368 | Park | Mar 2014 | A1 |
20140088646 | Wales et al. | Mar 2014 | A1 |
20140094826 | Sutherland et al. | Apr 2014 | A1 |
20140094903 | Miller et al. | Apr 2014 | A1 |
20140094906 | Spence et al. | Apr 2014 | A1 |
20140114390 | Tobis et al. | Apr 2014 | A1 |
20140135685 | Kabe et al. | May 2014 | A1 |
20140135799 | Henderson | May 2014 | A1 |
20140142619 | Serina et al. | May 2014 | A1 |
20140142695 | Gross et al. | May 2014 | A1 |
20140148849 | Serina et al. | May 2014 | A1 |
20140155783 | Starksen et al. | Jun 2014 | A1 |
20140163670 | Alon et al. | Jun 2014 | A1 |
20140163690 | White | Jun 2014 | A1 |
20140188108 | Goodine et al. | Jul 2014 | A1 |
20140188140 | Meier et al. | Jul 2014 | A1 |
20140188215 | Hlavka et al. | Jul 2014 | A1 |
20140194975 | Quill et al. | Jul 2014 | A1 |
20140194976 | Starksen et al. | Jul 2014 | A1 |
20140200662 | Eftel et al. | Jul 2014 | A1 |
20140207231 | Hacohen et al. | Jul 2014 | A1 |
20140236198 | Goldfarb et al. | Aug 2014 | A1 |
20140243859 | Robinson | Aug 2014 | A1 |
20140243894 | Groothuis et al. | Aug 2014 | A1 |
20140243963 | Sheps et al. | Aug 2014 | A1 |
20140243968 | Padala | Aug 2014 | A1 |
20140251042 | Asselin et al. | Sep 2014 | A1 |
20140275757 | Goodwin et al. | Sep 2014 | A1 |
20140276648 | Hammer et al. | Sep 2014 | A1 |
20140277404 | Wilson et al. | Sep 2014 | A1 |
20140277411 | Bortlein et al. | Sep 2014 | A1 |
20140277427 | Ratz et al. | Sep 2014 | A1 |
20140296962 | Cartledge et al. | Oct 2014 | A1 |
20140303649 | Nguyen et al. | Oct 2014 | A1 |
20140303720 | Sugimoto et al. | Oct 2014 | A1 |
20140309661 | Sheps et al. | Oct 2014 | A1 |
20140309730 | Alon et al. | Oct 2014 | A1 |
20140316428 | Golan | Oct 2014 | A1 |
20140324164 | Gross et al. | Oct 2014 | A1 |
20140330368 | Gloss et al. | Nov 2014 | A1 |
20140336751 | Kramer | Nov 2014 | A1 |
20140343668 | Zipory et al. | Nov 2014 | A1 |
20140350660 | Cocks et al. | Nov 2014 | A1 |
20140371843 | Wilson et al. | Dec 2014 | A1 |
20140379006 | Sutherland et al. | Dec 2014 | A1 |
20150018940 | Quill et al. | Jan 2015 | A1 |
20150039084 | Levi et al. | Feb 2015 | A1 |
20150051697 | Spence et al. | Feb 2015 | A1 |
20150057704 | Takahashi | Feb 2015 | A1 |
20150081014 | Gross et al. | Mar 2015 | A1 |
20150094800 | Chawla | Apr 2015 | A1 |
20150094802 | Buchbinder et al. | Apr 2015 | A1 |
20150100116 | Mohl et al. | Apr 2015 | A1 |
20150105808 | Gordon et al. | Apr 2015 | A1 |
20150112432 | Reich et al. | Apr 2015 | A1 |
20150127097 | Neumann et al. | May 2015 | A1 |
20150133997 | Deitch et al. | May 2015 | A1 |
20150148896 | Karapetian et al. | May 2015 | A1 |
20150157268 | Winshtein et al. | Jun 2015 | A1 |
20150182336 | Zipory et al. | Jul 2015 | A1 |
20150196390 | Ma et al. | Jul 2015 | A1 |
20150223793 | Goldfarb et al. | Aug 2015 | A1 |
20150230919 | Chau et al. | Aug 2015 | A1 |
20150238313 | Spence et al. | Aug 2015 | A1 |
20150257757 | Powers et al. | Sep 2015 | A1 |
20150257877 | Hernandez | Sep 2015 | A1 |
20150257883 | Basude et al. | Sep 2015 | A1 |
20150272586 | Herman et al. | Oct 2015 | A1 |
20150272734 | Sheps et al. | Oct 2015 | A1 |
20150282931 | Brunnett et al. | Oct 2015 | A1 |
20150313592 | Coillard-Lavirotte et al. | Nov 2015 | A1 |
20150351904 | Cooper et al. | Dec 2015 | A1 |
20150351906 | Hammer et al. | Dec 2015 | A1 |
20150351910 | Gilmore et al. | Dec 2015 | A1 |
20150366666 | Khairkhahan et al. | Dec 2015 | A1 |
20160008129 | Siegel | Jan 2016 | A1 |
20160008131 | Christianson et al. | Jan 2016 | A1 |
20160008132 | Cabiri et al. | Jan 2016 | A1 |
20160022970 | Forcucci et al. | Jan 2016 | A1 |
20160029920 | Kronstrom et al. | Feb 2016 | A1 |
20160051796 | Kanemasa et al. | Feb 2016 | A1 |
20160058557 | Reich et al. | Mar 2016 | A1 |
20160074164 | Naor | Mar 2016 | A1 |
20160074165 | Spence et al. | Mar 2016 | A1 |
20160106539 | Buchbinder et al. | Apr 2016 | A1 |
20160113762 | Clague et al. | Apr 2016 | A1 |
20160113764 | Sheahan et al. | Apr 2016 | A1 |
20160113766 | Ganesan et al. | Apr 2016 | A1 |
20160113767 | Miller et al. | Apr 2016 | A1 |
20160120642 | Shaolian et al. | May 2016 | A1 |
20160120645 | Alon | May 2016 | A1 |
20160155987 | Yoo et al. | Jun 2016 | A1 |
20160158008 | Miller et al. | Jun 2016 | A1 |
20160174979 | Wei | Jun 2016 | A1 |
20160174981 | Fago et al. | Jun 2016 | A1 |
20160242762 | Gilmore et al. | Aug 2016 | A1 |
20160242906 | Morriss et al. | Aug 2016 | A1 |
20160256149 | Sampson et al. | Sep 2016 | A1 |
20160262755 | Zipory et al. | Sep 2016 | A1 |
20160287387 | Wei | Oct 2016 | A1 |
20160302811 | Rodriguez-Navarro et al. | Oct 2016 | A1 |
20160302917 | Schewel | Oct 2016 | A1 |
20160317290 | Chau et al. | Nov 2016 | A1 |
20160317302 | Madjarov et al. | Nov 2016 | A1 |
20160331523 | Chau et al. | Nov 2016 | A1 |
20160346084 | Taylor et al. | Dec 2016 | A1 |
20160354082 | Oz et al. | Dec 2016 | A1 |
20160361058 | Bolduc et al. | Dec 2016 | A1 |
20160361168 | Gross et al. | Dec 2016 | A1 |
20160361169 | Gross et al. | Dec 2016 | A1 |
20170000609 | Gross et al. | Jan 2017 | A1 |
20170020521 | Krone et al. | Jan 2017 | A1 |
20170035561 | Rowe et al. | Feb 2017 | A1 |
20170035566 | Krone et al. | Feb 2017 | A1 |
20170042456 | Budiman | Feb 2017 | A1 |
20170042670 | Shaolian et al. | Feb 2017 | A1 |
20170042678 | Ganesan et al. | Feb 2017 | A1 |
20170049455 | Seguin | Feb 2017 | A1 |
20170100119 | Baird et al. | Apr 2017 | A1 |
20170100236 | Robertson et al. | Apr 2017 | A1 |
20170224489 | Starksen et al. | Aug 2017 | A1 |
20170224955 | Douglas et al. | Aug 2017 | A1 |
20170239048 | Goldfarb et al. | Aug 2017 | A1 |
20170245993 | Gross et al. | Aug 2017 | A1 |
20170252154 | Tubishevitz et al. | Sep 2017 | A1 |
20170266413 | Khuu et al. | Sep 2017 | A1 |
20170281330 | Liljegren et al. | Oct 2017 | A1 |
20170325959 | Sheps et al. | Nov 2017 | A1 |
20170348102 | Cousins et al. | Dec 2017 | A1 |
20180008311 | Shiroff et al. | Jan 2018 | A1 |
20180008409 | Kutzik et al. | Jan 2018 | A1 |
20180021044 | Miller et al. | Jan 2018 | A1 |
20180021129 | Peterson et al. | Jan 2018 | A1 |
20180021134 | McNiven et al. | Jan 2018 | A1 |
20180049875 | Iflah et al. | Feb 2018 | A1 |
20180078271 | Thrasher, III | Mar 2018 | A1 |
20180078361 | Naor et al. | Mar 2018 | A1 |
20180092661 | Prabhu | Apr 2018 | A1 |
20180126124 | Winston et al. | May 2018 | A1 |
20180133008 | Kizuka et al. | May 2018 | A1 |
20180140420 | Hayoz et al. | May 2018 | A1 |
20180146964 | Garcia et al. | May 2018 | A1 |
20180146966 | Hernandez et al. | May 2018 | A1 |
20180153552 | King et al. | Jun 2018 | A1 |
20180161159 | Lee et al. | Jun 2018 | A1 |
20180168803 | Pesce et al. | Jun 2018 | A1 |
20180185154 | Cao | Jul 2018 | A1 |
20180221147 | Ganesan et al. | Aug 2018 | A1 |
20180228608 | Sheps et al. | Aug 2018 | A1 |
20180235657 | Abunassar | Aug 2018 | A1 |
20180243086 | Barbarino et al. | Aug 2018 | A1 |
20180256334 | Sheps et al. | Sep 2018 | A1 |
20180258665 | Reddy et al. | Sep 2018 | A1 |
20180263767 | Chau et al. | Sep 2018 | A1 |
20180289480 | D'ambra et al. | Oct 2018 | A1 |
20180296326 | Dixon et al. | Oct 2018 | A1 |
20180296327 | Dixon et al. | Oct 2018 | A1 |
20180296328 | Dixon et al. | Oct 2018 | A1 |
20180296329 | Dixon et al. | Oct 2018 | A1 |
20180296330 | Dixon et al. | Oct 2018 | A1 |
20180296331 | Dixon et al. | Oct 2018 | A1 |
20180296332 | Dixon et al. | Oct 2018 | A1 |
20180296333 | Dixon et al. | Oct 2018 | A1 |
20180296334 | Dixon et al. | Oct 2018 | A1 |
20180318080 | Quill et al. | Nov 2018 | A1 |
20180318083 | Bolling et al. | Nov 2018 | A1 |
20180325661 | Delgado et al. | Nov 2018 | A1 |
20180325671 | Abunassar et al. | Nov 2018 | A1 |
20180333259 | Dibie | Nov 2018 | A1 |
20180344457 | Gross et al. | Dec 2018 | A1 |
20180353181 | Wei | Dec 2018 | A1 |
20190000613 | Delgado et al. | Jan 2019 | A1 |
20190000623 | Pan et al. | Jan 2019 | A1 |
20190008642 | Delgado et al. | Jan 2019 | A1 |
20190008643 | Delgado et al. | Jan 2019 | A1 |
20190015199 | Delgado et al. | Jan 2019 | A1 |
20190015200 | Delgado et al. | Jan 2019 | A1 |
20190015207 | Delgado et al. | Jan 2019 | A1 |
20190015208 | Delgado et al. | Jan 2019 | A1 |
20190021851 | Delgado et al. | Jan 2019 | A1 |
20190021852 | Delgado et al. | Jan 2019 | A1 |
20190029498 | Mankowski et al. | Jan 2019 | A1 |
20190029810 | Delgado et al. | Jan 2019 | A1 |
20190029813 | Delgado et al. | Jan 2019 | A1 |
20190030285 | Prabhu et al. | Jan 2019 | A1 |
20190038411 | Alon | Feb 2019 | A1 |
20190053810 | Griffin | Feb 2019 | A1 |
20190060058 | Delgado et al. | Feb 2019 | A1 |
20190060059 | Delgado et al. | Feb 2019 | A1 |
20190060072 | Zeng | Feb 2019 | A1 |
20190060073 | Delgado et al. | Feb 2019 | A1 |
20190060074 | Delgado et al. | Feb 2019 | A1 |
20190060075 | Delgado et al. | Feb 2019 | A1 |
20190069991 | Metchik et al. | Mar 2019 | A1 |
20190069992 | Delgado et al. | Mar 2019 | A1 |
20190069993 | Delgado et al. | Mar 2019 | A1 |
20190105156 | He et al. | Apr 2019 | A1 |
20190111239 | Bolduc et al. | Apr 2019 | A1 |
20190117113 | Curran | Apr 2019 | A1 |
20190117400 | Medema et al. | Apr 2019 | A1 |
20190125325 | Sheps et al. | May 2019 | A1 |
20190142589 | Basude | May 2019 | A1 |
20190151093 | Keidar et al. | May 2019 | A1 |
20190159782 | Kamaraj et al. | May 2019 | A1 |
20190159898 | Kutzik et al. | May 2019 | A1 |
20190167197 | Abunassar et al. | Jun 2019 | A1 |
20190175344 | Khairkhahan | Jun 2019 | A1 |
20190175345 | Schaffner et al. | Jun 2019 | A1 |
20190175346 | Schaffner et al. | Jun 2019 | A1 |
20190183644 | Hacohen | Jun 2019 | A1 |
20190183648 | Trapp et al. | Jun 2019 | A1 |
20190192296 | Schwartz et al. | Jun 2019 | A1 |
20190209323 | Metchik et al. | Jul 2019 | A1 |
20190240023 | Spence et al. | Aug 2019 | A1 |
20190261995 | Goldfarb et al. | Aug 2019 | A1 |
20190261996 | Goldfarb et al. | Aug 2019 | A1 |
20190261997 | Goldfarb et al. | Aug 2019 | A1 |
20190290260 | Caffes et al. | Sep 2019 | A1 |
20190290431 | Genovese et al. | Sep 2019 | A1 |
20190314155 | Franklin et al. | Oct 2019 | A1 |
20190321049 | Herman et al. | Oct 2019 | A1 |
20190321166 | Freschauf et al. | Oct 2019 | A1 |
20190343633 | Garvin et al. | Nov 2019 | A1 |
20200015971 | Brauon et al. | Jan 2020 | A1 |
20200113683 | Dale et al. | Apr 2020 | A1 |
20200138569 | Basude et al. | May 2020 | A1 |
20200205979 | O'Carroll et al. | Jul 2020 | A1 |
20200237512 | McCann et al. | Jul 2020 | A1 |
20200289267 | Peleg et al. | Sep 2020 | A1 |
20200337840 | Reich | Oct 2020 | A1 |
20200337842 | Metchik et al. | Oct 2020 | A1 |
20200352717 | Kheradvar et al. | Nov 2020 | A1 |
20200360054 | Walsh et al. | Nov 2020 | A1 |
20200360132 | Spence | Nov 2020 | A1 |
20200368016 | Pesce et al. | Nov 2020 | A1 |
20210015475 | Lau | Jan 2021 | A1 |
20210022850 | Basude et al. | Jan 2021 | A1 |
20210052387 | Greenan et al. | Feb 2021 | A1 |
20210059680 | Lin et al. | Mar 2021 | A1 |
20210059820 | Clark et al. | Mar 2021 | A1 |
20210085461 | Neumark et al. | Mar 2021 | A1 |
20210093453 | Peleg et al. | Apr 2021 | A1 |
20210145584 | Kasher et al. | May 2021 | A1 |
20210169650 | Dai et al. | Jun 2021 | A1 |
20210186698 | Abunassar et al. | Jun 2021 | A1 |
20210251757 | Siegel et al. | Aug 2021 | A1 |
20210259835 | Tyler, II et al. | Aug 2021 | A1 |
20210267781 | Metchik et al. | Sep 2021 | A1 |
20210307900 | Hacohen | Oct 2021 | A1 |
20210330456 | Hacohen et al. | Oct 2021 | A1 |
20210338418 | Feld | Nov 2021 | A1 |
20210361416 | Stearns | Nov 2021 | A1 |
20210361422 | Gross et al. | Nov 2021 | A1 |
20210361428 | Dixon | Nov 2021 | A1 |
20210378818 | Manash et al. | Dec 2021 | A1 |
20210401434 | Tien et al. | Dec 2021 | A1 |
20220039943 | Phan | Feb 2022 | A1 |
20220039954 | Nia et al. | Feb 2022 | A1 |
20220071620 | Brauon et al. | Mar 2022 | A1 |
20220071767 | Dixon et al. | Mar 2022 | A1 |
20220096232 | Skaro et al. | Mar 2022 | A1 |
20220133327 | Zhang et al. | May 2022 | A1 |
20220142779 | Sharon | May 2022 | A1 |
20220142780 | Zhang et al. | May 2022 | A1 |
20220142781 | Zhang et al. | May 2022 | A1 |
20220176076 | Keidar | Jun 2022 | A1 |
20220226108 | Freschauf et al. | Jul 2022 | A1 |
20220233312 | Delgado et al. | Jul 2022 | A1 |
20220233316 | Sheps et al. | Jul 2022 | A1 |
20220257196 | Massmann | Aug 2022 | A1 |
20220273436 | Aviv et al. | Sep 2022 | A1 |
20220287841 | Freschauf et al. | Sep 2022 | A1 |
20220296248 | Abunassar et al. | Sep 2022 | A1 |
20220313433 | Ma et al. | Oct 2022 | A1 |
20220313438 | Chappel-Ram | Oct 2022 | A1 |
20220323221 | Sharon et al. | Oct 2022 | A1 |
20230014540 | Metchik et al. | Jan 2023 | A1 |
20230016867 | Tennenbaum | Jan 2023 | A1 |
20230149170 | Giese et al. | May 2023 | A1 |
20230218291 | Zarbatany et al. | Jul 2023 | A1 |
20230270549 | Guidotti et al. | Aug 2023 | A1 |
Number | Date | Country |
---|---|---|
2728078 | Jan 2010 | CA |
113331995 | Sep 2021 | CN |
1034753 | Sep 2000 | EP |
3531975 | Sep 2019 | EP |
9205093 | Apr 1992 | WO |
9846149 | Oct 1998 | WO |
02085250 | Feb 2003 | WO |
03047467 | Jun 2003 | WO |
2007098512 | Sep 2007 | WO |
2008088716 | Jul 2008 | WO |
2010000454 | Jan 2010 | WO |
WO-2010004546 | Jan 2010 | WO |
2010085649 | Jul 2010 | WO |
2011051942 | May 2011 | WO |
2012176195 | Mar 2013 | WO |
2014064964 | May 2014 | WO |
2019145941 | Aug 2019 | WO |
2019145947 | Aug 2019 | WO |
2019182645 | Sep 2019 | WO |
2019224814 | Nov 2019 | WO |
2020240282 | Dec 2020 | WO |
2021014440 | Jan 2021 | WO |
2021038559 | Mar 2021 | WO |
2021038560 | Mar 2021 | WO |
2022064401 | Mar 2022 | WO |
2022090907 | May 2022 | WO |
2022101817 | May 2022 | WO |
2022153131 | Jul 2022 | WO |
2022157592 | Jul 2022 | WO |
2022172108 | Aug 2022 | WO |
2022172149 | Aug 2022 | WO |
2022200972 | Sep 2022 | WO |
2022224071 | Oct 2022 | WO |
2022229815 | Nov 2022 | WO |
2022250983 | Dec 2022 | WO |
Entry |
---|
Agarwal et al. International Cardiology Perspective Functional Tricuspid Regurgitation, Circ Cardiovasc Interv 2009;2;2;565-573 (2009). |
Ahmadi, A., G. Spillner, and Th Johannesson. “Hemodynamic changes following experimental production and correction of acute mitral regurgitation with an adjustable ring prosthesis.” The Thoracic and cardiovascular surgeon36.06 (1988): 313-319. |
Ahmadi, Ali et al. “Percutaneously adjustable pulmonary artery band.” The Annals of thoracic surgery 60 (1995): S520-S522. |
Alfieri et al., “An effective technique to correct anterior mitral leaflet prolapse,” J Card 14(6):468-470 (1999). |
Alfieri et al., “The double orifice technique in mitral valve repair: a simple solution for complex problems,” Journal of Thoracic Cardiovascular Surgery 122:674-681 (2001). |
Alfieri et al.“Novel Suture Device for Beating-Heart Mitral Leaflet Approximation”, Ann Thorac Surg. 2002, 74:1488-1493. |
Alfieri, “The edge-to-edge repair of the mitral valve,” [Abstract] 6th Annual NewEra Cardiac Care: Innovation & Technology, Heart Surgery Forum pp. 103. (2000). |
Amplatzer Cardiac Plug brochure (English pages), AGA Medical Corporation (Plymouth, MN) (copyright 2008-2010, downloaded Jan. 11, 2011). |
AMPLATZER® Cribriform Occluder. A patient guide to Percutaneous, Transcatheter, Atrial Septal Defect Closuer, AGA Medical Corporation, Apr. 2008. |
AMPLATZER® Septal Occluder. A patient guide to the Non-Surgical Closuer of the Atrial Septal Defect Using the AMPLATZER Septal Occluder System, AGA Medical Corporation, Apr. 2008. |
Assad, Renato S. “Adjustable Pulmonary Artery Banding.” (2014). |
Brennan, Jennifer, 510(k) Summary of safety and effectiveness, Jan. 2008. |
Daebritz, S. et al. “Experience with an adjustable pulmonary artery banding device in two cases: initial success—midterm failure.” The Thoracic and cardiovascular surgeon 47.01 (1999): 51-52. |
Dang NC et al. “Simplified Placement of Multiple Artificial Mitral Valve Chords,” The Heart Surgery Forum #2005-1005, 8 (3) (2005). |
Dictionary.com definition of “lock”, Jul. 29, 2013. |
Dieter RS, “Percutaneous valve repair: Update on mitral regurgitation and endovascular approaches to the mitral valve,” Applications in Imaging, Cardiac Interventions, Supported by an educational grant from Amersham Health pp. 11-14 (2003). |
Elliott, Daniel S., Gerald W. Timm, and David M. Barrett. “An implantable mechanical urinary sphincter: a new nonhydraulic design concept.” Urology52.6 (1998): 1151-1154. |
Langer et al. Ring plus String: Papillary muscle repositioning as an adjunctive repair technique for ischemic mitral regurgitation, The Journal of Thoracic Cardiovascular surgery vol. 133 No. 1, Jan. 2007. |
Langer et al. Ring+String, Successful Repair technique for Ischemic mitral regurgitation with severe leaflet Tethering, The Department of Thoracic Cardiovascular surgery, Hamburg, Germany, Nov. 2008. |
Maisano, “The double-orifice technique as a standardized approach to treat mitral,” European Journal of Cardio-thoracic Surgery 17 (2000) 201-205. |
Odell JA et al., “Early Results 04yf a Simplified Method of Mitral Valve Annuloplasty,” Circulation 92:150-154 (1995). |
O'Reilly S et al., “Heart valve surgery pushes the envelope,” Medtech Insight 8(3): 73, 99-108 (2006). |
Park, Sang C. et al. “A percutaneously adjustable device for banding of the pulmonary trunk.” International journal of cardiology 9.4 (1985): 477-484. |
Swain CP et al., “An endoscopically deliverable tissue-transfixing device for securing biosensors in the gastrointestinal tract,” Gastrointestinal Endoscopy 40(6): 730-734 (1994). |
Swenson, O. An experimental implantable urinary sphincter. Invest Urol. Sep. 1976;14(2):100-3. |
Swenson, O. and Malinin, T.I., 1978. An improved mechanical device for control of urinary incontinence. Investigative urology, 15(5), pp. 389-391. |
Swenson, Orvar. “Internal device for control of urinary incontinence.” Journal of pediatric surgery 7.5 (1972): 542-545. |
Tajik, Abdul, “Two dimensional real-time ultrasonic imaging of the heart and great vessels”, Mayo Clin Proc. vol. 53:271-303, 1978. |
Number | Date | Country | |
---|---|---|---|
20210401576 A1 | Dec 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16601289 | Oct 2019 | US |
Child | 17473786 | US | |
Parent | 15474543 | Mar 2017 | US |
Child | 16601289 | US | |
Parent | 14128756 | US | |
Child | 15474543 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13167492 | Jun 2011 | US |
Child | 14128756 | US | |
Parent | 13167476 | Jun 2011 | US |
Child | 14128756 | US | |
Parent | 13167444 | Jun 2011 | US |
Child | 14128756 | US |