The present invention relates to the field of cathodic protection of metal constructions by use of sacrificial anodes.
Cathodic protection using sacrificial anodes is a well-known area within a number of areas including ships, vessels and offshore constructions, e.g. oil exploitation rigs a.o.
The electrochemical process taking place is generally along the following scheme for a ferrous material:
Fe→Fe2++2e−
O2+2H2O+4e−→4OH−
2H2O+2e−→H2+2OH−
In most environments, the hydroxide ions and ferrous ions combine to form ferroushydroxide, also known as rust:
Fe2++2OH−→Fe(OH)2
It is desired to prevent or at least reduce the deterioration of the ferrous material, as this is the main structural material of the construction in question. Therefore a sacrificial metal ranking lower in the electrochemical scheme, and therefore being more prone to the electrochemical reaction, is placed in electrical connection with the main construction and protecting this from deterioration. The most often used anode materials are aluminium or zinc or alloys comprising aluminium or zinc as the main component, but other materials may be used as alternatives to zinc and aluminium, such as magnesium as well as alloys containing magnesium.
Relevant areas of deployment are numerous; however, constructions in operation in seawater are in particular prone to corrosion and will almost always be protected from such corrosion by means of cathodic protection using sacrificial anodes. Ships, vessels and offshore oil exploitation constructions are well-known examples of such.
The sacrificial anodes should be of a type suitable to the environment of operation, i.e. taking into consideration the chemical composition of the environment and also the temperature. Further a size of the anode(s) as well as their mutual positioning of these is relevant to consider in order to provide a satisfactory protection.
Many offshore oil exploitation constructions, pipelines or other equipment are from their very first installation provided with a cathodic protection system using sacrificial anodes and most often the dimensioning of the anodes is designed for the design life time of the oil exploitation construction, meaning that no further exchange of the sacrificial anodes is foreseen. The oil exploitation constructions, pipelines or other equipment are however in many cases kept in operation well beyond the initial design life time, meaning that the cathodic protection obtained through the sacrificial anodes, will disappear when the anodes are consumed after a certain time. For this situation there is a need for exchange or retrofitting the anodes of the offshore oil exploitation construction, pipelines or other equipment with new functional anodes to ensure the cathodic protection for a further life extension of the oil exploitation construction, pipelines or other equipment.
There are a number of ways of ensuring the cathodic protection of the construction. Most often the anodes are mounted directly on the construction with a mutual distance ensuring the most efficient protection according to the design criteria as mentioned above. Another way of ensuring the correct function is by placing the anodes remotely from the construction to be protected and connecting each anode electrically to the designed connection position of the construction, pipelines or other equipment.
When retrofitting anodes to an offshore construction, pipelines or other equipment the remote positioning of the anodes is often the most effective way of doing this and therefore the preferred way of ensuring the continued cathodic protection.
It is known in the art to provide an anode construction for the purpose of retro-fitting anodes to an offshore construction, pipelines or other equipment where the previously known construction comprises a framework with the anodes placed in mutually distanced positions to ensure the proper functioning of the cathodic protection. The anodes are connected to suitable connection points of the construction to be protected by means of suitable wiring. Such previously known anode construction is relatively bulky and therefore difficult to transport from the production site to the actual operational site.
From U.S. Pat. No. 7,138,038 a collapsible and expandable construction is known, where a number of anode carrying elements are mutually hingedly joined. In a transport position the anodes are collapsed and folded at the hinges to form a relatively flat structure, and upon expanding by pulling a central connection upwards the anode carrying elements are brought into mutually aligned positions, where these may be fixed by means of brackets. Although this previously known construction makes the transportation and deployment more convenient than a totally fixed construction, it is still a somewhat cumbersome and labour intensive process to fixate the joints of the anode carrying elements after alignment of these.
EP 2 241 676 A1 discloses a corrosion inhibiting anode assembly for use with an underwater structure and comprising a generally planar main frame for lying on the bed of a body of water, a plurality of spaced-apart elongate anode bars fixedly secured by respective stand-off supports to the main frame and extending in one or more planes that are generally parallel to that of the main frame, and at least one wing frame pivotally attached to the main frame. The wing frame comprises a plurality of spaced-apart elongate anode bars and is capable of being pivoted from a folded condition suitable for transport to an extended condition for underwater employment in which the anode bars of the wing frame are generally more remote from those of the main frame than in said folded condition. In order to bring the wing frame to its extended position for underwater employment, a plurality of wing frame supports are connected to the wing frame and arranged to support the wing frame in said extended condition. However, although this previously known construction also makes the transportation and deployment more convenient than a totally fixed construction, it is still a somewhat cumbersome and labour intensive process to bring the wing frame to its extended position and connect the plurality of wing frame supports to the wing frame in order to support the wing frame in its extended condition.
The purpose of the present invention is to provide an anode construction suitable for retrofitting an offshore construction, pipelines or other equipment with a cathodic protection system for a further period of time where the transportation and deployment of the anode construction is further facilitated while maintaining a long life extension of the construction to be protected.
According to the invention the objective is achieved through an anode construction comprising a frame with two or more anodes and being adapted to be used with an offshore installation, pipelines or other equipment for remote connection with the offshore installation through cable connections between anodes and offshore installation, where at least one anode is mounted in a fixed position in the frame of the anode construction and where at least one anode is mounted in the frame of the anode construction to be movable from a transport position into a deployment position, where the frame comprises a main part and at least one movable part mounted on the main part and adapted to be pivotable or slidable in relation to the main part, where one or more anodes are mounted in a fixed position on the main part and one or more anodes are mounted on the movable part, where the main part has a bottom frame part and a top frame part and further at least two anode mounting columns between the bottom frame part and the top frame part, and where the fixed anodes are mounted on the anode mounting columns.
By providing an anode construction where one or more anodes may be pivotably or slidably movable in relation to other anode(s) of the anode construction, it may be ensured that the anode construction may be a compact unit during transportation, and upon deployment may be a fully functional anode construction with the designed distance between the anodes. By further providing a bottom frame part and a top frame part and further at least two anode mounting columns between the bottom frame part and the top frame part, where the fixed anodes are mounted on the anode mounting columns, an even more compact unit may be obtained during transportation.
As will be explained in more detail below, depending on the degree of cathodic protection required, a number of such compact units may be interconnected to form a larger unit.
Preferably at least one anode is a longitudinal element with an axis extending through the anode and where the axis of pivoting the pivotable frame part is essentially parallel with the axis of the anode. Hereby the at least one anode is preferably a longitudinal element with an axis extending through the anode and where the axis of pivoting the pivotable frame part is essentially perpendicular the axis of the anode. A further option exists in that the at least one anode is a longitudinal element with an axis extending through the anode and where the direction of sliding the slidable frame part is essentially parallel with the axis of the anode. A still further option is that the at least one anode is a longitudinal element with an axis extending through the anode and where the direction of sliding the slidable frame part is essentially perpendicular the axis of the anode.
The anode construction may advantageously be assembled from a number of units to form a larger anode construction.
The assembly of anode units may take place through welding of the frames or through providing assembly brackets connecting the frame constructions. At least the bottom frame parts of two neighbouring anode constructions need to be connected.
The anode units are each advantageously provided with engagement means allowing use of standard container handling equipment. When a larger assembly of anode units is provided, the engagement means at the outermost corners of the assembly is used for the handling procedure.
The invention also relates to a method for deploying an anode construction according to the invention.
According to the invention the method for deploying a retrofit anode construction to an off-shore installation comprises:
Providing an anode construction with anode configuration according to the invention;
Transporting the anode construction with the movable carrying elements in their transportation position;
Moving the movable elements to the deployment position for the anode construction;
Positioning the anode construction on its deployment site proximal the offshore construction, pipelines or other equipment to be protected;
Connecting the anodes of the anode construction to the relevant parts of the offshore construction through electrical connections.
The deployment or use position of the anode construction involves folding the side elements of the anode frame to their use position or in other ways of movement foreseen for the positioning of the movable anodes into their use position.
Further embodiments and advantageous effects of the invention are presented in the following description of preferred embodiments of the invention.
Throughout this document the terms “comprising” or “comprises” do not exclude other possible elements or steps. Also, the mentioning of references such as “a” or “an” etc. should not be construed as excluding a plurality.
From
The anode element 7,10 comprises a steel core part and an anode material comprising a sacrificial metal molded around the steel core part. The core steel part is configured with curved end areas serving the purpose of creating a distance to the frame construction when mounted on this. The distance will partly separate the anodes individually from each other and partly ensure that the anode mounted on the pivotable side parts is kept free of the sea bottom. It should be appreciated that the shape and size of the anode including the core part may vary and as such is not limited to the shape and size indicated in this example.
The anode material may be any suitable metal usable for cathodic protection. Aluminium or zinc or an alloy comprising aluminium or zinc as a main component are most often preferred but for specific purposes where other materials are more appropriate these may be used without interfering with the scope of the present invention.
From
From
From
From
From
The frame construction is preferably a construction adapted to be movable and transported by means of standard container handling and transportation equipment. This means that the dimensions of the frame construction advantageously correspond to standard measures of container modules, e.g. 10, 20 and 40 foot in the length and with height and width corresponding to normal standard containers. This will significantly ease the handling of such system and will provide for a cost effective and reliable transportation of such constructions. In order to achieve the use of standard handling equipment engagement openings 12 (
The anode construction is preferably modular, meaning that a number of base modules or anode constructions may be assembled to form larger assemblies of anode constructions as shown in
The modular construction will provide an overall optimization of the production as the individual size of the anode assembly may be adapted to the actual needs based on a standard anode construction. The manufacturing of the anodes with a shorter length is furthermore significantly easier than longer anodes.
The number of anodes in an anode unit may vary dependent on a number of factors. The distance between the anodes is important in order to achieve the optimal protection effect. The anode material may also influence the choice of distance and further the environment of deployment may have an influence on the choice of anode material. In a complex three dimensional construction a simulation of the conditions is most often used to determine the optimal distance. The dimensions of the unit will limit the number of anodes that may be accommodated in a unit. In the unit shown in the drawings six anodes are mounted in a fixed position in the frame construction with three anodes in each of two columns, and four anodes are mounted on each pivotable side part. The number of fixed anodes in each of the rows and the pivotable side parts may be shifted to be four and three, respectively.
Deployment of an anode construction at an offshore site will normally comprise pivoting the pivotable side parts into the deployment position and successively lifting the anode construction off the vessel and lowering the anode construction into the sea until firmly resting on the seabed. In the transport position the side parts are held in position by means of bolts or other types of holding means, which are removed upon preparing the anode construction for deployment. The connection of the anode construction to the offshore construction to be protected happens after the positioning on the seabed. The electrical connection is ensured through a cable connection that is at one end attached to the offshore construction, pipelines or other equipment and at the opposed end attached to the anode construction. The attachment may be performed manually or may be performed by means of a ROV (Remote Operated Vehicle). The attachment to the offshore construction may be in the form of a clamp, which is well-known in the field of retrofitting cathodic protection.
The size of the anode construction will be defined by the designed lifetime extension required in relation to the construction, pipelines or other equipment to be protected. One way of varying the size of the anode constructions is through providing these as modular units that can be connected to form larger assemblies. It will be possible to connect such anode constructions and still maintain the general format of a standard container and as such be able to use existing infrastructure and handling equipment for the transport of the anode construction(s) to the deployment site.
Number | Date | Country | Kind |
---|---|---|---|
PA201400521 | Sep 2014 | DK | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2015/055029 | 7/3/2015 | WO | 00 |