This invention relates generally to security analytics in computer networks and, more specifically, to anomaly detection based on processes executed within a network.
Most of data breaches from enterprises and government organizations involve attackers leveraging stolen user credentials. Once credentials are stolen, they are used to gain access to assets where attackers may issue commands for actions to achieve what they want. Example actions may include privilege escalation and performing reconnaissance.
Cyber attackers are increasingly using “living off the land” attacks. Such attacks often involve using commands/process that an IT administrator would regularly use. These types of attacks can be more difficult to detect than those that involve installing malicious files on the target computer. Therefore, there is demand for a system that better detects living-off-the-land attacks.
The present disclosure relates to a cybersecurity system, method, and computer program for detecting whether an entity's collection of processes during a period of time is abnormal compared to the historical collection of processes observed for the entity during past periods of the same length. In certain embodiments, the period of time is a day, and the system determines whether an entity's daily collection of processes is anomalous compared to a historical collection of daily processes observed for the entity.
In one embodiment, the method involves a training phase and a prediction phase, as described below.
Training Phase
The system obtains a certain amount of days of end point logs that track processes executed on end points in the network. The system uses the logs to identify certain processes executed by entities in the network during the training period. An entity may be a user or a host computer.
For each of a plurality of monitored processes, the system calculates a global risk probability of the process being used for a malicious attack, wherein a global risk probability for a process is based on the execution history of the process across all entities during the training period. For each unique monitored process-entity combination observed in the training period, the system calculates a local risk probability of the process being used on the entity for a malicious attack, wherein the local risk probability is based on the global risk probability of the process and the execution history of the process on the entity during the training period. In the preferred embodiment, a Bayes framework is used to calculate the global and local risk probabilities.
The system uses the local risk probabilities for entity/process combinations to compute a plurality of training-period risk scores for each entity. Each training-period risk score for an entity is obtained by summing up the local risk probability of each unique monitored processes executed by the entity during an interval within the training period. For example, for each day in the training period, the system may compute a daily risk score for each entity based on the unique monitored process executed by the entity that day.
Prediction Phase
During a prediction phase, the system computes a prediction-period risk score for each entity by summing up a risk score of each unique monitored process executed by the entity during the prediction period. For each process executed by an entity during the prediction period, the system determines whether the process/entity combination was observed during the training phase. If so, the risk score for the process is the local risk probability for the process/entity combination (e.g., the local Bayes risk for the process/entity combination). Otherwise, the risk score for the process is the process' global risk probability (e.g., the global Bayes risk).
For each entity, the system determines whether the entity's prediction-period risk score is anomalous compared to the entity's training-period risk scores. The system displays alerts in a user interface for anomalous prediction-period risk scores. Additional post-processing may be performed to reduce false positive alerts.
The present disclosure relates to a system, method, and computer program for detecting whether an entity's collection of processes used during a period of time is abnormal compared to a historical collection of processes observed during past periods of the same length. Examples of processes are commands. An entity may be a user or a host computer. The method is performed by a computer system that monitors for potential cyberattacks to networks (“the system”). There are two phases in performing the method: (1) a training period in which the system determines an entity's historical set of daily (or other time period) processes and associated cybersecurity risk scores, and (2) a prediction period in which the system determines, for each entity, whether the cumulative cybersecurity risk associated with an entity's collection of process on a given day (or other period of time) is anomalous compared to the entity's historical distribution of cybersecurity risks scores. Both phases are described below.
1. Training
An entity's historical set of processes during defined intervals is determined with respect to a training period. For example, the training period may be a sliding window of N days (e.g., 30-60 days), and each interval may be a 24-hour day. As another example, the training period may be a sliding window of N weeks, and each interval may be one week.
In one embodiment, the outputs 120 to the training phase are as follows:
1.1 Compute Global Risk Probability for Each Monitored Process Over all Entities (Training Phase)
For each of the monitored processes, the system calculates a global risk probability of the process being used for a malicious attack (step 210) (referred to herein as the “global risk probability” or the “global risk score”). The global risk probability is based on the execution history of the process across all entities during the training period. In the preferred embodiment, a Bayesian framework is used to calculate the global risk probability. For example, the following Bayes formula may be used to calculate the global risk probability for a process (process=C below):
where
p(M)=prior probability of any event being malicious;
p(L)=prior probability of any event being legitimate;
p(M|C)=probability of any event being malicious given a process is executed. “C” represents process in the equations herein;
p(L|C)=probability of any event being legitimate given a process is executed;
p(C|M)=probability of a process C being in the malicious population; and
p(C|L)=probability of a process C being in the legitimate population.
Assuming p(M)=p(L)=0.5, we have
where n equals to number of unique processes in the malicious population, which is the same as the number of unique process that are monitored. In an alternate embodiment, the probability of a process C being in the malicious population, p(C|M), is manually assigned by a system administrator or domain expert based on past experience.
1.2 Compute Local Bayes Risk for Each Process/Entity Combination Observed in Training (Training Phase)
The system tracks which entities executed the monitored processes during the training phase. For each unique process-entity combination observed, the system calculates a local risk probability of the process being used on the entity for a malicious attack (step 220) (referred to herein as “a local risk probability” or a “local risk score”). The local risk probability for a given process-entity combination is based on the global risk probability for the process and the execution history of the process on the entity during the training period. In the preferred embodiment, a Bayesian framework is used to calculate the local risk probability. For example, the following Bayes formula may be used to calculate the local risk probability for a process (process=C below)/host (host=H) combination:
Where p(M|C,H)=probability of any event being malicious given a process “C” is executed on host “H.”
Assuming p(M|H)=p(M|C), we have
where p(M|C) is the computed global risk and p(L|C)=1−p(M|C)
where ni,j equals to number of unique pairs of (date, hour) when process ci was executed at host hj
where nj equals to number of unique commands executed in host hj. In an alternate embodiment, the probability of a process C being in the malicious population on host H, p(C|M, H), is manually assigned by a system administrator or domain expert based on past experience.
In the above formulas, a host computer is the entity, but the above formulas can apply to a user as the entity.
1.2 Compute a Collection of Historical Risk Scores of Each Entity in History by Periodically Summing Up the Local Risk Scores for Each Process Executed by the Entity (Training Phase)
The system computes a historical set of risk scores for each entity based on monitored processes executed by the entity within the training period (step 230). Each historical risk score for an entity is obtained by summing up the local risk probabilities of the unique monitored processes executed by the entity during an interval within the training period. In other words, each entity's risk score is the sum of the local risk scores of the processes executed by the entity during an interval (e.g., a 24-hour day) within the training period. For example, if the interval is a 24-hour day, then for each training day, the system computes a daily risk score for each entity by summing up the local risk score of each unique (and monitored) process executed by the entity that training day. The collection of risk scores for an entity from the training period form a risk score distribution that is used to determine whether the entity's risk score in a future time period (i.e., a prediction period) is anomalous.
2. Prediction
After the training period, the output of the training can be used to identify anomalous process usage by an entity during a prediction period (e.g., a 24-hour day).
In one embodiment, the output 140 of the prediction phase is as follow:
2.1 Compute Risk Score for Each Entity During a Prediction Period
The system computes a risk score for each entity by summing up the risk score of each unique process executed on the entity during a prediction period (e.g., a day) (step 310). For each process executed by an entity during the prediction period, the system determines whether the process/entity combination was observed during the training phase. If so, the risk score for the process is the local risk probability for the process/entity combination (e.g., the local Bayes risk for the process/entity combination). Otherwise, the risk score for the process is the process' global risk probability (e.g., the global Bayes risk).
The prediction period is equal to the length of an interval in the training period (i.e., the interval length with respect to which risk scores are calculated in the training period). For example, if daily risk scores are computed for each entity for each training day, then risk scores are computed on a daily basis in the prediction phase.
2.2 Determine Whether Prediction-Period Risk Score is Anomalous Compared to Risk Score Distribution from Training Phase
The system determines whether any entity's risk score for the prediction period is anomalous compared to the entity's historical risk scores from the training period (step 320). In one embodiment, risk scores are calculated on a daily basis for each entity, and the system computes, for each entity, the p-value of the entity's daily risk score in the prediction phase compared to historical daily risk scores of the entity. If the computed p-value is less than a configured threshold, such as 0.02, the system flags the entity as having anomalous process usage during the prediction period.
For example.
p-value=(sum of bin heights with daily score>=6.0)/(sum of all bin heights) in the histogram in FIG. 4b.
2.3 Conduct Post Filtering to Reduce False Positives (Prediction Phase)
In certain embodiments, to reduce false positive alerts, the system conducts post-prediction filtering or ranking on anomalous risk scores for each prediction period (step 330).
There are various ways in which false positive alerts may be reduced. Below are some example ways to rank by determining a degree of anomaly associated with an anomalous prediction period for a user:
1. For each entity that is flagged as having an anomaly during a prediction period because of certain new processes executed by the entity during the prediction period, the system identifies the set of new processes from the prediction period that were not seen in the entity's training history. For example, if a histogram is used to track the processes executed by an entity and the prediction period is a day, the system would identify the processes executed by the entity on the anomalous day that were not previously seen in the entity's histogram.
2. The set of new processes executed by the entity during the prediction period is used to rank the entity's anomaly relative to other entities' anomalies using one of the following:
3. The system uses the ranking to rank or filter alerts (e.g., select only the x % highest ranked alerts) or to indicate to an administrator a risk level associated with alerts. In certain embodiments, the system may use the ranking to determine whether a risk score rule is triggered or to weight the risk score accordingly.
In an alternate embodiment, the system ranks anomalies by the following ratio: (the current day score−historically closest score)/historically closest score.
2.3 Retraining with Sliding Window
In order to only use the latest data with respect to a prediction period, the system may use a sliding window of N days prior to the prediction period to re-calculate global and local risk scores. For example, the system may use a sliding window of the 60 days prior to the prediction day to recalculate the global and local risk scores.
2.4 Display Alerts for Anomalous Risk Scores
In certain embodiments, the system displays alerts for the x % highest ranking anomalous risk scores in a user interface that displays information related to potential cyber security threats (step 340). For example, the system may display an alert that an entity has anomalous process activity on a current day.
As described below, an entity's prediction-period risk score may also be used to determine if a rule, related to anomalous process execution, triggered in a UEBA system that calculates an overall risk score for a user session.
3. General
The methods described herein are embodied in software and performed by a computer system (comprising one or more computing devices) executing the software. A person skilled in the art would understand that a computer system has one or more memory units, disks, or other physical, computer-readable storage media for storing software instructions, as well as one or more processors for executing the software instructions.
In one embodiment, the computer system is a user/entity behavior analytics (UEBA) system used for network security. An example of a UEBA system is described in the U.S. Pat. No. 9,798,883, titled “System, Method, and Computer Program Product for Detecting and Assessing Security Risks in a Network, the contents of which are incorporated by reference herein. The output of the above-described methods (e.g., whether an entity's daily risk score is anomalous) may be applied to a rules engine of a UEBA system that calculates an overall risk score for an entity or user session. The output may be used to determine whether a rule is triggered for a user session, wherein the triggering of the rule results in an increased risk score for the user session. For example, the methods described herein may be performed by a modeling and anomaly detection module (such as module 1540 in U.S. Pat. No. 9,798,883, incorporated herein above) whose output is received by a rules engine that determines whether risk rules are triggered.
As will be understood by those familiar with the art, the invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. Accordingly, the above disclosure is intended to be illustrative, but not limiting, of the scope of the invention.
This application claims the benefit of U.S. Provisional Application No. 62/609,121, filed on Dec. 21, 2017, and titled “Anomaly Detection Based on Process Executed within a Network,” the contents of which are incorporated by reference herein as if fully disclosed herein.
Number | Name | Date | Kind |
---|---|---|---|
5941947 | Brown et al. | Aug 1999 | A |
6223985 | DeLude | May 2001 | B1 |
6594481 | Johnson et al. | Jul 2003 | B1 |
7181768 | Ghosh et al. | Feb 2007 | B1 |
7624277 | Simard et al. | Nov 2009 | B1 |
7668776 | Ahles | Feb 2010 | B1 |
8326788 | Allen et al. | Dec 2012 | B2 |
8443443 | Nordstrom et al. | May 2013 | B2 |
8479302 | Lin | Jul 2013 | B1 |
8484230 | Harnett et al. | Jul 2013 | B2 |
8539088 | Zheng | Sep 2013 | B2 |
8583781 | Raleigh | Nov 2013 | B2 |
8606913 | Lin | Dec 2013 | B2 |
8676273 | Fujisake | Mar 2014 | B1 |
8850570 | Ramzan | Sep 2014 | B1 |
8881289 | Basavapatna et al. | Nov 2014 | B2 |
9055093 | Borders | Jun 2015 | B2 |
9081958 | Ramzan et al. | Jul 2015 | B2 |
9185095 | Moritz et al. | Nov 2015 | B1 |
9189623 | Lin et al. | Nov 2015 | B1 |
9202052 | Fang | Dec 2015 | B1 |
9680938 | Gil et al. | Jun 2017 | B1 |
9690938 | Saxe et al. | Jun 2017 | B1 |
9692765 | Choi et al. | Jun 2017 | B2 |
9760240 | Maheshwari et al. | Sep 2017 | B2 |
9779253 | Mahaffey et al. | Oct 2017 | B2 |
9798883 | Gil et al. | Oct 2017 | B1 |
9843596 | Averbuch et al. | Dec 2017 | B1 |
9898604 | Fang et al. | Feb 2018 | B2 |
10063582 | Feng et al. | Aug 2018 | B1 |
10095871 | Gil et al. | Oct 2018 | B2 |
10178108 | Lin et al. | Jan 2019 | B1 |
10354015 | Kalchbrenner et al. | Jul 2019 | B2 |
10419470 | Segev et al. | Sep 2019 | B1 |
10445311 | Saurabh et al. | Oct 2019 | B1 |
10467631 | Dhurandhar et al. | Nov 2019 | B2 |
10474828 | Gil et al. | Nov 2019 | B2 |
10496815 | Steiman et al. | Dec 2019 | B1 |
10621343 | Maciejak et al. | Apr 2020 | B1 |
10645109 | Lin et al. | May 2020 | B1 |
10685293 | Heimann et al. | Jun 2020 | B1 |
10803183 | Gil et al. | Oct 2020 | B2 |
10819724 | Amiri et al. | Oct 2020 | B2 |
10841338 | Lin et al. | Nov 2020 | B1 |
10887325 | Lin et al. | Jan 2021 | B1 |
10944777 | Lin et al. | Mar 2021 | B2 |
11080591 | van den Oord et al. | Aug 2021 | B2 |
11140167 | Lin et al. | Oct 2021 | B1 |
11245716 | Roelofs | Feb 2022 | B2 |
20020107926 | Lee | Aug 2002 | A1 |
20030147512 | Abburi | Aug 2003 | A1 |
20040073569 | Knott et al. | Apr 2004 | A1 |
20060090198 | Aaron | Apr 2006 | A1 |
20070156771 | Hurley et al. | Jul 2007 | A1 |
20070282778 | Chan et al. | Dec 2007 | A1 |
20080028467 | Kommareddy | Jan 2008 | A1 |
20080040802 | Pierson et al. | Feb 2008 | A1 |
20080170690 | Tysowski | Jul 2008 | A1 |
20080262990 | Kapoor et al. | Oct 2008 | A1 |
20080301780 | Ellison et al. | Dec 2008 | A1 |
20090144095 | Shahi et al. | Jun 2009 | A1 |
20090171752 | Galvin et al. | Jul 2009 | A1 |
20090293121 | Bigus et al. | Nov 2009 | A1 |
20100125911 | Bhaskaran | May 2010 | A1 |
20100269175 | Stolfo et al. | Oct 2010 | A1 |
20100284282 | Golic | Nov 2010 | A1 |
20110167495 | Antonakakis et al. | Jul 2011 | A1 |
20120278021 | Lin et al. | Nov 2012 | A1 |
20120316835 | Maeda et al. | Dec 2012 | A1 |
20120316981 | Hoover et al. | Dec 2012 | A1 |
20130080631 | Lin | Mar 2013 | A1 |
20130117554 | Ylonen | May 2013 | A1 |
20130197998 | Buhrmann et al. | Aug 2013 | A1 |
20130227643 | Mccoog et al. | Aug 2013 | A1 |
20130305357 | Ayyagari et al. | Nov 2013 | A1 |
20130340028 | Rajagopal et al. | Dec 2013 | A1 |
20140007238 | Magee | Jan 2014 | A1 |
20140090058 | Ward et al. | Mar 2014 | A1 |
20140101759 | Antonakakis et al. | Apr 2014 | A1 |
20140315519 | Nielsen | Oct 2014 | A1 |
20150026027 | Priess | Jan 2015 | A1 |
20150039543 | Athmanathan et al. | Feb 2015 | A1 |
20150046969 | Abuelsaad et al. | Feb 2015 | A1 |
20150121503 | Xiong | Apr 2015 | A1 |
20150205944 | Turgeman | Jul 2015 | A1 |
20150215325 | Ogawa | Jul 2015 | A1 |
20150339477 | Abrams et al. | Nov 2015 | A1 |
20150341379 | Lefebvre et al. | Nov 2015 | A1 |
20150363691 | Gocek et al. | Dec 2015 | A1 |
20160005044 | Moss et al. | Jan 2016 | A1 |
20160021117 | Harmon et al. | Jan 2016 | A1 |
20160063397 | Ylipaavalniemi et al. | Mar 2016 | A1 |
20160292592 | Patthak et al. | Oct 2016 | A1 |
20160306965 | Iyer et al. | Oct 2016 | A1 |
20160364427 | Wedgeworth, III | Dec 2016 | A1 |
20170019506 | Lee et al. | Jan 2017 | A1 |
20170024135 | Christodorescu et al. | Jan 2017 | A1 |
20170127016 | Yu et al. | May 2017 | A1 |
20170155652 | Most et al. | Jun 2017 | A1 |
20170161451 | Weinstein et al. | Jun 2017 | A1 |
20170213025 | Srivastav et al. | Jul 2017 | A1 |
20170236081 | Grady Smith et al. | Aug 2017 | A1 |
20170264679 | Chen et al. | Sep 2017 | A1 |
20170318034 | Holland et al. | Nov 2017 | A1 |
20170323636 | Xiao et al. | Nov 2017 | A1 |
20180004961 | Gil et al. | Jan 2018 | A1 |
20180048530 | Nikitaki et al. | Feb 2018 | A1 |
20180063168 | Sofka | Mar 2018 | A1 |
20180069893 | Amit et al. | Mar 2018 | A1 |
20180075343 | van den Oord et al. | Mar 2018 | A1 |
20180089304 | Vizer et al. | Mar 2018 | A1 |
20180097822 | Huang et al. | Apr 2018 | A1 |
20180144139 | Cheng et al. | May 2018 | A1 |
20180157963 | Salti et al. | Jun 2018 | A1 |
20180165554 | Zhang et al. | Jun 2018 | A1 |
20180190280 | Cui et al. | Jul 2018 | A1 |
20180234443 | Wolkov et al. | Aug 2018 | A1 |
20180248895 | Watson et al. | Aug 2018 | A1 |
20180285340 | Murphy et al. | Oct 2018 | A1 |
20180288063 | Koottayi et al. | Oct 2018 | A1 |
20180288086 | Amiri et al. | Oct 2018 | A1 |
20180307994 | Cheng et al. | Oct 2018 | A1 |
20180322368 | Zhang et al. | Nov 2018 | A1 |
20190014149 | Cleveland et al. | Jan 2019 | A1 |
20190028496 | Fenoglio et al. | Jan 2019 | A1 |
20190034641 | Gil et al. | Jan 2019 | A1 |
20190066185 | More et al. | Feb 2019 | A1 |
20190080225 | Agarwal | Mar 2019 | A1 |
20190089721 | Pereira et al. | Mar 2019 | A1 |
20190103091 | Chen | Apr 2019 | A1 |
20190114419 | Chistyakov et al. | Apr 2019 | A1 |
20190124045 | Zong et al. | Apr 2019 | A1 |
20190132629 | Kendrick | May 2019 | A1 |
20190149565 | Hagi et al. | May 2019 | A1 |
20190182280 | La Marca et al. | Jun 2019 | A1 |
20190334784 | Kvernvik et al. | Oct 2019 | A1 |
20200021607 | Muddu et al. | Jan 2020 | A1 |
20200082098 | Gil et al. | Mar 2020 | A1 |
20200228557 | Lin et al. | Jul 2020 | A1 |
20200302118 | Cheng et al. | Sep 2020 | A1 |
20210089884 | Macready et al. | Mar 2021 | A1 |
20210125050 | Wang | Apr 2021 | A1 |
20210182612 | Zeng et al. | Jun 2021 | A1 |
20220006814 | Lin et al. | Jan 2022 | A1 |
Entry |
---|
Bahnsen, Alejandro Correa “Classifying Phishing URLs Using Recurrent Neural Networks”, IEEE 2017. |
Chen, Jinghui, et al., “Outlier Detection with Autoencoder Ensembles”, Proceedings of the 2017 SIAM International Conference on Data Mining, pp. 90-98. |
Cooley, R., et al., “Web Mining: Information and Pattern Discovery on the World Wide Web”, Proceedings Ninth IEEE International Conference on Tools with Artificial Intelligence, Nov. 3-8, 1997, pp. 558-567. |
Goh, Jonathan et al., “Anomaly Detection in Cyber Physical Systems using Recurrent Neural Networks”, IEEE 2017. |
Kim, Jihyun et al., “Long Short Term Memory Recurrent Neural Network Classifier for Intrusion Detection”, IEEE 2016. |
Poh, Norman, et al., “EER of Fixed and Trainable Fusion Classifiers: A Theoretical Study with Application to Biometric Authentication Tasks”, Multiple Classifier Systems, MCS 2005, Lecture Notes in Computer Science, vol. 3541, pp. 1-11. |
Taylor, Adrian et al., “Anomaly Detection in Automobile Control Network Data with Long Short-Term Memory Networks”, IEEE 2016. |
Taylor, Adrian “Anomaly-Based Detection of Malicious Activity in In-Vehicle Networks”, Ph.D. Thesis, University of Ottawa 2017. |
Wang, Shuhao et al., “Session-Based Fraud Detection in Online E-Commerce Transactions Using Recurrent Neural Networks”, 2017. |
Zhang, Ke et al., “Automated IT System Failue Prediction: A Deep Learning Approach”, IEEE 2016. |
Ioannidis, Yannis, “The History of Histograms (abridged)”, Proceedings of the 29th VLDB Conference (2003), pp. 1-12. |
DatumBox Blog, “Machine Learning Tutorial: The Naive Bayes Text Classifier”, DatumBox Machine Learning Blog and Software Development News, Jan. 2014, pp. 1-11. |
Freeman, David, et al., “Who are you? A Statistical Approach to Measuring User Authenticity”, NDSS, Feb. 2016, pp. 1-15. |
Malik, Hassan, et al., “Automatic Training Data Cleaning for Text Classification”, 11th IEEE International Conference on Data Mining Workshops, 2011, pp. 442-449. |
Wang, Alex Hai, “Don't Follow Me Spam Detection in Twitter”, International Conference on Security and Cryptography, 2010, pp. 1-10. |
Number | Date | Country | |
---|---|---|---|
62609121 | Dec 2017 | US |