Three-dimensional (3D) printers may operate with carriages performing various tasks. For example, one carriage may deposit material in layers, and another carriage may apply energy or agents to selectively fuse the material. Each carriage may include nozzles to deposit the material (e.g., build material or agents).
For a more complete understanding of various examples, reference is now made to the following description taken in connection with the accompanying drawings in which:
As noted above, three-dimensional (3D) printing is performed with nozzles to deposit various materials (e.g., build material or fusing agents). Anomalies or defects in any nozzle can lead to defects in the printed 3D object. Defective nozzles may lead to gaps or weaknesses in the printed object. Identification of the defective nozzles can facilitate identification of defective 3D objects or allow for remediation of the defective nozzles.
Various examples described herein provide for identification of a nozzle, or a group of nozzles, in a three-dimensional printer that may be defective, performing sub-optimally, in need of maintenance or otherwise anomalous. Following depositing of a printing material by an array of nozzles, a thermal sensor may detect a thermal characteristic (e.g., temperature) at various locations of the print material. The printing material may be a layer of build material or a fusing agent deposited at selected locations onto the build material. In various examples, the temperature may be detected at an array of points on the printing material. Under nominal or normal operation, the temperature at the various points is substantially uniform. Thus, when a gradient in the temperature is detected and is above a predetermined threshold, the location of that gradient may be associated with a particular nozzle or a group of nozzles in the array of nozzles. For example, if the detected temperature at one location is more than 2° C. above or below the temperature at points around that location, the location may be associated with a nozzle, and that nozzle may then be indicated as an anomalous nozzle. In various examples, indication of the anomalous nozzle may initiate remediation of the nozzle. The remediation may include any of a variety of actions, examples of which are described below.
Referring now to the Figures,
The example system 100 of
The example system 100 of
In the example system 100 of
Once the print material (e.g., the layer of build material 150 or the fusing agent) is deposited by the array of nozzles 110, the print material may cool (e.g., due to evaporation). Thus, the absolute temperature of the build material may be a changing value. Since the print material generally cools uniformly, using the gradient, or difference in temperature values at adjacent points, is an effective measure for identifying an anomaly. In this regard, in some examples, the gradient may be measured along a perpendicular axis (the Y axis) to the direction of movement of the carriage of nozzles (the X axis). For example, each nozzle or an array of nozzles may deposit material along a particular row, and a temperature difference between adjacent or neighboring rows may be used to identify the gradient.
The example system 100 of
Referring now to
As noted above, as each layer of build material 240 is deposited, selected portions of the layer are fused to form the desired 3D object.
In some examples, the gradient identification portion 232 identifies the gradient as described above regardless of the location on the layer of build material 240. In this regard, the gradient identification portion 232 may consider measurement or detection by the thermal sensor 220 of the thermal characteristic across the entire layer of build material 240. In other examples, the gradient identification portion 232 is to identify the location of a gradient on the fused portions 242. In this regard, the gradient identification portion 232 may disregard the thermal characteristic at the non-fused portions.
Further, in some examples, the threshold at which the gradient triggers an indication of an anomaly may be constant across the entire layer of build material 240 or across all fused portions 242. In other examples, the threshold may be different at different regions of the layer of build material 240 or different regions of the fused portions 242. For example, certain regions of the 3D object being printed may be more important and have more stringent tolerances. In this regard, those critical regions may correspond to a lower threshold for the gradient, while other regions may have a higher threshold. In further examples, various portions may each have their own threshold. Thus, in various examples, a 3D printer or a 3D object printed on the 3D printer may have any number of thresholds associated with it.
Referring now to
The controller 320 of the example system 300 includes a gradient identification portion 322 and a nozzle identification portion 324 similar to corresponding portions described above with reference to
The controller 320 of the example system 300 further includes a nozzle remediation portion 326. The nozzle remediation portion 326 is provided to initiate remediation of the anomalous nozzle identified by the nozzle indication portion 324. In this regard, remediation may include any of a variety of actions that may be initiated or completed by the nozzle remediation portion 326. Some examples of remediation actions are described below.
In one example, the nozzle remediation portion 326 may cause introduction of a replacement fusing agent at the location corresponding to the anomalous nozzle. For example, in an MJF 3D printer, the fusing agent deposited at the locations corresponding to the anomalous nozzle (e.g., location on the build material with gradient greater than the predetermined threshold) may be replaced with a low tint fusing agent (LTFA). LTFA has low thermal absorption in the visible spectrum and high thermal absorption in the near-infrared spectrum where there is significant amount of thermal energy absorbed. The LTFA may compensate for the anomaly in the nozzle and allow proper fusing of the build material.
In another example, the nozzle remediation portion 326 may generate an alert indicative of the anomalous nozzle. In various examples, the nozzle remediation portion 326 may generate an audible, visual, or other alert to notify a user of the anomalous nozzle. The user may provide maintenance or replacement service for the anomalous nozzle.
In another example, the nozzle remediation portion 326 may cause servicing or replacement of the anomalous nozzle. In this regard, the nozzle remediation portion 326 may initiate automated or robotic actions. In one example, the nozzle remediation portion 326 may cause servicing, such as spitting or wiping of the nozzle.
In another example, the nozzle remediation portion 326 may adjust indexing of passes of the array of nozzles. In this regard, the nozzle remediation portion 326 may cause or adjust shifting of the spread carriage 312 or the print carriage 314 for successive passes. Thus, the anomalous nozzle may pass deposit build material and/or fusing agent at different regions on successive passes, thereby diluting or otherwise mitigating the effects of the anomaly.
In another example, the nozzle remediation portion 326 may adjust use of nozzles adjacent to the anomalous nozzle. For example, the nozzle remediation portion 326 may cause the adjacent nozzles to output a greater amount of print material, while reducing or eliminating the amount of print material from the anomalous nozzle.
In another example, the nozzle remediation portion 326 may cause re-location of a fused portion corresponding to the anomalous nozzle to a different location. For example, the anomaly may be determined or detected during deposition of the first few layers of the build material. Upon determination or detection of the anomaly, the nozzle remediation portion 326 may re-position the printing of the 3D object upon the build stage, thus moving the printing of the 3D object to a location on the layer of build material or on the build stage that is not affected by the anomalous nozzle.
Referring now to
The example method 400 further includes determining a thermal characteristic of the print material (block 420). As noted above, a thermal sensor may be mounted with the array of nozzles and may include any of a variety of devices for detecting or reading a thermal characteristic such as temperature.
The example method 400 includes identifying a location on the print material having a gradient of the thermal characteristic being greater than a predetermined threshold (block 430). As described above with reference to
The example method 400 further includes identifying a nozzle from the array of nozzles associated with the identified location as an anomalous nozzle (block 440). Various example systems may include a nozzle identification portion to identify the nozzle associated with the identified location as the anomalous nozzle. The nozzle identification portion may map the location identified by the gradient identification portion as having a gradient greater than the predetermined threshold to a particular nozzle in the array of nozzles.
Referring now to
The example instructions include cause an array of nozzles to deposit a print material instructions 521. In various examples, an array of nozzles may be mounted on a carriage that sweeps a build stage of a 3D printer and deposits successive layers of print material (e.g., build material or a fusing agent to fuse the build material at selected locations to form a 3D object).
The example instructions further include determine a thermal characteristic of the print material instructions 522. A thermal sensor may be provided for detecting or reading a thermal characteristic such as temperature.
The example instructions further include identify a location on the layer of build material having a gradient of the thermal characteristic being greater than a predetermined threshold instructions 523. In various examples, a location on the layer of build material having a gradient of the thermal characteristic that is greater than a predetermined threshold may be identified based on measurements from the thermal sensor.
The example instructions further include identifying a nozzle from the array of nozzles associated with the identified location as an anomalous nozzle instructions 524. In various examples, the nozzle associated with the identified location may be indicated as the anomalous nozzle. The location identified by the gradient identification portion as having a gradient greater than the predetermined threshold may be mapped to a particular nozzle in the array of nozzles.
Software implementations of various examples can be accomplished with standard programming techniques with rule-based logic and other logic to accomplish various database searching steps or processes, correlation steps or processes, comparison steps or processes and decision steps or processes.
The foregoing description of various examples has been presented for purposes of illustration and description. The foregoing description is not intended to be exhaustive or limiting to the examples disclosed, and modifications and variations are possible in light of the above teachings or may be acquired from practice of various examples. The examples discussed herein were chosen and described in order to explain the principles and the nature of various examples of the present disclosure and its practical application to enable one skilled in the art to utilize the present disclosure in various examples and with various modifications as are suited to the particular use contemplated. The features of the examples described herein may be combined in all possible combinations of methods, apparatus, modules, systems, and computer program products.
It is also noted herein that while the above describes examples, these descriptions should not be viewed in a limiting sense. Rather, there are several variations and modifications which may be made without departing from the scope as defined in the appended claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2018/047653 | 8/23/2018 | WO | 00 |