This application relates to communications technologies, and in particular, to an antenna and an array antenna.
Through broadband design, a base station antenna can use one antenna to receive and transmit signals of different frequency bands. The signals of different frequency bands are separated by a filter or a combiner. If a spacing between two frequency bands is small, higher requirements are imposed on suppression of the filter or the combiner. Therefore, an independent antenna may be used for each frequency band, and a specific spacing is designed between antennas of different frequency bands, so as to reduce a suppression requirement on the filter or the combiner, and simplify design of the filter.
However, currently, in order to separate a transmit frequency band from a receive frequency band in an array antenna, an arrangement of generally designed antenna units is complex, which leads to great difficulty in designing a feeding network.
This application provides an antenna and an array antenna, and a transmit path and a receive path are physically separated by using a simplified feeding network design.
According to a first aspect, this application provides an antenna, including a first radiating element and a second radiating element, where four dipoles enclose to form the first radiating element, and the second radiating element is a radiating element disposed on an inner side of the first radiating element. The first radiating element is configured to support a transmit frequency band, and the second radiating element is configured to support a receive frequency band; or the first radiating element is configured to support a receive frequency band, and the second radiating element is configured to support a transmit frequency band.
In this application, a transmit path and a receive path of the antenna are physically separated by using a simplified feeding network design without increasing an antenna size.
In a possible implementation, the antenna further includes a third radiating element, where the third radiating element is a radiating element disposed on an outer side of the first radiating element. The first radiating element is configured to support a first transmit frequency band and a second transmit frequency band, and the second radiating element and the third radiating element each are configured to support either of a first receive frequency band and a second receive frequency band; or the first radiating element is configured to support a first receive frequency band and a second receive frequency band, and the second radiating element and the third radiating element each are configured to support either of a first transmit frequency band and a second transmit frequency band, where the second radiating element and the third radiating element support different frequency bands.
In a possible implementation, the first radiating element, the second radiating element, and the third radiating element are all dielectric elements.
In a possible implementation, the transmit frequency band is 1805-1880 MHz, and the receive frequency band is 1710-1785 MHz.
In a possible implementation, the first transmit frequency band is 1805-1880 MHz, the second transmit frequency band is 2110-2170 MHz, the first receive frequency band is 1710-1785 MHz, and the second receive frequency band is 1920-1980 MHz.
According to a second aspect, this application provides an array antenna, including a plurality of antennas, where the antennas are the antennas according to any one of claims 1 to 6, and the plurality of antennas are arranged according to a preset deployment scheme.
In a possible implementation, the plurality of antennas are arranged into a row or a column of to form a linear array.
In a possible implementation, the plurality of antennas are arranged into square arrays.
In a possible implementation, a range of a distance between two adjacent first radiating elements is 0.4λ to 0.6λ, and λ represents a wavelength corresponding to a frequency band supported by the first radiating elements.
In this application, a transmit path and a receive path of the array antenna are physically separated by using a simplified feeding network design without increasing an antenna size.
To make the objectives, technical solutions, and advantages of this application clearer, the following describes the technical solutions in this application with reference to the accompanying drawings in this application. It is clear that the described embodiments are merely a part rather than all of embodiments of this application. All other embodiments obtained by persons of ordinary skill in the art based on the embodiments of this application without creative efforts shall fall within the protection scope of this application.
In the embodiments, claims, and accompanying drawings of this application, the terms “first”, “second”, and the like are merely used for distinction and description, and shall not be understood as an indication or implication of relative importance or an indication or implication of an order. In addition, terms “include”, “comprise”, and any other variant thereof are intended to cover non-exclusive inclusion, for example, a process, method, system, product, or device that includes a list of steps or units is not necessarily limited to those steps or units, but may include other steps or units that are not clearly listed or inherent to such a process, method, product, or device.
It should be understood that, in this application, “at least one” means one or more, and “a plurality of” means two or more. The term “and/or” is used to describe an association relationship for describing associated objects, and indicates that three relationships may exist. For example, “A and/or B” may represent the following three cases: Only A exists, only B exists, and both A and B exist, where A and B may be singular or plural. The character “/” generally indicates an “or” relationship between the associated objects. “At least one of the following items (pieces)” or a similar expression thereof indicates any combination of these items, including a single item (piece) or any combination of a plurality of items (pieces). For example, at least one of a, b, or c may indicate a, b, c, “a and b”, “a and c”, “b and c”, or “a, b, and c”, where a, b, and c may be singular or plural.
In this application, a transmit path and a receive path of the antenna are physically separated, and the first radiating element and the second radiating element support different frequency bands. A universal mobile telecommunications system (UMTS) is used as an example. 1805-1880 MHz is the transmit frequency band, and 1710-1785 MHz is the receive frequency band. If the first radiating element supports the transmit frequency band 1805-1880 MHz, the second radiating element supports the receive frequency band 1710-1785 MHz. On the contrary, if the first radiating element supports the receive frequency band 1710-1785 MHz, the second radiating element supports the transmit frequency band 1805-1880 MHz. It should be noted that the transmit frequency band and the receive frequency band in this application may alternatively be a combination of other frequency bands. This is not limited.
In this application, the transmit path and the receive path of the antenna are physically separated by using a simplified feeding network design without increasing an antenna size.
Based on the foregoing technical solution,
In this application, areas of the first radiating element, the second radiating element, and the third radiating element are separated. The first radiating element is used as a transmit antenna, and the second radiating element and the third radiating element are used as receive antennas. For example, the first radiating element supports both transmit frequency bands 1805-1880 MHz and 2110-2170 MHz, and the second radiating element and the third radiating element may each select to support either of receive frequency bands 1710-1785 MHz and 1920-1980 MHz; or the first radiating element supports both receive frequency bands 1710-1785 MHz and 1920-1980 MHz, and the second radiating element and the third radiating element may each select to support either of transmit frequency bands 1805-1880 MHz and 2110-2170 MHz. It should be noted that the transmit frequency bands and the receive frequency bands in this application may alternatively be a combination of other frequency bands. This is not limited.
In this application, a transmit path and a receive path of the antenna are physically separated by using a simplified feeding network design without increasing an antenna size.
In this application, a transmit path and a receive path of the array antenna are physically separated by using a simplified feeding network design without increasing an antenna size.
Finally, it should be noted that the foregoing embodiments are merely intended for describing the technical solutions of this application, but not for limiting this application. Although this application is described in detail with reference to the foregoing embodiments, persons of ordinary skill in the art should understand that they may still make modifications to the technical solutions described in the foregoing embodiments or make equivalent replacements to some or all technical features thereof, without departing from the scope of the technical solutions of the embodiments of this application.
Number | Date | Country | Kind |
---|---|---|---|
201811429274.7 | Nov 2018 | CN | national |
This application is a continuation of International Application No. PCT/CN2019/120986, filed on Nov. 26, 2019, which claims priority to Chinese Patent Application No. 201811429274.7, filed on Nov. 27, 2018. The disclosures of the aforementioned applications are hereby incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
7079083 | Gottl | Jul 2006 | B2 |
8593365 | Moon | Nov 2013 | B2 |
9000991 | Ramberg | Apr 2015 | B2 |
20140012063 | Turner et al. | Jan 2014 | A1 |
20170271764 | Gabriel et al. | Sep 2017 | A1 |
20180097290 | Matitsine et al. | Apr 2018 | A1 |
Number | Date | Country |
---|---|---|
101002361 | Jul 2007 | CN |
101228665 | Jul 2008 | CN |
105552519 | May 2016 | CN |
104067442 | Aug 2016 | CN |
205543195 | Aug 2016 | CN |
106169644 | Nov 2016 | CN |
106229676 | Dec 2016 | CN |
106654557 | May 2017 | CN |
107359399 | Nov 2017 | CN |
107636892 | Jan 2018 | CN |
108352602 | Jul 2018 | CN |
102007060083 | Jun 2009 | DE |
2005522 | Sep 2015 | EP |
3739687 | Nov 2020 | EP |
2018129604 | Aug 2018 | JP |
2017165512 | Sep 2017 | WO |
Entry |
---|
Zejiang, S. et al., “Radio navigation”, Dalian Maritime University Press, Oct. 2017, 2 pages. |
Number | Date | Country | |
---|---|---|---|
20210280986 A1 | Sep 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2019/120986 | Nov 2019 | US |
Child | 17330768 | US |