The present invention relates to an antenna capable of being used for a radio communication device such as a mobile device.
A conventional built-in antenna will be described as follows with reference to Japanese Patent Laid-Open Application No. H01-228303.
The antenna of the present invention comprises a ground plate which is planar; a first power feed element which is disposed separately from the ground plate by a prescribed distance and which is formed in a prescribed shape; a first parasitic element which is planar and which is formed in a prescribed shape; a first shortcircuit part which electrically connects the first parasitic element and the ground plate; and a power feed part which is electrically connected with the first power feed element, wherein the first power feed element and the first parasitic element are disposed in parallel in part with each other, and the first power feed element and the first parasitic element develop effective electromagnetic filed coupling so as to have multiple resonances.
The antenna of the present invention includes a prescribed first power feed element and a first parasitic element which is planar and has a prescribed shape. The antenna is characterized in that the first power feed element and the first parasitic element are laid to be in parallel in part with each other, and the electro magnetic coupling between the first power feed element and the first parasitic element is developed effectively to broaden the frequency bandwidth.
The antenna of the present invention can further broaden the frequency bandwidth by forming the first power feed element and the first parasitic element in a meander shape and by winding these elements in the same direction so as to resonate the power feed element and the parasitic element more effectively.
The antenna of the present invention may further include a second power feed element which is branched from the first power feed element, and another parasitic element which is connected with a ground plate at a position different from the position where the first parasitic element is connected with the ground plate. Using the resonances of the plurality of power feed elements and the plurality of parasitic elements enables a plurality of frequency bandwidths to be broadened.
Each of the embodiments of the present invention will be described with reference to accompanying drawings.
A device which has embodied this electric circuit is shown in
As shown in
The behavior of this antenna will be described as follows. In antenna 1 shown in
In addition, impedance matching can be achieved in a desired frequency bandwidth by adjusting each element length and the strength of the electromagnetic coupling.
Concerning the antenna structure of the present embodiment, a voltage standing wave ratio (hereinafter referred to as VSWR characteristics) corresponding to 900 MHz is shown in
Thus the antenna of the present embodiment having first power feed element 27 and first parasitic element 30 can achieve bandwidth broadening since it results in being able to use the resonance between two elements.
Antenna 51 includes ground plate 26; first power feed element 27 which is projected from an end of ground plate 26 within the same plane as ground plate 26 and which is formed in a meander shape; and power feed part 28 which electrically connects ground plate 26 and first power feed element 27. Antenna 51 further includes first parasitic element 30 which faces first power feed element 27 with a predetermined distance therebetween. The first parasitic element is projected in the same direction as first power feed element 27, and is electrically connected with ground plate 26 via first shortcircuit part 29 provided at an end of the first parasitic element 30. In the secondt embodiment, the distance between first power feed element 27 and the first parasitic element 30 can be secured by disposing first parasitic element 30 lower than ground plate 26. Besides this solution, the in-between distance can be secured also by providing a step part at the end of printed circuit board 22 or by bending either first power feed element 27 or the first parasitic element at the end surface of ground plate 6.
In the antenna structure of the second embodiment, the positional relation between ground plate 26 and first power feed and parasitic elements 27, 28 allows first power feed and parasitic elements 27, 28 to be disposed in the extended direction of the end of the board so as to have multiple resonances by electromagnetic coupling. As a result, the influence of the ground plate on the antenna is reduced, thereby achieving broad bandwidth characteristics.
The elements are formed in a meander shape in the present embodiment; however, the same effects could be obtained by using spiral helical elements.
Antenna 61 includes ground plate 26; first power feed element 27 which is disposed to face ground plate 26 and which is formed in a spiral shape; second power feed element 31 branched from first power feed element 27; power feed part 28 which feeds high frequency signals into first power feed element 27 and second power feed element 31; first parasitic element 30 which is disposed to surround first power feed element 27 with a desired distance therebetween; second parasitic element 32 which is branched from first parasitic element 30 and which is disposed separately from second power feed element 31 by a desired distance; and first shortcircuit part 29 which electrically connects first and second parasitic elements 30, 32 and ground plate 26.
Such use of first and second power feed elements 27, 31 and first and second parasitic elements 30, 32 makes it possible to broaden bandwidths in the frequency bands corresponding to the element lengths of the first and second power feed and parasitic elements.
Antenna 71 includes ground plate 26; first power feed element 27 which is disposed to face ground plate 26 and which is formed in a spiral shape; second power feed element 31 branched from first power feed element 27; power feed part 28 which feeds high frequency signals into first power feed element 27 and second power feed element 31; first parasitic element 30 which is disposed to surround first power feed element 27 with a desired distance therebetween; and first shortcircuit part 29 which electrically connects parasitic elements 30 and ground plate 26. Antenna 71 further includes second parasitic element 32 which is disposed separately from second power feed element 31 by a desired distance; and second shortcircuit part 33 which connects second parasitic element 32 and ground plate 26. First shortcircuit part 29 and second shortcircuit part 33 are shortcircuited to ground plate 26 at different positions from each other.
By thus structuring antenna 71 and by using first and second power feed elements 27, 31 and first and second parasitic elements 30, 32, it becomes possible to broaden bandwidths in the frequency bands corresponding to the element lengths of the first and second power feed and parasitic elements. In addition, disposing the parasitic elements individually can increase the flexibility to adjust the electromagnetic coupling which is a matching requirement.
The antenna of the present invention is useful for electronic devices such as portable phones because of being compact and having a broad bandwidth.
Number | Date | Country | Kind |
---|---|---|---|
2003-163613 | Jun 2003 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP04/08269 | 6/8/2004 | WO | 2/15/2005 |