Antenna and wireless communication device

Abstract
An antenna and a wireless communication device which are suitable for an RFID system and in which radiation characteristics are prevented from being changed as a result of impedance adjustment are configured such that the antenna includes a first loop electrode that has an external shape of a regular polygon or circle and that includes a pair of open ends, feeding portions arranged inside the first loop electrode, a second loop electrode connected to the feeding portions, and a coupling electrode that couples the first loop electrode and the second loop electrode to each other. The wireless communication device is obtained by coupling the wireless communication element which processes a high-frequency signal to the feeding portions.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to antennas and wireless communication devices, and more specifically to antennas and wireless communication devices preferably for use in radio frequency identification (RFID) systems.


2. Description of the Related Art


In recent years, RFID systems have been commercialized as article information management systems. In RFID systems, non-contact communication through an electromagnetic field is performed between a reader/writer that generates an induction field and an RFID tag (also called a wireless communication device) attached to an article, whereby predetermined information is transmitted. This RFID tag includes a wireless IC chip that stores predetermined information and processes a predetermined wireless signal and an antenna (radiation body) that transmits and receives a high-frequency signal.


Japanese Unexamined Patent Application Publication No. 2007-96655 discloses an antenna for an RFID tag. In this antenna, which is a bent dipole antenna, impedance is adjusted by forming a slit near a feeding portion. Further, Japanese Unexamined Patent Application Publication No. 2008-160821 discloses an antenna that includes a first loop conductor pattern and second and third conductor patterns connected to the first conductor pattern. In this antenna, which receives circularly polarized waves through the first conductor pattern, impedance is adjusted through adjustment of the lengths of the second and third conductor patterns.


However, the antenna disclosed in Japanese Unexamined Patent Application Publication No. 2007-96655, in which a portion of the dipole antenna is used for impedance adjustment, has a problem in that radiation characteristics such as directivity and gain may be changed depending on a change in the shape of the slit caused by the adjustment. Further, the antenna disclosed in Japanese Unexamined Patent Application Publication No. 2008-160821, in which the first conductor pattern is directly electrically connected to the second and third conductor patterns and, hence, a portion of the first conductor pattern contributes to the impedance adjustment, has a problem in that radiation characteristics such as directivity and gain may be changed as a result of the adjustment, similarly to the antenna disclosed in Japanese Unexamined Patent Application Publication No. 2007-96655.


SUMMARY OF THE INVENTION

Accordingly, preferred embodiments of the present invention provide an antenna and a wireless communication device, appropriate for RFID systems, in which radiation characteristics are prevented from being changed as a result of impedance adjustment.


An antenna according to a first preferred embodiment of the present invention includes a first loop electrode that has an external shape of a regular polygon or circle and that includes a pair of open ends, feeding portions arranged inside the first loop electrode, a second loop electrode connected to the feeding portions, and a coupling electrode that couples the first loop electrode and the second loop electrode to each other.


A wireless communication device according to a second preferred embodiment of the present invention includes a first loop electrode that has an external shape of a regular polygon or circle and that includes a pair of open ends, feeding portions arranged inside the first loop electrode, a second loop electrode connected to the feeding portions, a coupling electrode that couples the first loop electrode and the second loop electrode to each other, and a wireless communication element coupled to the feeding portions.


In the antenna, the first loop electrode functions as a radiation portion and the second loop electrode functions as an impedance matching portion. Since the first loop electrode and the second loop electrode are coupled to each other through the coupling electrode, independence of the first loop antenna and the second loop antenna is ensured. In other words, even when the second loop electrode is adjusted for impedance matching, the radiation characteristics of the first loop electrode, such as directivity and gain, are maintained.


The above and other elements, features, steps, characteristics and advantages of the present invention will become more apparent from the following detailed description of the preferred embodiments with reference to the attached drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A and 1B illustrate an antenna according to a first preferred embodiment of the present invention wherein FIG. 1A is a plan view and FIG. 1B is a diagram explaining functions.



FIG. 2 is a plan view illustrating an antenna according to a second preferred embodiment of the present invention.



FIG. 3 is a plan view illustrating an antenna according to a third preferred embodiment of the present invention.



FIG. 4 is a plan view illustrating an antenna according to a fourth preferred embodiment of the present invention.



FIG. 5 is a plan view illustrating an antenna according to a fifth preferred embodiment of the present invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Hereinafter, preferred embodiments of an antenna and a wireless communication device according to the present invention will be described with reference to the drawings. Note that identical elements and portions in the figures are denoted by the same reference symbols and duplicate descriptions thereof are omitted.


First Preferred Embodiment

Referring to FIG. 1A, in an antenna 10A according to a first preferred embodiment, which is used for communication in the UHF band, a plate electrode 12 preferably having an external shape of a triangle, for example, is provided on the surface of a substrate 11 that is preferably square-shaped or substantially square-shaped. A resin film, such as a PET film, is preferably used as the substrate 11, for example. The plate electrode 12 preferably is a thin film conductor made of a metal foil such as a copper or aluminum foil, or is a thick film conductor made from conductive paste including silver or copper powder, for example.


In more detail, a first loop electrode 21 preferably has an external shape that is square-shaped or substantially square-shaped, and includes side portions 12a and 12b of the plate electrode 12 and line portions 12c and 12d that extend from the side portions 12a and 12b.


The tips of the line portions 12c and 12d include open ends 22a and 22b. A circular opening 13 and a slit portion 14 that communicates with the opening 13 are formed in the plate electrode 12. Opposing portions of the slit portion 14 define feeding portions 15a and 15b. The feeding portions 15a and 15b are located inside the first loop electrode 21 and are coupled to a wireless communication element 40.


The wireless communication element 40 preferably is an element in the form of a chip and processes a high-frequency signal. The wireless communication element 40 may be simply a wireless IC chip or may be formed as a feeding circuit substrate that includes a wireless IC chip and a resonant circuit having a predetermined resonant frequency. The wireless IC chip preferably includes a clock circuit, a logic circuit, a memory circuit, and the like and stores necessary information. The wireless communication element 40 may be directly electrically connected to or coupled through an electromagnetic field to the feeding portions 15a and 15b.


A second loop electrode 25 is located in a peripheral portion surrounding the opening 13 and the two ends thereof are connected to the feeding portions 15a and 15b. Coupling electrodes 27 are located at the periphery (specifically, bottom side portion) of the plate electrode 12 and couple the first loop electrode 21 and the second loop electrode 25 to each other.


Here, referring to FIG. 1B, to illustrate the first and second loop electrodes 21 and 25 and the coupling electrodes 27 so as to be easily recognizable, the first loop electrode 21 is a portion shaded with lines rising toward the right and the second loop electrode 25 is a portion shaded with lines falling toward the right. In addition, the coupling electrodes 27 are portions shaded with horizontal lines. The first loop electrode 21 and the second loop electrode 25 preferably are symmetrical or substantially symmetrical about a virtual straight line Y that passes through the open ends 22a and 22b and the feeding portions 15a and 15b. In other words, the first and second loop electrodes 21 and 25 are preferably line-symmetrical or substantially line-symmetrical about the virtual straight line Y that passes through the opposing apexes of the nearly square loop electrode.


In the antenna 10A configured as described above, a predetermined high-frequency signal output from the wireless communication element 40 is transmitted through the feeding portions 15a and 15b over the second loop electrode 25 (refer to an arrow a), is transmitted through the coupling electrodes 27 over the first loop electrode 21 (refer to arrows b and c), and is radiated outward from the first loop electrode 21. On the other hand, a high-frequency signal received by the first loop electrode 21 is transmitted over the second loop electrode 25 through the coupling electrodes 27, and is supplied to the wireless communication element 40 through the feeding portions 15a and 15b. As a result, communication with the reader/writer of an RFID system is achieved.


In other words, in the first preferred embodiment, the first loop electrode 21 functions as a radiation portion and the second loop electrode 25 functions as an impedance matching portion between the wireless communication element 40 and the first loop electrode 21. The impedance can be adjusted by adjusting the diameter or shape of the opening 13. Since the first loop electrode 21 and the second loop electrode 25 are coupled to each other through the coupling electrodes 27, independence of the first loop electrode 21 and the second loop electrode 25 is ensured. Specifically in the first preferred embodiment, it is preferred that the first loop electrode 21 is arranged in a peripheral portion, the second loop electrode 25 is arranged inside the first loop electrode 21, and the feeding portions 15a and 15b are arranged in the central portion of the first loop electrode 21. Hence, the distance between the first loop electrode 21 and the second loop electrode 25 and the distances between the first loop electrode 21 and the feeding portions 15a and 15b are large and, hence, there is a high degree of independence between the first loop electrode 21 and the second loop electrode 25 and between the first loop electrode 21 and the feeding portions 15a and 15b.


As a result, it is unlikely that the radiation characteristics (directivity, gain, etc.) of the first loop electrode 21 are influenced by the second loop electrode 25 or the feeding portions 15a and 15b. In other words, even when the second loop electrode 25 is adjusted for impedance matching, the radiation characteristics, such as directivity and gain, of the first loop electrode 21 are maintained. Further, transmission and reception of circularly polarized waves become possible by adjusting the arrangement of the open ends 22a and 22b of the first loop electrode 21.


Here, the fact that the first loop electrode 21 and the second loop electrode 25 are coupled to each other means that the two electrodes are electrically connected to each other through the coupling electrodes 27. The coupling is usually in the form of a DC direct connection, but the coupling may be magnetic coupling or electric field coupling, for example. Transmission and reception of circularly polarized waves become possible by setting the lengths of the line portions 12c and 12d to the same length (L11−L12=L21−L22). Further, good radiation characteristics are obtained by making the first and second loop electrodes 21 and 25 be respectively symmetrical or substantially symmetrical about the virtual straight line Y. In other words, in the first loop electrode 21, the voltage becomes maximum at the open ends 22a and 22b and the current becomes maximum along the virtual straight line Y. Similarly, in the second loop electrode 25, the current becomes maximum along the virtual straight line Y such that a high voltage can be applied between the feeding portions 15a and 15b.


In the antenna 10A, the first loop electrode 21 preferably is arranged so as to have an external shape that is square or substantially square. By making the external shape be a square or substantially square, a signal can be transmitted/received similarly in the vertical and horizontal directions (refer to arrows X1 and X2 in FIG. 1A) such that nearly non-directional transmission/reception is realized. Note that nearly non-directional transmission/reception may also be achieved when the first loop electrode 21 has an external shape of a circle or a regular polygon. The electrical lengths of portions of the first loop electrode 21 extending along the sides where the open ends 22a and 22b are provided are shorter than the lengths of the sides. This means that the first loop electrode 21 has a configuration in which the open ends 22a and 22b are provided. An area (null point) in which transmission/reception cannot be performed can be decreased by setting the electric lengths of the line portions 12c and 12d to be respectively longer than L12 and L22.


In the antenna 10A, it is preferable to make the electrical length of the first loop electrode 21 be about half of a wavelength λ used in transmission and reception, for example. This allows the resonant characteristics to be improved. Further, since the antenna 10A is non-directional and the first loop electrode 21 includes the plate electrode 12, a high-frequency signal is also transmitted from and received by the plate portion such that the gain is increased.


Second Preferred Embodiment

Referring to FIG. 2, an antenna 10B according to a second preferred embodiment has a configuration in which a plate electrode 12 preferably having a semicircular or substantially semicircular shape is located on the surface of a substrate 11 that is preferably circular or substantially circular. Line portions 12c and 12d extend from the two ends of the peripheral portion of the plate electrode 12 in such a manner as to form a concentric circle. A circular or substantially circular opening 13 and a slit portion 14 that communicates with the opening 13 are formed in the plate electrode 12. Opposing portions of the slit portion 14 define and function as feeding portions 15a and 15b.


In the second preferred embodiment, a first loop electrode 21 is arranged such that the peripheral portion and the line portions 12c and 12d of the plate electrode 12 define a circle. The tips of the line portions 12c and 12d are open ends 22a and 22b. A second loop electrode 25 is provided in a peripheral portion surrounding the opening 13 and the two ends thereof are connected to feeding portions 15a and 15b. Similarly to the first preferred embodiment, the wireless communication element 40 is coupled to the feeding portions 15a and 15b. Coupling electrodes 27 are located in the straight line portion of the plate electrode 12 and couples the first loop electrode 21 and the second loop electrode 25 to each other.


The operations of the first loop electrode 21, the second loop electrode 25, and the coupling electrodes 27 in the second preferred embodiment are similar to those of the first preferred embodiment described above, and the functions and the effects are also similar to those of the first preferred embodiment.


Third Preferred Embodiment

Referring to FIG. 3, an antenna 10C according to a third preferred embodiment has a configuration in which an opening 13 preferably is rectangular or substantially rectangular. The rest of the configuration and the functions and the effects are similar to those of the first preferred embodiment described above.


Fourth Preferred Embodiment

Referring to FIG. 4, an antenna 10D according to a fourth preferred embodiment has a configuration in which a first loop electrode 21, a second loop electrode 25, and coupling electrodes 27 are respectively defined by line conductors. The functions and effects of respective portions are similar to those of the first preferred embodiment described above.


Fifth Preferred Embodiment

Referring to FIG. 5, an antenna 10E according to a fifth preferred embodiment has a configuration in which a first loop electrode 21, a second loop electrode 25, and coupling electrodes 27 are respectively defined by line conductors. The functions and effects of respective portions are similar to those of the first preferred embodiment described above. Specifically in the fifth preferred embodiment, the connection portions between the coupling electrodes 27 and the second loop electrode are arranged at positions that are spaced apart from the feeding portions 15a and 15b. By changing the positions of the connection portions between the coupling electrodes 27 and the second loop electrode 25 in this manner, impedance can be adjusted. Further, the degree of independence of the first loop electrode 21 and the second loop electrode 25 can be increased by increasing the lengths of the coupling electrodes 27.


Other Preferred Embodiments

Note that the antenna and wireless communication device according to the present invention are not limited to the preferred embodiments described above and can be modified in various ways within the scope of the present invention.


For example, although a wireless communication element in the form of a chip preferably is mounted on the feeding portions of an antenna in the preferred embodiments described above, by providing the wireless communication element on a substrate that is different from the substrate on which the loop electrode is provided, the wireless communication element may be connected to the feeding portions through connection paths such as flexible lines. Further, this antenna can be used not only as an antenna for an RFID tag but also as an antenna for a reader/writer or as an antenna for other communication systems, such as GSM and GPS, for example.


As described above, preferred embodiments of the present invention are useful for antennas and wireless communication devices, and specifically provide an advantage in that radiation characteristics are prevented from being changed as a result of impedance adjustment.


While preferred embodiments of the present invention have been described above, it is to be understood that variations and modifications will be apparent to those skilled in the art without departing from the scope and spirit of the present invention. The scope of the present invention, therefore, is to be determined solely by the following claims.

Claims
  • 1. An antenna comprising: a first loop electrode that has an external shape of a regular polygon or circle and that includes a pair of open ends;feeding portions arranged inside the first loop electrode;a second loop electrode connected to the feeding portions;a coupling electrode that couples the first loop electrode and the second loop electrode to each other; anda plate electrode that includes an opening and a slit portion that communicates with the opening; whereinthe coupling electrode and a portion of the first loop electrode are located in a peripheral portion of the plate electrode;the second loop electrode is located in a peripheral portion surrounding the opening; andopposing portions of the slit portion define the feeding portions.
  • 2. The antenna according to claim 1, wherein the feeding portions are arranged in a substantially central portion of the first loop electrode.
  • 3. The antenna according to claim 1, wherein the first loop electrode and the second loop electrode have respective shapes that are symmetrical or substantially symmetrical about a virtual straight line passing through the open ends and the feeding portions.
  • 4. The antenna according to claim 1, wherein the first loop electrode has an external shape that is square or substantially square.
  • 5. The antenna according to claim 4, wherein an electrical length of a portion of the first loop electrode along a side where the open end is provided is shorter than a length of the side.
  • 6. The antenna according to claim 1, further comprising a substrate that is square or substantially square, wherein the plate electrode is located on the plate and has an external shape that is triangular or substantially triangular.
  • 7. The antenna according to claim 1, further comprising a substrate that is circular or substantially circular, wherein the plate electrode is located on the plate and has an external shape that is semicircular or substantially semicircular.
  • 8. The antenna according to claim 1, wherein the opening has a shape that is circular or substantially circular.
  • 9. The antenna according to claim 1, wherein the opening has a shape that is square or substantially square.
  • 10. The antenna according to claim 1, wherein the opening has a shape that is rectangular or substantially rectangular.
  • 11. The antenna according to claim 1, wherein an electrical length of the first loop electrode is about half of a wavelength of a signal received or transmitted by the antenna.
  • 12. The antenna according to claim 1, wherein the first loop electrode and the second loop electrode are independent from each other such that adjustment of the second loop electrode does not affect the first loop electrode.
  • 13. The antenna according to claim 1, wherein the first loop electrode, the second loop electrode, and the coupling electrode are respectively defined by line conductors.
  • 14. The antenna according to claim 13, wherein a connection portion between the coupling electrode and the second loop electrode is located at a position that is spaced apart from the feeding portions.
  • 15. An antenna comprising: a first loop electrode that has an external shape of a regular polygon or circle and that includes a pair of open ends;feeding portions arranged inside the first loop electrode;a second loop electrode connected to the feeding portions;a coupling electrode that couples the first loop electrode and the second loop electrode to each other; whereinthe first loop electrode defines a radiation portion and the second loop electrode defines an impedance matching portion.
  • 16. A wireless communication device comprising: a first loop electrode that has an external shape of a regular polygon or circle and that includes a pair of open ends;feeding portions arranged inside the first loop electrode;a second loop electrode connected to the feeding portions;a coupling electrode that couples the first loop electrode and the second loop electrode to each other;a plate electrode that includes an opening and a slit portion that communicates with the opening; anda wireless communication element coupled to the feeding portions; whereinthe coupling electrode and a portion of the first loop electrode are located in a peripheral portion of the plate electrode;the second loop electrode is located in a peripheral portion surrounding the opening; andopposing portions of the slit portion define the feeding portions.
  • 17. The wireless communication device according to claim 16, wherein the wireless communication element is mounted on the feeding portions.
  • 18. The wireless communication device according to claim 16, wherein the wireless communication element is a chip component.
  • 19. The wireless communication device according to claim 16, further comprising a substrate, wherein the wireless communication element is mounted on the substrate and connected to the feeding portions through connection paths.
Priority Claims (1)
Number Date Country Kind
2010-084008 Mar 2010 JP national
US Referenced Citations (175)
Number Name Date Kind
3364564 Kurtz et al. Jan 1968 A
4794397 Ohe et al. Dec 1988 A
5232765 Yano et al. Aug 1993 A
5253969 Richert Oct 1993 A
5337063 Takahira Aug 1994 A
5374937 Tsunekawa et al. Dec 1994 A
5399060 Richert Mar 1995 A
5491483 D'Hont Feb 1996 A
5528222 Moskowitz et al. Jun 1996 A
5757074 Matloubian et al. May 1998 A
5854480 Noto Dec 1998 A
5903239 Takahashi et al. May 1999 A
5936150 Kobrin et al. Aug 1999 A
5955723 Reiner Sep 1999 A
5995006 Walsh Nov 1999 A
6104311 Lastinger Aug 2000 A
6107920 Eberhardt et al. Aug 2000 A
6172608 Cole Jan 2001 B1
6181287 Beigel Jan 2001 B1
6190942 Wilm et al. Feb 2001 B1
6243045 Ishibashi Jun 2001 B1
6249258 Bloch et al. Jun 2001 B1
6259369 Monico Jul 2001 B1
6271803 Watanabe et al. Aug 2001 B1
6335686 Goff et al. Jan 2002 B1
6362784 Kane et al. Mar 2002 B1
6367143 Sugimura Apr 2002 B1
6378774 Emori et al. Apr 2002 B1
6406990 Kawai Jun 2002 B1
6448874 Shiino et al. Sep 2002 B1
6452563 Porte Sep 2002 B1
6462716 Kushihi Oct 2002 B1
6542050 Arai et al. Apr 2003 B1
6573874 Saito et al. Jun 2003 B1
6600459 Yokoshima et al. Jul 2003 B2
6634564 Kuramochi Oct 2003 B2
6664645 Kawai Dec 2003 B2
6763254 Nishikawa Jul 2004 B2
6812707 Yonezawa et al. Nov 2004 B2
6828881 Mizutani et al. Dec 2004 B2
6837438 Takasugi et al. Jan 2005 B1
6861731 Buijsman et al. Mar 2005 B2
6927738 Senba et al. Aug 2005 B2
6956481 Cole Oct 2005 B1
6963729 Uozumi Nov 2005 B2
7088249 Senba et al. Aug 2006 B2
7088307 Imaizumi Aug 2006 B2
7112952 Arai et al. Sep 2006 B2
7119693 Devilbiss Oct 2006 B1
7129834 Naruse et al. Oct 2006 B2
7248221 Kai et al. Jul 2007 B2
7250910 Yoshikawa et al. Jul 2007 B2
7276929 Arai et al. Oct 2007 B2
7317396 Ujino Jan 2008 B2
7405664 Sakama et al. Jul 2008 B2
7446729 Maruyama et al. Nov 2008 B2
8344950 Su Jan 2013 B2
8378917 Yoneda et al. Feb 2013 B2
20010011012 Hino et al. Aug 2001 A1
20020011967 Goff et al. Jan 2002 A1
20020015002 Yasukawa et al. Feb 2002 A1
20020044092 Kushihi Apr 2002 A1
20020067316 Yokoshima et al. Jun 2002 A1
20020093457 Hamada et al. Jul 2002 A1
20020186004 Prazeres da Costa et al. Dec 2002 A1
20030006901 Kim et al. Jan 2003 A1
20030020661 Sato Jan 2003 A1
20030045324 Nagumo et al. Mar 2003 A1
20030169153 Muller Sep 2003 A1
20030206095 Chaloner et al. Nov 2003 A1
20040001027 Killen et al. Jan 2004 A1
20040026519 Usami et al. Feb 2004 A1
20040056823 Zuk et al. Mar 2004 A1
20040066617 Hirabayashi et al. Apr 2004 A1
20040217915 Imaizumi Nov 2004 A1
20040219956 Iwai et al. Nov 2004 A1
20040227673 Iwai et al. Nov 2004 A1
20040252064 Yuanzhu Dec 2004 A1
20050001031 Akiho et al. Jan 2005 A1
20050007296 Endo et al. Jan 2005 A1
20050092836 Kudo May 2005 A1
20050099337 Takei et al. May 2005 A1
20050125093 Kikuchi et al. Jun 2005 A1
20050133605 Koyama et al. Jun 2005 A1
20050134460 Usami Jun 2005 A1
20050134506 Egbert Jun 2005 A1
20050138798 Sakama et al. Jun 2005 A1
20050140512 Sakama et al. Jun 2005 A1
20050162331 Endo et al. Jul 2005 A1
20050232412 Ichihara et al. Oct 2005 A1
20050236623 Takechi et al. Oct 2005 A1
20050253726 Yoshida et al. Nov 2005 A1
20050275539 Sakama et al. Dec 2005 A1
20060001138 Sakama et al. Jan 2006 A1
20060032926 Baba et al. Feb 2006 A1
20060044192 Egbert Mar 2006 A1
20060055531 Cook et al. Mar 2006 A1
20060055601 Kameda et al. Mar 2006 A1
20060071084 Detig et al. Apr 2006 A1
20060109185 Iwai et al. May 2006 A1
20060114159 Yoshikawa et al. Jun 2006 A1
20060145872 Tanaka et al. Jul 2006 A1
20060158380 Son et al. Jul 2006 A1
20060170606 Yamagajo et al. Aug 2006 A1
20060208900 Tavassoli Hozouri Sep 2006 A1
20060214801 Murofushi et al. Sep 2006 A1
20060220871 Baba et al. Oct 2006 A1
20060244568 Tong et al. Nov 2006 A1
20060244676 Uesaka Nov 2006 A1
20060267138 Kobayashi Nov 2006 A1
20070004028 Lair et al. Jan 2007 A1
20070015549 Hernandez et al. Jan 2007 A1
20070018893 Kai et al. Jan 2007 A1
20070040028 Kawamata Feb 2007 A1
20070052613 Gallschuetz et al. Mar 2007 A1
20070057854 Oodachi et al. Mar 2007 A1
20070069037 Kawai Mar 2007 A1
20070122960 Aoki May 2007 A1
20070132591 Khatri Jun 2007 A1
20070164414 Dokai et al. Jul 2007 A1
20070200705 Yamagajo et al. Aug 2007 A1
20070200782 Hayama et al. Aug 2007 A1
20070229276 Yamagajo et al. Oct 2007 A1
20070247387 Kubo et al. Oct 2007 A1
20070252700 Ishihara et al. Nov 2007 A1
20070252703 Kato et al. Nov 2007 A1
20070252763 Martin Nov 2007 A1
20070252770 Kai et al. Nov 2007 A1
20070285335 Bungo et al. Dec 2007 A1
20070290928 Chang et al. Dec 2007 A1
20080024156 Arai et al. Jan 2008 A1
20080068132 Kayanakis et al. Mar 2008 A1
20080070003 Nakatani et al. Mar 2008 A1
20080074268 Shafer Mar 2008 A1
20080087990 Kato et al. Apr 2008 A1
20080111695 Yamagajo et al. May 2008 A1
20080129606 Yanagisawa et al. Jun 2008 A1
20080143630 Kato et al. Jun 2008 A1
20080169905 Slatter Jul 2008 A1
20080184281 Ashizaki et al. Jul 2008 A1
20080252551 Kubo et al. Oct 2008 A1
20080272885 Atherton Nov 2008 A1
20090002130 Kato Jan 2009 A1
20090008460 Kato Jan 2009 A1
20090009007 Kato et al. Jan 2009 A1
20090021352 Kataya et al. Jan 2009 A1
20090021446 Kataya et al. Jan 2009 A1
20090065594 Kato et al. Mar 2009 A1
20090066466 Arimura Mar 2009 A1
20090080296 Dokai et al. Mar 2009 A1
20090096696 Joyce, Jr. et al. Apr 2009 A1
20090109034 Chen et al. Apr 2009 A1
20090109102 Dokai et al. Apr 2009 A1
20090134979 Tsukamoto et al. May 2009 A1
20090140947 Sasagawa et al. Jun 2009 A1
20090160719 Kato et al. Jun 2009 A1
20090201116 Orihara Aug 2009 A1
20090224061 Kato et al. Sep 2009 A1
20090231106 Okamura Sep 2009 A1
20090262041 Ikemoto et al. Oct 2009 A1
20090266900 Ikemoto et al. Oct 2009 A1
20090278687 Kato Nov 2009 A1
20090284220 Toncich et al. Nov 2009 A1
20090321527 Kato et al. Dec 2009 A1
20100103058 Kato et al. Apr 2010 A1
20100182210 Ryou et al. Jul 2010 A1
20100230499 Choo et al. Sep 2010 A1
20100283694 Kato Nov 2010 A1
20100308118 Kataya et al. Dec 2010 A1
20110031320 Kato et al. Feb 2011 A1
20110063184 Furumura et al. Mar 2011 A1
20110080331 Kato Apr 2011 A1
20110186641 Kato et al. Aug 2011 A1
20110253795 Kato Oct 2011 A1
20120001701 Taniguchi et al. Jan 2012 A1
Foreign Referenced Citations (577)
Number Date Country
2 279 176 Jul 1998 CA
10 2006 057 369 Jun 2008 DE
0 694 874 Jan 1996 EP
0 848 448 Jun 1998 EP
0 948 083 Oct 1999 EP
0 977 145 Feb 2000 EP
1 010 543 Jun 2000 EP
1 085 480 Mar 2001 EP
1 160 915 Dec 2001 EP
1 170 795 Jan 2002 EP
1 193 793 Apr 2002 EP
1 227 540 Jul 2002 EP
1 280 232 Jan 2003 EP
1 280 350 Jan 2003 EP
1 343 223 Sep 2003 EP
1 357 511 Oct 2003 EP
1 547 753 Jun 2005 EP
1 548 872 Jun 2005 EP
1 626 364 Feb 2006 EP
1 701 296 Sep 2006 EP
1 703 589 Sep 2006 EP
1 742 296 Jan 2007 EP
1 744 398 Jan 2007 EP
1 840 802 Oct 2007 EP
1 841 005 Oct 2007 EP
1 865 574 Dec 2007 EP
1 887 652 Feb 2008 EP
1 976 056 Oct 2008 EP
1 988 491 Nov 2008 EP
1 988 601 Nov 2008 EP
1 993 170 Nov 2008 EP
2 009 738 Dec 2008 EP
2 012 258 Jan 2009 EP
2 096 709 Sep 2009 EP
2 148 449 Jan 2010 EP
2 166 617 Mar 2010 EP
2 251 934 Nov 2010 EP
2 256 861 Dec 2010 EP
2 330 684 Jun 2011 EP
2 305 075 Mar 1997 GB
2461443 Jan 2010 GB
2470299 Nov 2010 GB
50-143451 Nov 1975 JP
61-284102 Dec 1986 JP
62-127140 Aug 1987 JP
01-212035 Aug 1989 JP
02-164105 Jun 1990 JP
02-256208 Oct 1990 JP
3-171385 Jul 1991 JP
03-503467 Aug 1991 JP
03-262313 Nov 1991 JP
04-150011 May 1992 JP
04-167500 Jun 1992 JP
04-096814 Aug 1992 JP
04-101168 Sep 1992 JP
04-134807 Dec 1992 JP
5-41610 Feb 1993 JP
05-226926 Sep 1993 JP
05-327331 Dec 1993 JP
6-53733 Feb 1994 JP
06-077729 Mar 1994 JP
06-029215 Apr 1994 JP
06-177635 Jun 1994 JP
6-260949 Sep 1994 JP
07-183836 Jul 1995 JP
08-055725 Feb 1996 JP
08-056113 Feb 1996 JP
8-87580 Apr 1996 JP
08-88586 Apr 1996 JP
08-088586 Apr 1996 JP
08-176421 Jul 1996 JP
08-180160 Jul 1996 JP
08-279027 Oct 1996 JP
08-307126 Nov 1996 JP
08-330372 Dec 1996 JP
09-014150 Jan 1997 JP
09-035025 Feb 1997 JP
09-093029 Apr 1997 JP
9-93029 Apr 1997 JP
09-245381 Sep 1997 JP
09-252217 Sep 1997 JP
09-270623 Oct 1997 JP
09-284038 Oct 1997 JP
09-294374 Nov 1997 JP
9-512367 Dec 1997 JP
10-69533 Mar 1998 JP
10-069533 Mar 1998 JP
10-084406 Mar 1998 JP
10-505466 May 1998 JP
10-171954 Jun 1998 JP
10-173427 Jun 1998 JP
10-193849 Jul 1998 JP
10-193851 Jul 1998 JP
10-242742 Sep 1998 JP
10-293828 Nov 1998 JP
10-334203 Dec 1998 JP
2834584 Dec 1998 JP
11-025244 Jan 1999 JP
11-039441 Feb 1999 JP
11-075329 Mar 1999 JP
11-085937 Mar 1999 JP
11-88241 Mar 1999 JP
11-102424 Apr 1999 JP
11-103209 Apr 1999 JP
11-149536 Jun 1999 JP
11-149537 Jun 1999 JP
11-149538 Jun 1999 JP
11-175678 Jul 1999 JP
11-219420 Aug 1999 JP
11-220319 Aug 1999 JP
11-282993 Oct 1999 JP
11-328352 Nov 1999 JP
11-331014 Nov 1999 JP
11-346114 Dec 1999 JP
11-355030 Dec 1999 JP
11-515094 Dec 1999 JP
2000-21128 Jan 2000 JP
2000-021639 Jan 2000 JP
2000-022421 Jan 2000 JP
2000-048152 Feb 2000 JP
2000-059260 Feb 2000 JP
2000-085283 Mar 2000 JP
2000-090207 Mar 2000 JP
2000-132643 May 2000 JP
2000-137778 May 2000 JP
2000-137779 May 2000 JP
2000-137785 May 2000 JP
2000-148948 May 2000 JP
2000-172812 Jun 2000 JP
2000-209013 Jul 2000 JP
2000-222540 Aug 2000 JP
2000-510271 Aug 2000 JP
2000-242754 Sep 2000 JP
2000-243797 Sep 2000 JP
2000-251049 Sep 2000 JP
2000-261230 Sep 2000 JP
2000-276569 Oct 2000 JP
2000-286634 Oct 2000 JP
2000-286760 Oct 2000 JP
2000-311226 Nov 2000 JP
2000-321984 Nov 2000 JP
2000-349680 Dec 2000 JP
2001-10264 Jan 2001 JP
2001-028036 Jan 2001 JP
2001-043340 Feb 2001 JP
3075400 Feb 2001 JP
2001-66990 Mar 2001 JP
2001-76111 Mar 2001 JP
2001-084463 Mar 2001 JP
2001-101369 Apr 2001 JP
2001-505682 Apr 2001 JP
2001-168628 Jun 2001 JP
2001-188890 Jul 2001 JP
2001-209767 Aug 2001 JP
2001-240046 Sep 2001 JP
2001-240217 Sep 2001 JP
2001-256457 Sep 2001 JP
2001-257292 Sep 2001 JP
2001-514777 Sep 2001 JP
2001-291181 Oct 2001 JP
2001-319380 Nov 2001 JP
2001-331976 Nov 2001 JP
2001-332923 Nov 2001 JP
2001-339226 Dec 2001 JP
2001-344574 Dec 2001 JP
2001-351083 Dec 2001 JP
2001-351084 Dec 2001 JP
2001-352176 Dec 2001 JP
2001-358527 Dec 2001 JP
2002-024776 Jan 2002 JP
2002-026513 Jan 2002 JP
2002-32731 Jan 2002 JP
2002-042076 Feb 2002 JP
2002-042083 Feb 2002 JP
2002-063557 Feb 2002 JP
2002-505645 Feb 2002 JP
2002-76750 Mar 2002 JP
2002-076750 Mar 2002 JP
2002-111363 Apr 2002 JP
2002-143826 May 2002 JP
2002-150245 May 2002 JP
2002-157564 May 2002 JP
2002-158529 May 2002 JP
2002-175508 Jun 2002 JP
2002-175920 Jun 2002 JP
2002-183676 Jun 2002 JP
2002-183690 Jun 2002 JP
2002-185358 Jun 2002 JP
2002-204117 Jul 2002 JP
2002-521757 Jul 2002 JP
2002-522849 Jul 2002 JP
2002-222398 Aug 2002 JP
2002-230128 Aug 2002 JP
2002-232221 Aug 2002 JP
2002-245416 Aug 2002 JP
2002-246828 Aug 2002 JP
2002-252117 Sep 2002 JP
2002-259934 Sep 2002 JP
2002-280821 Sep 2002 JP
2002-290130 Oct 2002 JP
2002-298109 Oct 2002 JP
2002-308437 Oct 2002 JP
2002-319008 Oct 2002 JP
2002-319009 Oct 2002 JP
2002-319812 Oct 2002 JP
2002-324221 Nov 2002 JP
2002-325013 Nov 2002 JP
2002-362613 Dec 2002 JP
2002-366917 Dec 2002 JP
2002-373029 Dec 2002 JP
2002-373323 Dec 2002 JP
2002-374139 Dec 2002 JP
2003-006599 Jan 2003 JP
2003-016412 Jan 2003 JP
2003-022912 Jan 2003 JP
2003-026177 Jan 2003 JP
2003-030612 Jan 2003 JP
2003-037861 Feb 2003 JP
2003-44789 Feb 2003 JP
2003-046318 Feb 2003 JP
2003-58840 Feb 2003 JP
2003-067711 Mar 2003 JP
2003-069335 Mar 2003 JP
2003-076947 Mar 2003 JP
2003-76963 Mar 2003 JP
2003-78333 Mar 2003 JP
2003-078336 Mar 2003 JP
2003-085501 Mar 2003 JP
2003-085520 Mar 2003 JP
2003-87008 Mar 2003 JP
2003-87044 Mar 2003 JP
2003-099184 Apr 2003 JP
2003-099720 Apr 2003 JP
2003-099721 Apr 2003 JP
2003-108966 Apr 2003 JP
2003-110344 Apr 2003 JP
2003-132330 May 2003 JP
2003-134007 May 2003 JP
2003-139866 May 2003 JP
2003-155062 May 2003 JP
2003-158414 May 2003 JP
2003-168760 Jun 2003 JP
2003-179565 Jun 2003 JP
2003-187207 Jul 2003 JP
2003-187211 Jul 2003 JP
2003-188338 Jul 2003 JP
2003-188620 Jul 2003 JP
2003-198230 Jul 2003 JP
2003-209421 Jul 2003 JP
2003-216919 Jul 2003 JP
2003-218624 Jul 2003 JP
2003-233780 Aug 2003 JP
2003-242471 Aug 2003 JP
2003-243918 Aug 2003 JP
2003-249813 Sep 2003 JP
2003-529163 Sep 2003 JP
2003-288560 Oct 2003 JP
2003-308363 Oct 2003 JP
2003-309418 Oct 2003 JP
2003-317055 Nov 2003 JP
2003-317060 Nov 2003 JP
2003-331246 Nov 2003 JP
2003-332820 Nov 2003 JP
2003-536302 Dec 2003 JP
2004-040597 Feb 2004 JP
2004-505481 Feb 2004 JP
2004-082775 Mar 2004 JP
2004-88218 Mar 2004 JP
2004-93693 Mar 2004 JP
2004-096566 Mar 2004 JP
2004-096618 Mar 2004 JP
2004-506905 Mar 2004 JP
2004-104344 Apr 2004 JP
2004-121412 Apr 2004 JP
2004-126750 Apr 2004 JP
2004-127230 Apr 2004 JP
2004-140513 May 2004 JP
2004-145449 May 2004 JP
2004-163134 Jun 2004 JP
2004-166175 Jun 2004 JP
2004-166176 Jun 2004 JP
2004-172919 Jun 2004 JP
2004-213582 Jul 2004 JP
2004-519916 Jul 2004 JP
2004070879 Aug 2004 JP
2004-234595 Aug 2004 JP
2004-253858 Sep 2004 JP
2004-527864 Sep 2004 JP
2004-280390 Oct 2004 JP
2004-282403 Oct 2004 JP
2004-287767 Oct 2004 JP
2004-295297 Oct 2004 JP
2004-297249 Oct 2004 JP
2004-297681 Oct 2004 JP
2004-304370 Oct 2004 JP
2004-319848 Nov 2004 JP
2004-326380 Nov 2004 JP
2004-334268 Nov 2004 JP
2004-336250 Nov 2004 JP
2004-336604 Nov 2004 JP
2004-343000 Dec 2004 JP
2004-362190 Dec 2004 JP
2004-362341 Dec 2004 JP
2004-362602 Dec 2004 JP
2005-5866 Jan 2005 JP
2005-006096 Jan 2005 JP
2005-18156 Jan 2005 JP
2005-033461 Feb 2005 JP
2005-050581 Feb 2005 JP
2005-064799 Mar 2005 JP
2005-124061 May 2005 JP
2005-128592 May 2005 JP
2005-129019 May 2005 JP
2005-134942 May 2005 JP
2005-135132 May 2005 JP
2005-136528 May 2005 JP
2005-137032 May 2005 JP
3653099 May 2005 JP
2005-165839 Jun 2005 JP
2005-167327 Jun 2005 JP
2005-167813 Jun 2005 JP
2005-190417 Jul 2005 JP
2005-191705 Jul 2005 JP
2005-192124 Jul 2005 JP
2005-202943 Jul 2005 JP
2005-204038 Jul 2005 JP
2005-210223 Aug 2005 JP
2005-210676 Aug 2005 JP
2005-210680 Aug 2005 JP
2005-217822 Aug 2005 JP
2005-229474 Aug 2005 JP
2005-236339 Sep 2005 JP
2005-244778 Sep 2005 JP
2005-252853 Sep 2005 JP
2005-275870 Oct 2005 JP
2005-277579 Oct 2005 JP
2005-284352 Oct 2005 JP
2005-284455 Oct 2005 JP
2005-293537 Oct 2005 JP
2005-295135 Oct 2005 JP
2005-306696 Nov 2005 JP
2005-311205 Nov 2005 JP
2005-321305 Nov 2005 JP
2005-322119 Nov 2005 JP
2005-327622 Nov 2005 JP
2005-328259 Nov 2005 JP
2005-333244 Dec 2005 JP
2005-335755 Dec 2005 JP
2005-340759 Dec 2005 JP
2005-345802 Dec 2005 JP
2005-346820 Dec 2005 JP
2005-352858 Dec 2005 JP
2006-013976 Jan 2006 JP
2006-13976 Jan 2006 JP
2006-025390 Jan 2006 JP
2006-031766 Feb 2006 JP
2006-033312 Feb 2006 JP
2006-39902 Feb 2006 JP
2006-039947 Feb 2006 JP
2006-42059 Feb 2006 JP
2006-42097 Feb 2006 JP
2006-050200 Feb 2006 JP
2006-053833 Feb 2006 JP
2006-67479 Mar 2006 JP
2006-72706 Mar 2006 JP
2006-074348 Mar 2006 JP
2006-80367 Mar 2006 JP
2006-92630 Apr 2006 JP
2006-102953 Apr 2006 JP
2006-107296 Apr 2006 JP
2006-513594 Apr 2006 JP
2006-148462 Jun 2006 JP
2006-148518 Jun 2006 JP
2006-151402 Jun 2006 JP
2006-174151 Jun 2006 JP
2006-195795 Jul 2006 JP
2006-203187 Aug 2006 JP
2006-203852 Aug 2006 JP
2006-217000 Aug 2006 JP
2006-232292 Sep 2006 JP
2006-237674 Sep 2006 JP
2006-238282 Sep 2006 JP
2006-246372 Sep 2006 JP
2006-270212 Oct 2006 JP
2006-270681 Oct 2006 JP
2006-270766 Oct 2006 JP
2006-285911 Oct 2006 JP
2006-287659 Oct 2006 JP
2006-295879 Oct 2006 JP
2006-302219 Nov 2006 JP
2006-309401 Nov 2006 JP
2006-311239 Nov 2006 JP
2006-323481 Nov 2006 JP
2006-339964 Dec 2006 JP
2007-007888 Jan 2007 JP
2007-13120 Jan 2007 JP
2007-013120 Jan 2007 JP
2007-18067 Jan 2007 JP
2007-019905 Jan 2007 JP
2007-028002 Feb 2007 JP
2007-28002 Feb 2007 JP
2007-040702 Feb 2007 JP
2007-043535 Feb 2007 JP
2007-048126 Feb 2007 JP
2007-65822 Mar 2007 JP
2007-068073 Mar 2007 JP
2007-79687 Mar 2007 JP
2007-81712 Mar 2007 JP
2007-096655 Apr 2007 JP
2007-096768 Apr 2007 JP
2007-102348 Apr 2007 JP
2007-116347 May 2007 JP
2007-122542 May 2007 JP
2007-149757 Jun 2007 JP
2007-150642 Jun 2007 JP
2007-150868 Jun 2007 JP
2007-159083 Jun 2007 JP
2007-159129 Jun 2007 JP
2007-166133 Jun 2007 JP
3975918 Jun 2007 JP
2007-172369 Jul 2007 JP
2007-172527 Jul 2007 JP
2007-194924 Aug 2007 JP
2007-524942 Aug 2007 JP
2007-228254 Sep 2007 JP
2007-228325 Sep 2007 JP
2007-228437 Sep 2007 JP
2007-233597 Sep 2007 JP
2007-241789 Sep 2007 JP
2007-249620 Sep 2007 JP
2007-266999 Oct 2007 JP
2007-272264 Oct 2007 JP
2007-279782 Oct 2007 JP
2007-287128 Nov 2007 JP
2007-295177 Nov 2007 JP
2007-295395 Nov 2007 JP
2007-295557 Nov 2007 JP
2007-312350 Nov 2007 JP
2007-324865 Dec 2007 JP
2008-033716 Feb 2008 JP
2008-042379 Feb 2008 JP
2008-042910 Feb 2008 JP
2008-72243 Mar 2008 JP
2008-083867 Apr 2008 JP
2008-092131 Apr 2008 JP
2008-097426 Apr 2008 JP
2008-098993 Apr 2008 JP
4069958 Apr 2008 JP
2008-103691 May 2008 JP
2008-107947 May 2008 JP
2008-118359 May 2008 JP
2008-513888 May 2008 JP
2008-148345 Jun 2008 JP
2008-519347 Jun 2008 JP
2008-160821 Jul 2008 JP
2008-160874 Jul 2008 JP
2008-167190 Jul 2008 JP
2008-182438 Aug 2008 JP
2008-197714 Aug 2008 JP
2008-535372 Aug 2008 JP
2008-207875 Sep 2008 JP
2008-211572 Sep 2008 JP
2008-217406 Sep 2008 JP
2008-226099 Sep 2008 JP
2008-244739 Oct 2008 JP
2008-252517 Oct 2008 JP
2008-288915 Nov 2008 JP
2008-294491 Dec 2008 JP
2009-017284 Jan 2009 JP
2009-021970 Jan 2009 JP
2009-25870 Feb 2009 JP
2009-27291 Feb 2009 JP
2009-027291 Feb 2009 JP
2009-037413 Feb 2009 JP
2009-044647 Feb 2009 JP
2009-044715 Feb 2009 JP
3148168 Feb 2009 JP
2009-065426 Mar 2009 JP
2009-110144 May 2009 JP
2009-111950 May 2009 JP
2009-111986 May 2009 JP
2009-130896 Jun 2009 JP
2009-135166 Jun 2009 JP
2009-524363 Jun 2009 JP
2009-153166 Jul 2009 JP
4301346 Jul 2009 JP
2009-181246 Aug 2009 JP
2009-182630 Aug 2009 JP
2009-213169 Sep 2009 JP
2009-213171 Sep 2009 JP
2009-260758 Nov 2009 JP
2009-278441 Nov 2009 JP
2009-284182 Dec 2009 JP
2010-009196 Jan 2010 JP
2010-015342 Jan 2010 JP
2010-504598 Feb 2010 JP
2010-050844 Mar 2010 JP
2010-051012 Mar 2010 JP
2010-051017 Mar 2010 JP
2010-074839 Apr 2010 JP
2010-081571 Apr 2010 JP
2010-102445 May 2010 JP
2010-171857 Aug 2010 JP
2010-211797 Sep 2010 JP
4535209 Sep 2010 JP
4561932 Oct 2010 JP
2010-268306 Nov 2010 JP
2010-279029 Dec 2010 JP
2011-015395 Jan 2011 JP
4609604 Jan 2011 JP
2011-076567 Apr 2011 JP
2011-139533 Jul 2011 JP
2011-142648 Jul 2011 JP
2011-205384 Oct 2011 JP
2012-033021 Feb 2012 JP
9100176 Mar 1992 NL
9100347 Mar 1992 NL
9833142 Jul 1998 WO
9967754 Dec 1999 WO
0010122 Feb 2000 WO
0195242 Dec 2001 WO
0248980 Jun 2002 WO
02061675 Aug 2002 WO
02097723 Dec 2002 WO
03079305 Sep 2003 WO
2004036772 Apr 2004 WO
2004070879 Aug 2004 WO
2004072892 Aug 2004 WO
2005073937 Aug 2005 WO
2005091434 Sep 2005 WO
2005115849 Dec 2005 WO
2006045682 May 2006 WO
2006048663 May 2006 WO
2006049068 May 2006 WO
2006114821 Nov 2006 WO
2007013168 Feb 2007 WO
2007060792 May 2007 WO
2007083574 Jul 2007 WO
2007083575 Jul 2007 WO
2007086130 Aug 2007 WO
2007094494 Aug 2007 WO
2007097385 Aug 2007 WO
2007099602 Sep 2007 WO
2007100092 Sep 2007 WO
2007102360 Sep 2007 WO
2007105348 Sep 2007 WO
2007119310 Oct 2007 WO
2007125683 Nov 2007 WO
2007132094 Nov 2007 WO
2007138857 Dec 2007 WO
2008001561 Jan 2008 WO
2008007606 Jan 2008 WO
2008081699 Jul 2008 WO
2008126458 Oct 2008 WO
2008133018 Nov 2008 WO
2008140037 Nov 2008 WO
2008142957 Nov 2008 WO
2009005080 Jan 2009 WO
2009008296 Jan 2009 WO
2009011144 Jan 2009 WO
2009011154 Jan 2009 WO
2009011376 Jan 2009 WO
2009011400 Jan 2009 WO
2009011423 Jan 2009 WO
2009048767 Apr 2009 WO
2009081719 Jul 2009 WO
2009110381 Sep 2009 WO
2009119548 Oct 2009 WO
2009128437 Oct 2009 WO
2009140220 Nov 2009 WO
2009142114 Nov 2009 WO
2010026939 Mar 2010 WO
2010050361 May 2010 WO
2010079830 Jul 2010 WO
2010104179 Sep 2010 WO
2010119854 Oct 2010 WO
2011062274 May 2011 WO
Non-Patent Literature Citations (230)
Entry
Official Communication issued in corresponding Japanese Patent Application No. 2012-508139, mailed on Jan. 7, 2014.
Official Communication issued in International Patent Application No. PCT/JP2009/056934, mailed on Jun. 30, 2009.
Kato et al.: “Wireless IC Device”; U.S. Appl. No. 12/903,242, filed Oct. 13, 2010.
Kato et al.: “Wireless IC Device”; U.S. Appl. No. 12/940,103, filed Nov. 5, 2010.
Kato et al.: “Wireless IC Device System and Method of Determining Authenticity of Wireless IC Device”; U.S. Appl. No. 12/940,105, filed Nov. 5, 2010.
Official Communication issued in International Patent Application No. PCT/JP2009/059669, mailed on Aug. 25, 2009.
Official Communication issued in International Patent Application No. PCT/JP2009/062181, mailed on Oct. 13, 2009.
Official Communication issued in corresponding Japanese Application No. 2010-501323, mailed on Apr. 6, 2010.
Kato et al.: “Component of Wireless IC Device and Wireless IC Device”; U.S. Appl. No. 12/944,099, filed Nov. 11, 2010.
Kato et al.: Wireless IC Device and Manufacturing Method Thereof; U.S. Appl. No. 12/961,599, filed Dec. 7, 2010.
Kataya et al.: “Radio Frequency IC Device and Electronic Apparatus”; U.S. Appl. No. 12/959,454, filed Dec. 3, 2010.
Ikemoto et al.:“Radio IC Device”; U.S. Appl. No. 12/981,582, filed Dec. 30, 2010.
Official Communication issued in International Patent Application No. PCT/JP2009/062801, mailed on Oct. 27, 2009.
Ikemoto et al.: “Wireless IC Device and Electronic Apparatus”; U.S. Appl. No. 13/022,695, filed Feb. 8, 2011.
Official Communication issued in International Patent Application No. PCT/JP2009/067778, mailed on Jan. 26, 2010.
Kato: “Wireless IC Device and Method for Manufacturing Same”; U.S. Appl. No. 13/022,693, filed Feb. 8, 2011.
Kato: “Wireless IC Device”; U.S. Appl. No. 13/080,781, filed Apr. 6, 2011.
Official Communication issued in International Patent Application No. PCT/JP2009/069486, mailed on Mar. 2, 2010.
Kato: “Radio IC Device”; U.S. Appl. No. 13/080,775, filed Apr. 6, 2011.
Kato et al.: “Antenna and Wireless IC Device”; U.S. Appl. No. 13/083,626, filed Apr. 11, 2011.
Official Communication issued in International Patent Application No. PCT/JP2009/070617, mailed on Mar. 16, 2010.
Nagai, “Mounting Technique of RFID by Roll-To-Roll Process”, Material Stage, Technical Information Institute Co., Ltd, vol. 7, No. 9, 2007, pp. 4-12.
Dokai et al.: “Wireless IC Device”; U.S. Appl. No. 13/088,480, filed Apr. 18, 2011.
Kato et al.: “High-Frequency Device and Wireless IC Device”; U.S. Appl. No. 13/094,928, filed Apr. 27, 2011.
Dokai et al.: “Wireless IC Device”; U.S. Appl. No. 13/099,392, filed May 3, 2011.
Kato et al.: “Radio Frequency IC Device”; U.S. Appl. No. 13/163,803, filed Jun. 20, 2011.
Official Communication issued in International Patent Application No. PCT/JP2010/050170, mailed on Apr. 13, 2010.
Official Communication issued in International Patent Application No. PCT/JP2010/051205, mailed on May 11, 2010.
Kato: “Wireless IC Device, Wireless IC Module and Method of Manufacturing Wireless IC Module”; U.S. Appl. No. 13/169,067, filed Jun. 27, 2011.
Kato et al.: “Antenna and Wireless IC Device”; U.S. Appl. No. 13/190,670, filed Jul. 26, 2011.
Shiroki et al.: “RFIC Chip Mounting Structure”; U.S. Appl. No. 13/223,429, filed Sep. 1, 2011.
Official Communication issued in International Patent Application No. PCT/JP2010/056559, mailed on Jul. 27, 2010.
Taniguchi et al.: “Antenna Device and Radio Frequency IC Device”; U.S. Appl. No. 13/232,102, filed Sep. 14, 2011.
Official Communication issued in International Patent Application No. PCT/JP2009/066336, mailed on Dec. 22, 2009.
Official Communication issued in corresponding Japanese Patent Application No. 2010-509439, mailed on Jul. 6, 2010.
Official Communication issued in corresponding Japanese Patent Application No. 2011-032311, mailed on Mar. 29, 2011.
Official Communication issued in corresponding Japanese Patent Application No. 2009-525327, drafted on Sep. 22, 2010.
Official Communication issued in corresponding Japanese Patent Application No. 2011-032311, mailed on Aug. 2, 2011.
Official Communication issued in corresponding Japanese Patent Application No. 2011-032312, mailed on Aug. 2, 2011.
Official Communication issued in corresponding Japanese Patent Application No. 2011-032311, mailed on Aug. 23, 2011.
Kato et al.: “Wireless IC Device Component and Wireless IC Device”; U.S. Appl. No. 13/241,823, filed Sep. 23, 2011.
Kato et al.: “Antenna Device and Method of Setting Resonant Frequency of Antenna Device”; U.S. Appl. No. 13/272,365, filed Oct. 13, 2011.
Official Communication issued in International Patent Application No. PCT/JP2010/056812, mailed on Jul. 13, 2010.
Dokai et al.: “Optical Disc”; U.S. Appl. No. 13/295,153, filed Nov. 14, 2011.
Official Communication issued in International Patent Application No. PCT/JP2010/057668, mailed on Aug. 17, 2010.
Osamura et al.: “Radio Frequency IC Device and Method of Manufacturing the Same”; U.S. Appl. No. 13/308,575, filed Dec. 1, 2011.
Official Communication issued in International Patent Application No. PCT/JP2010/069417, mailed on Dec. 7, 2010.
Kato: “Wireless IC Device and Coupling Method for Power Feeding Circuit and Radiation Plate”; U.S. Appl. No. 13/325,273, filed Dec. 14, 2011.
Official Communication issued in International Patent Application No. PCT/JP2012/072849, mailed on Nov. 20, 2012.
Kimura et al.: “Wireless Communication Device”; U.S. Appl. No. 14/082,435, filed Nov. 18, 2013.
Kato: “Antenna Device and Wireless Device”; U.S. Appl. No. 14/085,830, filed Nov. 21, 2013.
Kato et al.: “Wireless IC Device Component and Wireless IC Device”; U.S. Appl. No. 14/151,852, filed Jan. 10, 2014.
Kato: “Wireless IC Device and Electromagnetic Coupling Module”; U.S. Appl. No. 14/160,597, filed Jan. 22, 2014.
Kato et al.: “Wireless IC Device”; U.S. Appl. No. 14/162,806, filed Jan. 24, 2014.
Kato et al.: “Antenna Device and Wireless Communication Device”; U.S. Appl. No. 14/171,004, filed Feb. 3, 2014.
Kato et al.: “Antenna and Wireless IC Device”; U.S. Appl. No. 14/182,339, filed Feb. 18, 2014.
Kimura et al., “Wireless Communication Device”, U.S. Appl. No. 14/187,364, filed Feb. 24, 2014.
English translation of NL9100176, published on Mar. 2, 1992.
English translation of NL9100347, published on Mar. 2, 1992.
Kato et al.: “Antenna”; U.S. Appl. No. 11/928,502, filed Oct. 30, 2007.
Kato et al.: “Wireless IC Device”; U.S. Appl. No. 12/211,117, filed Sep. 16, 2008.
Kato et al.: “Antenna”; U.S. Appl. No. 11/688,290, filed Mar. 20, 2007.
Kato et al.: “Electromagnetic-Coupling-Module-Attached Article”; U.S. Appl. No. 11/740,509, filed Apr. 26, 2007.
Kato et al.: “Product Including Power Supply Circuit Board”; U.S. Appl. No. 12/234,949, filed Sep. 22, 2008.
Kato et al.: “Data Coupler”; U.S. Appl. No. 12/252,475, filed Oct. 16, 2008.
Kato et al.; “Information Terminal Device”; U.S. Appl. No. 12/267,666, filed Nov. 10, 2008.
Kato et al.: “Wireless IC Device and Wireless IC Device Composite Component”; U.S. Appl. No. 12/276,444, filed Nov. 24, 2008.
Dokai et al.: “Optical Disc”; U.S. Appl. No. 12/326,916, filed Dec. 3, 2008.
Dokai et al.: “System for Inspecting Electromagnetic Coupling Modules and Radio IC Devices and Method for Manufacturing Electromagnetic Coupling Modules and Radio IC Devices Using the System”; U.S. Appl. No. 12/274,400, filed Nov. 20, 2008.
Kato: “Wireless IC Device”; U.S. Appl. No. 11/964,185, filed Dec. 26, 2007.
Kato et al.: “Radio Frequency IC Device”; U.S. Appl. No. 12/336,629, filed Dec. 17, 2008.
Kato et al.: “Wireless IC Device and Component for Wireless IC Device”; U.S. Appl. No. 12/339,198, filed Dec. 19, 2008.
Ikemoto et al.: “Wireless IC Device”; U.S. Appl. No. 11/851,651, filed Sep. 7, 2007.
Kataya et al.: “Wireless IC Device and Electronic Device”; U.S. Appl. No. 11/851,661, filed Sep. 7, 2007.
Dokai et al.: “Antenna and Radio IC Device”; U.S. Appl. No. 12/350,307, filed Jan. 8, 2009.
Official Communication issued in International Patent Application No. PCT/JP2010/053496, mailed on Jun. 1, 2010.
Ikemoto: “Wireless IC Tag, Reader-Writer, and Information Processing System”; U.S. Appl. No. 13/329,354, filed Dec. 19, 2011.
Kato et al.: “Antenna and Antenna Module”; U.S. Appl. No. 13/334,462, filed Dec. 22, 2011.
Official Communication issued in International Patent Application No. PCT/JP2010/069418, mailed on Feb. 8, 2011.
Official Communication issued in International Patent Application No. PCT/JP2010/063082, mailed on Nov. 16, 2010.
Ikemoto: “Communication Terminal and Information Processing System”; U.S. Appl. No. 13/412,772, filed Mar. 6, 2012.
“Antenna Engineering Handbook”, The Institute of Electronics and Communication Engineers, Mar. 5, 1999, pp. 20-21.
Official Communication issued in International Patent Application No. PCT/JP2010/066714, mailed on Dec. 14, 2010.
Nomura et al.: “Antenna and Wireless IC Device”; U.S. Appl. No. 13/419,454, filed Mar. 14, 2012.
Official Communication issued in International Patent Application No. PCT/JP2010/070607, mailed on Feb. 15, 2011.
Ito: “Wireless IC Device and Method of Detecting Environmental State Using the Device”; U.S. Appl. No. 13/421,889, filed Mar. 16, 2012.
Official Communication issued in International Patent Application No. PCT/JP2011/053654, mailed on Mar. 29, 2011.
Kato et al.: “Antenna Device and Mobile Communication Terminal”; U.S. Appl. No. 13/425,505, filed Mar. 21, 2012.
Official Communication issued in International Patent Application No. PCT/JP2010/069416, mailed on Feb. 8, 2011.
Kato et al.: “Wireless Communication Device and Metal Article”; U.S. Appl. No. 13/429,465, filed Mar. 26, 2012.
Official Communication issued in International Patent Application No. PCT/JP2011/055344, mailed on Jun. 14, 2011.
Kubo et al.: “Antenna and Mobile Terminal”; U.S. Appl. No. 13/452,972, filed Apr. 23, 2012.
Ikemoto: “RFID System”; U.S. Appl. No. 13/457,525, filed Apr. 27, 2012.
Ikemoto et al.: “Wireless IC Device and Electronic Apparatus”; U.S. Appl. No. 13/468,058, filed May 10, 2012.
Official Communication issued in International Patent Application No. PCT/JP2010/066291, mailed on Dec. 28, 2010.
Ikemoto: “Communication Terminal and Information Processing System”; U.S. Appl. No. 13/432,002, filed Mar. 28, 2012.
Official Communication issued in International Patent Application No. PCT/JP2010/070767, mailed on Feb. 22, 2011.
Ieki et al.: “Transceiver and Radio Frequency Identification Tag Reader”; U.S. Appl. No. 13/437,978, filed Apr. 3, 2012.
Official Communication issued in International Patent Application No. PCT/JP2011/065431, mailed on Oct. 18, 2011.
Kato et al.: “Wireless IC Device”; U.S. Appl. No. 13/470,486, filed May 14, 2012.
Kato: “Wireless IC Device”; U.S. Appl. No. 12/789,610, filed May 28, 2010.
Kato: “Antenna and RFID Device”; U.S. Appl. No. 13/472,520, filed May 16, 2012.
Kato et al.: “Wireless IC Device and Component for Wireless IC Device”; U.S. Appl. No. 13/540,694, filed Jul. 3, 2012.
Dokai et al.: “Wireless IC Device and Component for Wireless IC Device”; U.S. Appl. No. 13/567,108, filed Aug. 6, 2012.
Dokai et al.: “Wireless IC Device and Component for Wireless IC Device”; U.S. Appl. No. 13/567,109, filed Aug. 6, 2012.
Official Communication issued in International Patent Application No. PCT/JP2011/052594, mailed on May 17, 2011.
Kato et al.: “Wireless IC Device”; U.S. Appl. No. 13/585,866, filed Aug. 15, 2012.
Kato et al.: “Radio Communication Device and Radio Communication Terminal”; U.S. Appl. No. 13/600,256, filed Aug. 31, 2012.
Murayama et al.: “Wireless Communication Module and Wireless Communication Device”; U.S. Appl. No. 13/598,872, filed Aug. 30, 2012.
Official Communication issued in International Patent Application No. PCT/JP2011/069689, mailed on Oct. 4, 2011.
Official Communication issued in corresponding Japanese Patent Application No. 2011-552116, mailed on Apr. 17, 2012.
Tsubaki et al.: “RFID Module and RFID Device”; U.S. Appl. No. 13/603,627, filed Sep. 5, 2012.
Kato et al.: “Antenna Device and Method of Setting Resonant Frequency of Antenna Device”; U.S. Appl. No. 13/604,807, filed Sep. 6, 2012.
Kato et al.: “Antenna Device and Method of Setting Resonant Frequency of Antenna Device”; U.S. Appl. No. 13/604,801, filed Sep. 6, 2012.
Official Communication issued in International Patent Application No. PCT/JP2011/053656, mailed on May 17, 2011.
Official Communication issued in International Application No. PCT/JP2007/066007, mailed on Nov. 27, 2007.
Dokai et al.: “Wireless IC Device and Component for Wireless IC Device”; U.S. Appl. No. 12/359,690, filed Jan. 26, 2009.
Dokai et al.: “Test System for Radio Frequency IC Devices and Method of Manufacturing Radio Frequency IC Devices Using the Same”, U.S. Appl. No. 12/388,826, filed Feb. 19, 2009.
Official Communication issued in International Application No. PCT/JP2008/061955, mailed on Sep. 30, 2008.
Official Communication issued in International Application No. PCT/JP2007/066721, mailed on Nov. 27, 2007.
Official Communication issued in International Application No. PCT/JP2007/070460, mailed on Dec. 11, 2007.
Kato et al.: “Wireless IC Device”; U.S. Appl. No. 12/390,556, filed Feb. 23, 2009.
Kato et al.: “Inductively Coupled Module and Item With Inductively Coupled Module”; U.S. Appl. No. 12/398,497, filed Mar. 5, 2009.
Official Communication issued in International Patent Application No. PCT/JP2008/050945, mailed on May 1, 2008.
Kato et al.: “Article Having Electromagnetic Coupling Module Attached Thereto”; U.S. Appl. No. 12/401,767, filed Mar. 11, 2009.
Taniguchi et al.: “Antenna Device and Radio Frequency IC Device”; U.S. Appl. No. 12/326,117, filed Dec. 2, 2008.
Official Communication issued in International Patent Application No. PCT/JP2008/061442, mailed on Jul. 22, 2008.
Kato et al.: “Container With Electromagnetic Coupling Module”; U.S. Appl. No. 12/426,369, filed Apr. 20, 2009.
Kato: “Wireless IC Device”; U.S. Appl. No. 12/429,346, filed Apr. 24, 2009.
Official communication issued in Japanese Application No. 2007-531524, mailed on Sep. 11, 2007.
Official communication issued in Japanese Application No. 2007-531525, mailed on Sep. 25, 2007.
Official communication issued in Japanese Application No. 2007-531524, mailed on Dec. 12, 2007.
Official communication issued in European Application No. 07706650.4, mailed on Nov. 24, 2008.
Mukku-Sha, “Musen IC Tagu Katsuyo-no Subete” “(All About Wireless IC Tags”), RFID, pp. 112-126.
Dokai et al.: “Wireless IC Device and Component for Wireless IC Device”; U.S. Appl. No. 11/624,382, filed Jan. 18, 2007.
Dokai et al.: “Wireless IC Device, and Component for Wireless IC Device”; U.S. Appl. No. 11/930,818, filed Oct. 31, 2007.
Kato et al.: “Wireless IC Device”; U.S. Appl. No. 12/042,399, filed Mar. 5, 2008.
Official communication issued in related U.S. Appl. No. 12/042,399; mailed on Aug. 25, 2008.
Official communication issued in counterpart International Application No. PCT/JP2008/071502, mailed Feb. 24, 2009.
Kato et al.: “Wireless IC Device and Manufacturing Method Thereof,” U.S. Appl. No. 12/432,854, filed Apr. 30, 2009.
Official communication issued in counterpart International Application No. PCT/JP2008/058168, mailed Aug. 12, 2008.
Official communication issued in counterpart International Application No. PCT/JP2008/062886, mailed Oct. 21, 2008.
Kato et al.: “Wireless IC Device,” U.S. Appl. No. 12/469,896, filed May 21, 2009.
Ikemoto et al.: “Wireless IC Device,” U.S. Appl. No. 12/496,709, filed Jul. 2, 2009.
Official communication issued in counterpart International Application No. PCT/JP2008/062947, mailed Aug. 19, 2008.
Official communication issued in counterpart International Application No. PCT/JP2008/056026, mailed Jul. 1, 2008.
Ikemoto et al.: “Wireless IC Device and Electronic Apparatus,” U.S. Appl. No. 12/503,188, filed Jul. 15, 2009.
Official communication issued in counterpart International Application No. PCT/JP2008/055567, mailed May 20, 2008.
Official communication issued in counterpart International Application No. PCT/JP2008/051853, mailed Apr. 22, 2008.
Official communication issued in counterpart International Application No. PCT/JP2008/057239, mailed Jul. 22, 2008.
Kimura et al.: “Wireless IC Device,” U.S. Appl. No. 12/510,338, filed Jul. 28, 2009.
Kato et al.: “Wireless IC Device,” U.S. Appl. No. 12/510,340, filed Jul. 28, 2009.
Kato: “Wireless IC Device,” U.S. Appl. No. 12/510,344, filed Jul. 28, 2009.
Kato et al.: “Wireless IC Device,” U.S. Appl. No. 12/510,347, filed Jul. 28, 2009.
Official communication issued in counterpart European Application No. 08 77 7758, dated on Jun. 30, 2009.
Official communication issued in counterpart Japanese Application No. 2008-103741, mailed on May 26, 2009.
Official communication issued in counterpart Japanese Application No. 2008-103742, mailed on May 26, 2009.
Official communication issued in International Application No. PCT/JP2008/050358, mailed on Mar. 25, 2008.
Official communication issued in International Application No. PCT/JP2008/050356, mailed on Mar. 25, 2008.
Osamura et al.: “Packaging Material with Electromagnetic Coupling Module,” U.S. Appl. No. 12/536,663, filed Aug. 6, 2009.
Osamura et al.: “Packaging Material with Electromagnetic Coupling Module,” U.S. Appl. No. 12/536,669, filed Aug. 6, 2009.
Dokai et al.: “Wireless IC Device and Component for Wireless IC Device,” U.S. Appl. No. 12/543,553, filed Aug. 19, 2009.
Shioya et al.: “Wireless IC Device,” U.S. Appl. No. 12/551,037, filed Aug. 31, 2009.
Ikemoto: “Wireless IC Device and Manufacturing Method Thereof,” U.S. Appl. No. 12/579,672, filed Oct. 15, 2009.
Official communication issued in International Application No. PCT/JP2008/058614, mailed on Jun. 10, 2008.
Official Communication issued in International Patent Application No. PCT/JP2011/068110, mailed on Sep. 20, 2011.
Dokai et al.: “Antenna and Wireless Communication Device”; U.S. Appl. No. 13/613,021, filed Sep. 13, 2012.
Takeoka et al: “Printed Wiring Board and Wireless Communication System”; U.S. Appl. No. 13/616,140, filed Sep. 14, 2012.
Dokai: “Wireless IC Device, Wireless IC Module and Method of Manufacturing Wireless IC Module”; U.S. Appl. No. 13/688,287, filed Nov. 29, 2012.
Official Communication issued in International Patent Application No. PCT/JP2011/067127, mailed on Oct. 18, 2011.
Kato et al.: “Wireless Communication Device and Metal Article”; U.S. Appl. No. 13/691,996, filed Dec. 3, 2012.
Yosui: “Antenna Apparatus and Communication Terminal Instrument”; U.S. Appl. No. 13/706,409, filed Dec. 6, 2012.
Official Communication issued in International Patent Application No. PCT/JP2011/071795, mailed on Dec. 27, 2011.
Dokai et al.: “Wireless IC Device”; U.S. Appl. No. 13/738,143, filed Jan. 10, 2013.
Official Communication issued in International Patent Application No. PCT/JP2011/074009, mailed on Dec. 20, 2011.
Kato et al.: “Electromagnetic-Coupling-Module-Attached Article”; U.S. Appl. No. 13/754,972, filed Jan. 31, 2013.
Kimura et al.: “Electrical Product”; U.S. Appl. No. 13/757,991, filed Feb. 4, 2013.
Nakano et al.: “Communication Terminal Device”; U.S. Appl. No. 13/760,196, filed Feb. 6, 2013.
Official Communication issued in International Patent Application No. PCT/JP2011/073054, mailed on Dec. 20, 2011.
Official Communication issued in International Patent Application No. PCT/JP2011/073490, mailed on Jan. 10, 2012.
Kato et al.: “Antenna Device and Communication Terminal Apparatus”; U.S. Appl. No. 13/761,195, filed Feb. 7, 2013.
Kato et al.: “Antenna Device and Mobile Communication Terminal”; U.S. Appl. No. 13/767,960, filed Feb. 15, 2013.
Official Communication issued in International Patent Application No. PCT/JP2012/058884, mailed on Jun. 12, 2012.
Dokai et al.: “Wireless Communication Device”; U.S. Appl. No. 13/782,346, filed Mar. 1, 2013.
Official Communication issued in International Patent Application No. PCT/JP2012/053344, mailed on May 22, 2012.
Official Communication issued in International Patent Application No. PCT/JP2008/063025, mailed on Aug. 12, 2008.
Kato et al.: “Wireless IC Device,” U.S. Appl. No. 12/603,608, filed Oct. 22, 2009.
Kato et al.: “Wireless IC Device,” U.S. Appl. No. 12/688,072, filed Jan. 15, 2010.
Official Communication issued in International Patent Application No. PCT/JP2009/053693, mailed on Jun. 9, 2009.
Kato: “Composite Antenna,” U.S. Appl. No. 12/845,846, filed Jul. 29, 2010.
Official Communication issued in International Patent Application No. PCT/JP2009/055758, mailed on Jun. 23, 2009.
Kato et al.: “Radio Frequency IC Device and Radio Communication System,” U.S. Appl. No. 12/859,340, filed Aug. 19, 2010.
Official Communication issued in International Patent Application No. PCT/JP2009/055758, mailed Jun. 23, 2009.
Kato et al.: “Wireless IC Device,” U.S. Appl. No. 12/859,880, filed Aug. 20, 2010.
Official Communication issued in International Patent Application No. PCT/JP2009/057482, mailed on Jul. 21, 2009.
Kataya et al.: “Wireless IC Device, Electronic Apparatus, and Method for Adjusting Resonant Frequency of Wireless IC Device,” U.S. Appl. No. 12/861,945, filed Aug. 24, 2010.
Kato: “Wireless IC Device and Electromagnetic Coupling Module,” U.S. Appl. No. 12/890,895, filed Sep. 27, 2010.
Official Communication issued in International Patent Application No. PCT/JP2009/059410, mailed on Aug. 4, 2009.
Kato et al.: “Wireless IC Device” U.S. Appl. No. 12/902,174, filed Oct. 12, 2010.
Official Communication issued in International Patent Application No. PCT/JP2009/059259, mailed on Aug. 11, 2009.
Official Communication issued in corresponding Japanese Patent Application No. 2010-506742, mailed on Apr. 6, 2010.
Official Communication issued in International Patent Application No. PCT/JP2009/056698, mailed on Jul. 7, 2009.
Official Communication issued in International Patent Application No. PCT/JP2012/050557, mailed on Apr. 10, 2012.
Kimura et al.: “Wireless Communication Device”; U.S. Appl. No. 13/789,761, filed Mar. 8, 2013.
Dokai et al.: “RFID Chip Package and RFID Tag”; U.S. Appl. No. 13/792,650, filed Mar. 11, 2013.
Kato et al.: “Wireless IC Device Component and Wireless IC Device”; U.S. Appl. No. 13/794,929, filed Mar. 12, 2013.
Kato et al.: “Wireless IC Device and Component for Wireless IC Device”; U.S. Appl. No. 13/848,748, filed Mar. 22, 2013.
Official Communication issued in International Patent Application No. PCT/JP2012/080493, mailed on Dec. 25, 2012.
Mukai et al.: “Inspection Method and Inspection Device for RFID Tag”; U.S. Appl. No. 13/933,184, filed Jul. 2, 2013.
Kato et al.: “Antenna Device and Method of Setting Resonant Frequency of Antenna Device”; U.S. Appl. No. 13/941,760, filed Jul. 15, 2013.
Kato et al.: “Antenna Device and Method of Setting Resonant Frequency of Antenna Device”; U.S. Appl. No. 13/943,973, filed Jul. 17, 2013.
Official Communication issued in International Patent Application No. PCT/JP2012/080700, mailed on Jan. 15, 2013.
Mukai et al.: “Wireless Integrated Circuit Device and Method of Manufacturing the Same”; U.S. Appl. No. 13/961,995, filed Aug. 8, 2013.
Kato et al.: “Radio IC Device”; U.S. Appl. No. 13/964,234, filed Aug. 12, 2013.
Official Communication issued in International Patent Application No. PCT/JP2012/067779, mailed on Aug. 28, 2012.
Official Communication issued in International Patent Application No. PCT/JP2013/051254, mailed on Apr. 2, 2013.
Dokai: “Wireless Communication Device”; U.S. Appl. No. 13/970,633, filed Aug. 20, 2013.
Official Communication issued in International Patent Application No. PCT/JP2012/059350, mailed on Jul. 3, 2012.
Dokai: “Wireless IC Device”; U.S. Appl. No. 14/011,823, filed Aug. 28, 2013.
Official Communication issued in International Patent Application No. PCT/JP2012/055505, mailed on Jun. 5, 2012.
Kato: “Radio IC Device and Radio Communication Terminal”; U.S. Appl. No. 14/017,406, filed Sep. 4, 2013.
Official Communication issued in International Patent Application No. PCT/JP2012/067454, mailed on Aug. 7, 2012.
Kato: “Antenna Device and Communication Terminal Apparatus”; U.S. Appl. No. 14/019,573, filed Sep. 6, 2013.
Official Communication issued in International Patent Application No. PCT/JP2012/067537, mailed on Oct. 9, 2012.
Kato: “Radio Communication Device”; U.S. Appl. No. 14/027,384, filed Sep. 16, 2013.
Kato: “Antenna Device, RFID Tag, and Communication Terminal Apparatus”; U.S. Appl. No. 14/031,270, filed Sep. 19, 2013.
Kato et al.: “Wireless IC Device”; U.S. Appl. No. 14/054,865, filed Oct. 16, 2013.
Official Communication issued in International Patent Application No. PCT/JP2012/062259, mailed on Jun. 12, 2012.
Dokai et al.: “Radio IC Device”; U.S. Appl. No. 14/078,596, filed Nov. 13, 2013.
Official Communication issued in corresponding Japanese Patent Application No. 2012-508139, mailed on Apr. 22, 2014.
Related Publications (1)
Number Date Country
20130002513 A1 Jan 2013 US
Continuations (1)
Number Date Country
Parent PCT/JP2011/053656 Feb 2011 US
Child 13613021 US