This application relates to the communications field, and in particular, to an antenna, an antenna module, and a wireless network device.
A wireless communications product specification of a home network rapidly develops from 2*2, to 4*4, and then to 8*8. A frequency band also develops from 2G, to 5G, and then to 6G. A millimeter wave band also continuously expands. A volume of a wireless device in the home network cannot infinitely increase due to limitation of a product appearance design, a user habit, and a scenario. Therefore, how to implement a high-specification design under an existing product space condition and integrate more high-performance antennas with small impact therebetween in the device becomes a very urgent design requirement, especially a new requirement for a forthcoming 6G frequency band. An N*N MIMO design means that a quantity of antennas and a quantity of radio frequency channels are both increased by N. How to dispose new N independent frequency bands to an existing module to ensure better 6G coverage and not deteriorate existing 2G/5G Wi-Fi performance at the same time becomes a challenge for the product to be technically competitive in Wi-Fi 6 technologies. How to use a new technology or new architecture to reduce an antenna size in an existing environment, enlarge an operating frequency band of an antenna, or increase a quantity of operating frequency bands of an antenna to implement specification upgrade and ensure a high-performance Wi-Fi coverage capability at different frequencies is urgently to be considered by an engineer of the antenna.
To avoid reduction in radiation performance of a multi-band antenna in an integration process in the conventional technologies, this application provides an antenna, to implement horizontal omnidirectional radiation and vertical directional radiation of the antenna on a plurality of frequency bands.
According to a first aspect, this application provides an antenna, including a first antenna and a second antenna. The first antenna includes a first radiating element and a reflector. The reflector is located between the second antenna and the first radiating element. The reflector includes a connection part and a tooth part. The tooth part includes a plurality of comb teeth that are disposed side by side and that extend from the connection part toward the first radiating element. A gap is disposed between the comb teeth. The tooth part includes a profile facing the first radiating element. Each comb tooth includes an end part facing the first radiating element. The profile is formed through connecting all the end parts. The profile includes a concave part. The concave part is concave to the connection part. The antenna provided in this application includes the first antenna and the second antenna. The two antennas may operate on different frequency bands. The first antenna includes the reflector. The profile concave part formed by the plurality of comb teeth is designed on the reflector. Reflection on a reflection path of the first radiating element for the tooth part is greatly enhanced by using the concave part formed by the comb teeth, to enhance directional radiation of the reflector to the first radiating element in the first antenna.
In this application, a directional radiation effect is implemented for the first radiating element by using the tooth part. Because the gap is disposed between the comb teeth, a reflective surface of the tooth part is discontinuous. Discontinuity of the tooth part structure causes an increase of reflection paths of the reflector to an incident wave. For example, a part of the reflective surface is located on an end surface of the tooth part away from the connection part. A part of the reflective surface is located in the gap. The profile design of the concave part also provides different reflective surfaces. Some of the reflective surfaces are located at a bottom of the concave part, and some of the reflective surfaces are close to a top of the concave part. In this way, the reflection path of the reflector to the first radiating element is no longer a single reflection path. A quantity of reflection paths increases, and specific positions also change. A radiation effect of the first radiating element is significantly improved after the plurality of reflection paths are superimposed. In addition, a phase change occurs on an incident wave of the first radiating element due to the comb tooth structure of the reflector. For example, in an embodiment, a phase change of π/12 may occur. In addition, when the first radiating element is horizontally polarized, the design of the comb teeth can be used to improve an amplitude of the incident wave of the first radiating element. For example, in an embodiment, the amplitude of the incident wave of the first radiating element can be increased by 1.5 dB, to implement a better co-directional superposition effect in a vertical direction, thereby improving a directional gain.
In this application, the tooth part is designed to implement 180-degree phase hopping of the reflector different from the all-metal structure. Wideband high-gain directional performance can be implemented between the reflector and the first radiating element at a smaller distance. An isolation effect can be implemented between the first radiating element and the second antenna. In other words, a radiated signal from the first radiating element to the second antenna is isolated to avoid an impact on performance of the second antenna.
In an embodiment, at least two of the plurality of comb teeth have different extension lengths. In this embodiment, the comb teeth with different extension lengths are used to form the concave part of the profile of the tooth part. Because of different extension lengths of the comb teeth, the reflection paths of the reflector to the incident wave of the first radiating element are different. In other words, different reflection paths are increased in this embodiment, to facilitate improvement of performance of the first radiating element after the reflection paths are superposed, thereby obtaining a high gain.
In a possible embodiment, the plurality of comb teeth include at least one first comb tooth with a first extension length and at least two second comb teeth with a second extension length. The at least two second comb teeth are symmetrically distributed on two sides of the at least one first comb tooth. The first extension length is less than the second extension length. The second comb teeth whose extension lengths are greater than the extension length of the first comb tooth are symmetrically disposed on the two sides of the first comb tooth. A change of the extension lengths causes a change of tooth crown positions of different comb teeth, to obtain the concave part of the profile of the tooth part formed by the first comb tooth and the second comb teeth. A distance between the first comb tooth and the first radiating element is different from a distance between the second comb tooth and the first radiating element. For the first radiating element, when the incident wave of the first radiating element is radiated to the first comb tooth and the second comb tooth, there are different reflection paths. In other words, in this embodiment, different reflection paths are increased. An increase of the reflection paths facilitates enhancement of directional radiation performance of the first radiating element. In this embodiment, the second comb teeth are symmetrically disposed on the two sides of the first comb tooth, so that the concave part has a symmetrical structure. Reflection of the symmetrically distributed comb teeth to the first radiating element facilitates obtaining of a stable phase and a polarization direction of the first radiating element.
In a possible embodiment, the plurality of comb teeth further include at least two third comb teeth with a third extension length. The at least two third comb teeth are symmetrically distributed on the two sides of the at least one first comb tooth. The second comb tooth is located between the third comb tooth and the first comb tooth. The third extension length is greater than the second extension length. The third comb teeth whose extension lengths are greater than the extension length of the second comb tooth are symmetrically distributed on two sides of the second comb teeth, to form the concave part of the step-like profile. Therefore, a distance between the third comb tooth and the first radiating element is different from the distance between the second comb tooth and the first radiating element, to increase reflection paths of the incident wave of the first radiating element, thereby enhancing directional radiation of the reflector to the first radiating element in the first antenna. In this embodiment, comb teeth with three steps of different extension lengths are provided, to obtain better performance of the first radiating element and obtain a high gain.
Specifically, the extension length of the first comb tooth is the smallest. The extension length of the first comb tooth may be zero. In other words, no comb tooth is disposed in a region in the middle of the connection part, and a reflection function is implemented by using the connection part.
In a possible embodiment, the tooth part is a symmetrical structure centered on a central axis. An extension direction of the central axis is the same as an extension direction of the comb tooth. Tooth roots of all the comb teeth are aligned in a direction perpendicular to the direction of the central axis. The symmetrically distributed tooth part can form the symmetrical concave part, that is, form the symmetrical reflector. Only the symmetrical reflector can implement an optimal effect of the directional radiation of the first radiating element. In this embodiment, architecture with the aligned tooth roots is disposed, so that a manufacturing process of the reflector becomes simpler. Specifically, the connection part is in a shape of a strip perpendicular to the central axis of the tooth part. The connection part is connected to the tooth roots of the comb teeth. All the comb teeth are connected to form an entire structure.
In a possible embodiment, extension lengths of the plurality of comb teeth are the same. When the extension lengths of the plurality of comb teeth are the same, a shape of the connection part may be adjusted, to form the concave part of the profile of the tooth part. In this embodiment, the connection part is disposed. A shape of the profile of a surface used to connect the comb teeth is the same as a profile on a side of the tooth part facing the first radiating element. The plurality of comb teeth are designed as the same shape and the same size. It is easy to process the comb teeth with the same specification. Specifically, when the reflector is a three-dimensional structure, the connection part and the comb teeth may be manufactured separately. In this case, it is easy to uniformly manufacture the plurality of comb teeth with the same size. Then, the comb teeth are fastened to the surface of the connection part. The comb teeth may be fastened through welding, bonding, or magnetic attachment. Certainly, the reflector may alternatively be a microstrip structure printed on a circuit board.
In a possible embodiment, the concave part includes a step-like part. One layer of a step shape may be obtained for the step-like concave part by using only the plurality of comb teeth with the same extension length. Different extension lengths are selected according to manufacturing requirements. In this way, a manufacturing process is simple. Specifically, each comb tooth is approximately a cuboid or a rectangle. Each comb tooth includes an end surface (or an end edge) and side surfaces (or side edges) connected between the end surface (or the end edge) and a tooth root. In this embodiment, the end surface (the end edge) is a plane (a straight line), and the side surfaces (the side surfaces) are perpendicular to the end surface (the end edge). In this way, a step-like arrangement is formed among the tooth crowns of the comb teeth, to form the concave part of the profile on the side of the tooth part facing the first radiating element.
In a possible embodiment, the concave part includes a smoothly transited arc part. The reflector with the concave part can have a better reflection effect by using the smoothly transited arc part, to greatly improve a directional radiation effect of the reflector to the first radiating element.
Specifically, each comb tooth includes the end surface (or the end edge) facing the first radiating element and the side surfaces (or the side edges) connected between the end surface (or the end edge) and the tooth root. The two side surfaces (the side edges) have different sizes. The end surface (the end edge) extends in an inclined direction relative to the extension direction of the comb tooth. In other words, an included angle between the end surface (or the end edge) and one of the side surfaces (or the side edges) is an acute angle. The end surface (the end edge) may be an inclined straight line or an arc. A plurality of inclined straight lines or arcs jointly form the smoothly transited arc.
In a possible embodiment, the concave part includes a straight line with an acute angle as an inclined angle to an extension direction, or the concave part includes a combination of a straight line with an acute angle as an inclined angle to an extension direction and a straight line perpendicular to the extension direction, or the concave part includes a combination of a straight line with an acute angle as an inclined angle to an extension direction and a smoothly transited arc. Different combination manners can be selected to meet different process requirements and performance requirements. A better directional radiation effect is implemented by using the smooth arc. A process of manufacturing a straight line with an acute angle to the extension direction is simpler. In an embodiment of a manufacturing process, one or two combinations may be selected according to a requirement, to find a balance between a reflection effect and the manufacturing costs.
In a possible embodiment, each comb tooth includes two sidewalls connected between the tooth root and the tooth crown. The two sidewalls are parallel. In other words, a gap between the two comb teeth keeps the same from bottom to top, to ensure even current distribution on the comb teeth and ensure a radiation enhancement effect of the reflector to the first radiating element. The two sidewalls of the comb tooth are parallel, so that a width of the comb tooth keeps consistent from the tooth root to the tooth crown. In addition, a gap between two adjacent comb teeth also keeps consistent. More even distribution can be implemented for induced currents of the comb teeth with consistent width sizes, which facilitates the directional radiation effect of the entire reflector to the first radiating element.
In a possible embodiment, the first radiating element is horizontally polarized. The reflector and the first radiating element work together to implement directional radiation performance of the first antenna. The second antenna is vertically polarized. The first antenna and the second antenna are orthogonally polarized. The first radiating element is horizontally polarized. The second antenna is vertically polarized. Directional radiation of the first radiating element is enhanced due to an operation of the reflector. The vertically polarized second antenna has omnidirectional radiation performance.
In a possible embodiment, the extension length of each comb tooth does not exceed a quarter of a wavelength corresponding to a low-frequency resonance center frequency of the first radiating element. An edge comb tooth resonates when the first radiating element operates, which reduces a reflection effect of the reflector to the first radiating element. Therefore, the extension length of the comb tooth is less than a quarter of the wavelength corresponding to the low-frequency resonance center frequency of the first radiating element.
In a possible embodiment, the width of each comb tooth does not exceed a tenth of a wavelength corresponding to a resonance center frequency of the first radiating element. For the step structure design of the comb teeth, the width of each comb tooth does not exceed a tenth of the wavelength of the resonance center frequency of the first radiating element, in consideration of a minimum two-step change and a width size of the entire reflector. Specifically, in consideration of an entire size of the antenna, a length of the first radiating element is a half of a wavelength, and a width of the corresponding reflector is consistent with the length of the first radiating element. In an example of a high frequency 6.5G, the width of the corresponding reflector is a half of the wavelength: 23 mm. In this case, the step comb tooth structure requires widths of at least three comb teeth and at least two tooth gaps. A total of five width values are considered, that is, a maximum of the width of each comb tooth is a tenth of the wavelength: 4.6 mm.
In a possible embodiment, the tooth gap between adjacent comb teeth does not exceed a tenth of the wavelength corresponding to the low-frequency resonance center frequency of the first radiating element. For the step structure design of the comb teeth, the width of each comb tooth does not exceed a tenth of the wavelength of the resonance center frequency of the first radiating element, in consideration of a minimum two-step change and a width size of the entire reflector. Specifically, in an example of a high frequency 6.5G, the width of the reflector is a half of the wavelength: 23 mm. In this case, the step comb tooth structure requires widths of at least three comb teeth and at least two tooth gaps. A total of five width values are considered, that is, a maximum of the width of each tooth gap is a tenth of the wavelength: 4.6 mm.
In a possible embodiment, the first radiating element is a symmetrical structure centered on a first axis. The first radiating element includes two first radiation arms symmetrically distributed on two sides of the first axis. The two symmetrically distributed first radiation arms form a dipole unit. In this case, the first radiating element may be considered as a dipole antenna. For the reflector, the concave part of the profile of the reflector may be adjusted based on the first radiating element with a symmetrical structure when being designed, so that the central axis of the tooth part overlaps the first axis. In this way, reduction of the directional radiation performance due to phase deviation does not occur for the reflection effect of the reflector to the first radiating element.
Specifically, the two radiation arms of the first radiating element may be in a shape of a strip or a rectangle, and extension directions of the two radiation arms are both perpendicular to the first axis. The two radiation arms of the first radiating element may be collinear. In another embodiment, each radiation arm of the first radiating element includes a first part and a second part. The first part is in a shape of a square and is close to the first axis. The second part is connected to a side of the first part away from the first axis. The second part is L-shaped.
In a possible embodiment, the first antenna further includes a balanced balun structure. The balanced balun structure is located between the first radiating element and the reflector, and is connected to the two first radiation arms. The balanced balun structure is designed to enable the same current amplitude of the first antenna, and also implement impedance transformation. For the first antenna, better symmetry of the first antenna indicates a more stable phase difference. The two first radiation arms are connected by using a 180-degree phase extension line of the balanced balun structure, to better maintain balance of the first antenna.
Specifically, the balanced balun structure includes a first connection end, a second connection end, and an extension line connected between the first connection end and the second connection end. The first connection end is connected to one radiation arm of the first radiating element. The second connection end is connected to the other radiation arm of the first radiating element. The first connection end and the second connection end are symmetrically distributed on two sides of the first axis. An extension track of the extension line may be in a shape of a rectangle, a circle, a winding, or the like. This is not limited in this application. The extension line is also symmetrically distributed by using the first axis as a center. In an embodiment, the extension line forms elongated rectangular architecture. An extension direction of the rectangular architecture is perpendicular to the first axis.
In a possible embodiment, the connection part is connected to the second antenna. The connection part is connected to the second antenna. In this case, the reflector is connected to the second antenna. When the second antenna is excited, a corresponding current is also distributed to the reflector. In this case, the reflector (especially the part of the comb teeth) participates in a radiation function of the second antenna. In other words, the reflector also participates in radiation of the second antenna. In this embodiment, a miniaturized design of the antenna is implemented, and radiation performance of the first antenna and the second antenna is also enhanced in limited space.
In a possible embodiment, the second antenna includes a high-frequency radiating element and a low-frequency radiating element. The high-frequency radiating element and the low-frequency radiating element are orthogonally polarized to the first radiating element of the first antenna. The connection part is connected to the low-frequency radiating element. In this embodiment, the comb teeth of the reflector are integrated at an end of the low-frequency radiating element of the second antenna. The reflector and the low-frequency radiating element jointly form a standard low-frequency radiator with a quarter of the wavelength. Specifically, the second antenna has a high-frequency feature and a low-frequency feature. The high-frequency radiating element and the low-frequency radiating element are orthogonally polarized to the first radiating element, to implement orthogonal polarization between the first antenna and the second antenna and reduce mutual impact between the first antenna and the second antenna on different operating frequency bands. Generally, a size of the low-frequency radiating element is greater than a size of the high-frequency radiating element. In consideration of a compact structure, the low-frequency radiating element is connected to the connection part of the reflector. In this way, the comb teeth of the reflector also participate in radiation of the low-frequency radiating element, and may further be used as a reflector of the first radiating element. The same structure has different functions, to better present a feature of a small size and a plurality of functions of the antenna provided in this application.
In a possible embodiment, the high-frequency radiating element includes a high-frequency upper radiator and a high-frequency lower radiator, and the low-frequency radiating element includes a low-frequency upper radiator and a low-frequency lower radiator. The high-frequency upper radiator is connected to the low-frequency upper radiator. The high-frequency upper radiator is distributed on two sides of the low-frequency upper radiator. The high-frequency lower radiator is connected to the low-frequency lower radiator. The high-frequency lower radiator is distributed on two sides of the low-frequency lower radiator. The connection part of the reflector is connected to the low-frequency upper radiator. The high-frequency lower radiator and the low-frequency lower radiator form a lower branch. The high-frequency upper radiator and the low-frequency upper radiator form an upper branch. The upper branch is located between the reflector and the lower branch.
Specifically, the high-frequency upper radiator, the high-frequency lower radiator, the low-frequency upper radiator, and the low-frequency lower radiator are designed as dipole-like antenna units. In this way, advantages of this design are a simple structure and a proper size. An antenna on a corresponding operating frequency band may be obtained through adjusting only sizes of radiation arms of different radiators. Herein, a purpose of distributing the high-frequency radiating element on two sides of the low-frequency radiating element is to minimize impact between the low-frequency radiating element and the low-frequency radiating element. Because the radiation arm of the low-frequency radiating element has a large size, the low-frequency radiating element is connected to the connection part of the reflector in consideration of a miniaturization design. If the low-frequency radiating element is distributed on two sides of the high-frequency radiating element, the low-frequency radiating element and the reflector form a closed loop, which greatly affects the high-frequency radiating element that is encircled. In addition, the low-frequency radiating element is connected to the connection part of the reflector to implement an integrated tri-band dual-polarized double-fed design of a symmetrical dual-frequency dipole and a high-gain directional antenna.
In a possible embodiment, the second antenna is a symmetrical structure centered on a second axis. The low-frequency upper radiator includes two radiation arms that are symmetrically distributed on two sides of the second axis and whose extension directions are parallel to the second axis. The high-frequency upper radiator includes two radiation arms that are symmetrically distributed on the two sides of the second axis and whose extension directions are parallel to the second axis. Ends of the radiation arms of the high-frequency upper radiator facing the lower branch are connected, by using a first connection arm, to ends of the radiation arms of the low-frequency upper radiator facing the lower branch. The first connection arm is perpendicular to the second axis. A design of the two radiation arms can be used to implement a design in which the radiator in the second antenna is symmetrical to the second axis, and also reduce mutual impact between the high-frequency radiating element and the low-frequency radiating element in the second antenna. For the high-frequency radiator, if the high-frequency radiator has only one radiation arm, the radiation arm cannot be symmetrically distributed on the two sides of the low-frequency radiator. This inevitably leads to performance degradation of the second antenna.
In a possible embodiment, the low-frequency lower radiator includes two radiation arms that are symmetrically distributed on two sides of the second axis and whose extension directions are parallel to the second axis. The high-frequency lower radiator includes two radiation arms that are symmetrically distributed on two sides of the second axis and whose extension directions are parallel to the second axis. Ends of the radiation arms of the high-frequency lower radiator facing the upper branch are connected, by using a second connection arm, to ends of the radiation arms of the low-frequency lower radiator facing the upper branch. The second connection arm is parallel to the first connection arm. For the low-frequency lower radiator and the high-frequency lower radiator, a problem of symmetrical distribution also may be considered during a design of the low-frequency lower radiator and the high-frequency lower radiator. In a design of two radiation arms, the manufacturing costs can be reduced, and a required polarization effect can also be implemented.
In a possible embodiment, ends of the radiation arms of the low-frequency lower radiator away from the upper branch are connected to connection sections. The connection sections are symmetrically distributed on two sides of the second axis and are collinear. A design of the connection section is a miniaturization design without affecting a horizontal polarization effect of the second antenna. A resonance frequency of the low-frequency lower radiator can be adjusted through adding the connection section to the original radiation arm, to avoid excessively large sizes of the radiation arms of the low-frequency lower radiator for enhancing the resonance frequency.
In a possible embodiment, the second antenna is a symmetrical structure centered on a second axis. The low-frequency upper radiator and the low-frequency lower radiator are both rectangular structures with the second axis as a symmetrical center. A long-edge direction is parallel to the second axis. The high-frequency upper radiator includes two radiation arms that are symmetrically distributed on two sides of the second axis and whose extension directions are parallel to the second axis. Ends of the radiation arms of the high-frequency upper radiator facing the lower branch are connected, by using a first connection arm, to ends of the radiation arms of the low-frequency upper radiator facing the lower branch. The first connection arm is perpendicular to the second axis and is collinear. In this design, high-frequency and low-frequency radiators are cascaded only at the first connection arm, to obtain the high-frequency radiating element and the low-frequency radiating element that can be separated from each other, so that the high-frequency radiating element and the low-frequency radiating element have more distinct radiation effects.
In a possible embodiment, the high-frequency lower radiator includes two radiation arms that are symmetrically distributed on two sides of the second axis and whose extension directions are parallel to the second axis. Ends of the radiation arms of the low-frequency lower radiator facing the upper branch are connected, by using a second connection arm, to ends of the radiation arms of the low-frequency lower radiator facing the upper branch. The second connection arm is perpendicular to the second axis and is collinear. In this design, high-frequency and low-frequency radiators are cascaded only at the second connection arm, to obtain the high-frequency radiating element and the low-frequency radiating element that can be separated from each other, so that the high-frequency radiating element and the low-frequency radiating element have more distinct radiation effects.
In a possible embodiment, the second antenna is a symmetrical structure centered on a second axis. The low-frequency upper radiator includes two radiation arms that are symmetrically distributed on two sides of the second axis and whose extension directions are parallel to the second axis. The high-frequency upper radiator includes two radiation arms that are symmetrically distributed on the two sides of the second axis and whose extension directions are parallel to the second axis. The radiation arms of the high-frequency upper radiator are integrally connected to the radiation arms of the low-frequency upper radiator. Ends of the radiation arms of the low-frequency upper radiator facing the lower branch are connected by using a first connection arm. The first connection arm is perpendicular to the second axis. The radiation arms of the high-frequency radiating element are correspondingly connected to the radiation arms of the low-frequency radiating element, to form a discontinuous step structure. A step hopping position is selected based on lengths required for different frequencies.
In a possible embodiment, the low-frequency lower radiator includes two radiation arms that are symmetrically distributed on two sides of the second axis and whose extension directions are parallel to the second axis. The high-frequency lower radiator includes two radiation arms that are symmetrically distributed on two sides of the second axis and whose extension directions are parallel to the second axis. The radiation arms of the high-frequency lower radiator are integrally connected to the radiation arms of the low-frequency lower radiator. Ends of the radiation arms of the low-frequency lower radiator facing the upper branch are connected by using a second connection arm. The second connection arm is parallel to the first connection arm.
In a possible embodiment, a value of a distance between the connection part and the first radiating element is less than a quarter of a sum of a resonance wavelength of the first radiating element and a low-frequency resonance wavelength of the low-frequency radiating element. In the directional radiation design of the first antenna, a distance between the first radiating element and the reflector is a quarter of a wavelength corresponding to a center frequency. In this case, a phase change in a round-trip distance is 180 degrees, so that a reflected signal and a radiated signal implement a 360-degree change due to a phase inversion function of the reflector. The radiated signal is superimposed on the reflected signal with the same phase. Therefore, a value of the distance between the connection part of the reflector and the first radiating element is less than a quarter of the sum of the resonance wavelength of the first radiating element and the low-frequency resonance wavelength of the low-frequency radiating element.
According to a second aspect, this application provides an antenna module, including a first feeder, a second feeder, and any one of the foregoing antennas. The first feeder is connected to a first antenna, and the second feeder is connected to a second antenna. The first antenna is excited by using the first feeder to horizontally polarize the first antenna, and the second antenna is excited by using the second feeder to vertically polarize the second antenna, thereby forming a tri-band dual-polarized antenna.
In a possible embodiment, the antenna is located on a first plane. The first feeder is perpendicular to the first plane. The second feeder is parallel to the first plane. Currents pass through the first feeder and the second feeder. Therefore, electromagnetic fields exist around the feeders. Due to selection of an orthogonal design, the induction fields around the first feeder and the second feeder are also orthogonal. Mutual impact between the induction fields is the smallest, and transmission efficiency is the highest.
Specifically, the first feeder includes a first external conductor, a first internal conductor, and a first dielectric insulation part. The first external conductor passes through a substrate and is electrically connected to a first feed point of the first antenna. The first feed point is connected to one end of the first internal conductor by using the first dielectric insulation part. The other end of the first internal conductor is electrically connected to a second feed point of the first antenna.
The first internal conductor is an arc bent conductor.
The second feeder includes a second external conductor, a second internal conductor, and a second dielectric insulation part. The second external conductor and the second internal conductor are attached to and disposed on the first plane. The second external conductor is connected to a third feed point of the second antenna. The second dielectric insulation part protrudes from the third feed point. The second dielectric insulation part is connected to one end of the second internal conductor. The other end of the second internal conductor is connected to a fourth feed point of the second antenna.
According to a third aspect, this application provides a wireless network device, including a feeding network and any one of the foregoing antenna modules. The feeding network is connected to a first feeder and a second feeder of the antenna module, to excite the first antenna and the second antenna. The antenna module is fed by using the feeding network. The first antenna and the second antenna are orthogonally polarized. Due to a design of a reflector in a shape of comb teeth in the first antenna, reflection paths of an incident wave of the first antenna are increased, to enhance a directional radiation effect of the first antenna.
The following clearly describes embodiments of this application in detail with reference to the accompanying drawings.
With development of communications technologies, wireless communication in a home scenario also has higher transmission requirements. As shown in
In an embodiment, as shown in
It should be noted that the antenna 100 in this application may be a printed dipole antenna, that is, manufactured on a surface of a dielectric slab in a manner of printing a microstrip; or may be stereo metal antenna architecture. In comparison with a conventional dipole antenna, the printed dipole antenna is smaller in size and lighter in weight, and easy in integration. In addition, the printed dipole antenna has a relatively large bandwidth and a stable radiation direction, which facilitates a polarization design.
In a possible embodiment, as shown in
As shown in
Different from an all-metal or equal-height reflector design in a conventional design, in this embodiment, the upper end surfaces 1525 of the comb teeth 152 form a reflective surface. Because the tooth gap 1528 exists between the comb teeth 152, the reflective surface formed by the upper end surfaces 1525 of the comb teeth 152 is a discontinuous reflective surface. For a conventional all-metal or equal-height reflector, the reflective surface of the reflector is a complete surface. When the first radiating element 11 is radiated toward the reflector 15, a reflection function of the all-metal reflector to an incident wave is one-time. In this case, a phase of the reflected incident wave is fixed. In this embodiment, the reflective surface formed by the upper end surfaces 1525 of the comb teeth 152 is the discontinuous reflective surface. Reflection paths of the incident wave are increased due to discontinuity of a structure of the reflective surface. For example, some incident waves are reflected by the upper end surfaces 1525 of the comb teeth 152, and some incident waves pass through the tooth gap 1528 between the comb teeth 152 and are reflected by sidewalls (that is, sidewalls 1526 of the comb teeth 152) of the tooth gap 1528. In other words, in a design of the comb teeth 152, an area of the reflective surface is increased, to increase the reflection paths of the incident wave. The increase of the reflection paths leads to superimposing of reflected waves on the plurality of paths, to improve an overall reflection effect of the reflector 15 to the first radiating element 11 and implement the vertical directional radiation function of the reflector 15 in a shape of the comb teeth to the first radiating element 11. In addition, the increase of the reflection paths due to the gap between the comb teeth 152 causes a 180-degree phase change when the incident wave is reflected, and further causes an additional limit change. In other words, the phase change is not equal to 180 degrees, thereby enhancing the vertical directional radiation effect of the first radiating element 11. The reflection paths can be increased for the reflector 15 with the comb teeth 152 may be understood to be similar to a principle in which a digestion area is increased by using intestinal villi. If the small intestine has a smooth surface, the digestion area is fixed. However, for the small intestine with the intestinal villi, the digestion area of the small intestine is greatly increased. This is similar to the reflector 15 with the comb teeth 152. A reflection effect for the incident wave is implemented not only by the upper end surfaces 1525 facing the first radiating element 11, but also by the sidewalls 1526 of the comb teeth 152, thereby increasing possible reflection paths of the incident wave.
In addition, the profile on the side of the tooth part 155 facing the first radiating element 11 is concave to the connection part 151. A design of the concave profile is to form a reflective concave surface. Under a function of the reflective concave surface, the incident wave has better directivity when being reflected. A design principle of the reflective concave surface is similar to that of a concave reflector of a vehicle headlight. A front view is most important during driving of a vehicle at night. To enhance a searchlighting function of the vehicle headlight for the front, the concave reflector is designed behind the headlight. A light converging effect is implemented by using the concave reflector. For this design, to better improve the vertical directional radiation function of the first radiating element 11, the reflector 15 on the concave profile is disposed on the side of the first radiating element 11. In this way, the reflection paths are increased, and a reflection function of the reflector 15 can be further improved, thereby enhancing the directional radiation function of the first radiating element 11. In the foregoing design of the first antenna 10, the reflector 15 with the concave part 1551 formed by using the comb teeth 152 not only increases reflection paths of the incident wave, but also increases phase change values of the incident wave different from 180 degrees. In addition, in the design of the concave part 1551, the reflection function of the reflector 15 is further improved, and the directional radiation function of the first radiating element 11 is enhanced.
In an embodiment, the first radiating element 11 has the two symmetrical first radiation arms 112. To ensure the reflection effect of the concave reflective surface to the first radiating element 11, as shown in
As shown in
In this embodiment, as shown in
When the second antenna 20 is designed, orthogonal polarization between the first antenna 10 and the second antenna 20 may be first met. Further, it is required to ensure that the second antenna 20 has a high frequency band and a low frequency band. In addition, an impact of operating radiation of the second antenna 20 on a high frequency band and a low frequency band on operation of the first antenna 10 may be reduced.
For the first problem, a solution is to make extension directions of the two first radiation arms 112 of the first radiating element 11 perpendicular to extension directions of the dipole radiation arms on the high frequency band and the low frequency band in the second antenna 20.
For the second problem, an operating frequency band of a dipole unit is closely related to an extension length of the radiation arm. Lengths of the radiation arms in the second antenna 20 can be adjusted to obtain dipole units on the high frequency band and the low frequency band.
For the third problem, there are at least two dipole units in the second antenna 20, that is, one high-frequency dipole unit 22 and one low-frequency dipole unit 21. The extension directions of the two dipole units may be perpendicular to a polarization direction of the first radiation arm 112 of the first radiating element 11. To reduce an impact of operating radiation of the second antenna 20 on the high frequency band and the low frequency band on the operation of the first antenna 10, the high-frequency dipole unit 22 and the low-frequency dipole unit 21 may be symmetrically distributed. As shown in
The second antenna 20 orthogonally polarized to the first antenna 10 can be obtained based on the foregoing design. As shown in
To better understand the beneficial effects of the reflector 15 with the comb teeth 152 in the first antenna 10 and the second antenna 20 in the embodiment, the following provides description with reference to the current distribution of the antenna 100, the S parameter, and the directivity pattern.
With reference to
Specifically,
As shown in
The antenna 100 in this embodiment has the tri-band dual-polarization feature. More importantly, the reflector 15 in the first antenna 10 has the concave part 1551 having the profile with the structure of the comb teeth 152. The reflector 15 can greatly enhance a reflection effect of the reflector 15 to the radiation wave of the first radiating element 11, and strengthen the directional radiation function of the first antenna 10 in the vertical direction. In addition, the reflector 15 also isolates an impact of downward radiation of the first radiating element 11 on the vertically polarized second antenna 20.
In a possible embodiment, at least two of the plurality of comb teeth 152 have different extension lengths. The extension length herein indicates a length between a tooth root 1524 connecting the comb tooth 152 to the connection part 151 and the upper end surface 1525 of the comb tooth 152. As shown in
In another possible embodiment, as shown in
In the foregoing two embodiments, the concave part 1551 of the profile is mainly formed in a case in which the comb teeth 152 have the same extension length and a case in which the comb teeth 152 have different extension lengths. When the comb teeth 152 have different extension lengths, the concave part 1551 of the profile on the side of the tooth part 155 facing the first radiating element 11 may be obtained only through distributing the comb teeth 152 with different extension lengths in a manner of a small extension length in the middle and a large extension length on two sides. When the comb teeth 152 have the same extension length, the concave part 1551 of the profile on the side of the tooth part 155 facing the first radiating element 11 is implemented only through adjusting a shape of the connection part 151. An example of an adjustment manner is as follows: A second plane 1512 of the tooth roots 1524 connected to the connection part 151 is designed as a concave surface, so that the comb teeth 152 with the same extension length can form the concave part 1551 of the profile corresponding to the concave surface. In this embodiment, in order that the current is evenly distributed to the comb tooth 152, the two sidewalls 1526 of the comb tooth 152 are parallel to the extension direction of the comb tooth 152. It can be learned from
In the foregoing embodiment, as shown in
In another embodiment, as shown in
In another embodiment, the concave part 1551 includes a straight line with an acute angle as an inclined angle to the extension direction of the comb teeth 152, or the concave part 1551 includes a combination of a straight line with an acute angle as an inclined angle to the extension direction of the comb teeth 152 and a straight line perpendicular to the extension direction, or the concave part 1551 includes a combination of a straight line with an acute angle as an inclined angle to the extension direction of the comb teeth 152 and a smoothly transited arc. Three designs of the concave part 1551 in the figure are to enhance the directional radiation of the reflector 15 to the first radiating element 11. For the concave part 1551, there may be a plurality of concave manners. For example, the concave part 1551 shown in the figure includes an inclined straight line, or may include an arc, or may include a combination of an inclined straight line and an arc. Regardless of a combination manner, a purpose of the combination is to construct the concave part 1551 of the profile for the tooth part 155, so that a reflective concave surface of the first radiating element 11 is generally formed.
In the foregoing embodiment, the extension length of the comb tooth 152 does not exceed a quarter of a wavelength corresponding to a resonance center frequency of the first radiating element 11. As shown in
In an implementable embodiment, as shown in
In a possible embodiment, as shown in
In a possible embodiment, as shown in
In a possible embodiment, as shown in
In a possible embodiment, as shown in
In another possible embodiment, as shown in
In another possible embodiment, as shown in
In addition, this application provides an antenna module 200, including a first feeder, a second feeder, and any one of the foregoing antennas 100. The first feeder is connected to a first antenna 10, and the second feeder is connected to a second antenna 20. The first antenna 10 is excited by using the first feeder to horizontally polarize the first antenna 10, and the second antenna 20 is excited by using the second feeder to vertically polarize the second antenna 20, thereby forming a tri-band dual-polarized antenna. Specifically, as shown in
In an embodiment, as shown in
Number | Date | Country | Kind |
---|---|---|---|
202010055034.6 | Jan 2020 | CN | national |
This application is a continuation of International Application No. PCT/CN2020/116601, filed on Sep. 21, 2020, which claims priority to Chinese Patent Application No. 202010055034.6, filed on Jan. 17, 2020. The disclosures of the aforementioned applications are hereby incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
6441740 | Brady et al. | Aug 2002 | B1 |
7023909 | Adams | Apr 2006 | B1 |
7724201 | Nysen | May 2010 | B2 |
9711863 | De Luis et al. | Jul 2017 | B2 |
9715010 | Pu | Jul 2017 | B2 |
9786990 | Platt | Oct 2017 | B2 |
10320085 | Lier | Jun 2019 | B1 |
20030103015 | Oh | Jun 2003 | A1 |
20070247388 | Asakura | Oct 2007 | A1 |
20130088400 | Chen | Apr 2013 | A1 |
20130178169 | Kuo | Jul 2013 | A1 |
20170294720 | Murakowski et al. | Oct 2017 | A1 |
20180316097 | Wium et al. | Nov 2018 | A1 |
20180342790 | Oh et al. | Nov 2018 | A1 |
20190123721 | Takamine | Apr 2019 | A1 |
20190286963 | Salehi | Sep 2019 | A1 |
20210143552 | Shao | May 2021 | A1 |
20210218121 | Noguchi | Jul 2021 | A1 |
Number | Date | Country |
---|---|---|
201820881 | May 2011 | CN |
201820881 | May 2011 | CN |
102800965 | Nov 2012 | CN |
102800965 | Nov 2012 | CN |
103078179 | May 2013 | CN |
104538738 | Apr 2015 | CN |
104577322 | Apr 2015 | CN |
204348909 | May 2015 | CN |
204538206 | Aug 2015 | CN |
204538206 | Aug 2015 | CN |
104901000 | Sep 2015 | CN |
104901004 | Sep 2015 | CN |
104901004 | Jul 2017 | CN |
206332170 | Jul 2017 | CN |
107086377 | Aug 2017 | CN |
108073770 | May 2018 | CN |
208637590 | Mar 2019 | CN |
208637590 | Mar 2019 | CN |
108847534 | Jan 2021 | CN |
2565984 | Mar 2013 | EP |
1001658 | Aug 1965 | GB |
5854888 | Feb 2016 | JP |
2019146092 | Aug 2019 | JP |
2009030039 | Mar 2009 | WO |
2010041804 | Apr 2010 | WO |
Entry |
---|
Jiang Shouliang, Deployment Mechanism and Experiment of Dongfanghong-3 Satellite Communication Antenna, Space Electronic Technology, Issue 03, 1994, with an English Abstract, 6 pages. |
Victor P. Plessky et al, SAW Tags for the 6-GHz Range, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 61, No. 12, Dec. 2014, 4 pages. |
Xie Jiyang et al, Resonance based reflector based UHF /S bow-tie antenna with two opposite uni-directional radiation bands, Chinese Journal of Radio Science, vol. 32, No. 6, Dec. 2017, with an English Abstract, 9 pages. |
Number | Date | Country | |
---|---|---|---|
20220352645 A1 | Nov 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/CN2020/116601 | Sep 2020 | WO |
Child | 17865722 | US |