In the accompanying drawings;
Embodiments of the present invention will be described below with reference to the accompanying drawings.
An article management system according to a first embodiment of the present invention will be described with reference to
Next, a constitution of the document managing apparatus 1 will be described with reference to
A Read/Write (R/W) unit 15 is connected to a computer (PC) 16 for managing the document information. The Read/Write (R/W) unit 15 outputs the document information read from the wireless tag via an antenna unit 13 to the PC 16. In addition, the Read/Write (R/W) unit 15 writes the document information received from the PC 16 onto the wireless tag.
Next, the antenna unit 13 will be described with reference to
In addition, the terminating resistor 134 may be selected so that impedance of the terminating resistor 134 corresponds to a characteristic impedance of a feed line (not shown) connected to the wire element 131 via the feed point 133.
Each element length of the branch conductive elements 132-1, 132-2, . . . , 132-n is approximately a quarter wavelength of an operation frequency. One end of each branch conductive element is perpendicularly connected to the wire element 131, and the other ends of the branch conductive elements are grounded (short-circuited) at connection points 132-1b, 132-2b, 132-nb on the ground plane 10 respectively. Therefore, the connection points 132-1a, 132-2a, . . . , 132-na between the wire element 131 and the branch conductive elements 132-1, 132-2, . . . , 132-n are in a high impedance compared with the wire element 131. As a result, little current flows through the branch conductive elements 132-1, 132-2, . . . , 132-n.
Next, a constitution of each of the documents 11-1, 11-2, . . . , 11-n to be managed by the article managing apparatus 1 will be described. The wireless tags 12-1, 12-2, . . . , 12-n are attached to the documents 11-1, 11-2, . . . , 11-n respectively. Since constitutions and operations of the respective wireless tags 12-1, 12-2, . . . , 12-n are the same, only the wireless tag 12-1 will be described below.
In the wireless tag 12-1, an IC 120 is directly mounted on an antenna 121. The IC 120 includes: a detection-rectifier 122 for detecting a direct current DC for driving the IC 120 from a reception signal; a demodulating unit 123 for demodulating the reception signal; a modulating unit 124 for modulating a signal to be transmitted; a memory 125 for storing information, etc., of the document 11-1; and a controlling unit 126 for controlling each unit.
As the antenna 121, for example, a dipole antenna, a Yagi-Uda antenna or a micro-strip antenna may be employed. In the antenna 121, for example, the dipole antenna, when the document 11-1 is put in the vicinity of the antenna unit 13 of the document managing apparatus 1, the branch conductive elements 132-1, 132-2, . . . , 132-n (see
Next, operation of the article management system according to the first embodiment will be described. Here, it is assumed that the document 11-1, to which the wireless tag 12-1 is attached, is in the vicinity of the branch conductive element 132-1 of the antenna unit 13. Operations of the other documents 11-2, . . . , 11-n and the branch conductive elements 132-2, . . . , 132-n are the same as those of the document 11-1 and the branch conductive element 132-1 respectively.
First, operation of the antenna unit 13 will be described with reference to
On the other hand,
Next, operations of the article managing apparatus 1 and the wireless tag 12-1 in the case where the wireless tag 12-1 is in the vicinity of the antenna unit 13 will be described with reference to
A wave (referred to as reception signal, hereinafter) radiated from the branch conductive element 132-1 is input to the detection-rectifier 122 via the antenna 121. The detection-rectifier 122 detects the direct current DC from the input reception signal to supply power to each unit of the IC 120. On the other hand, the detection-rectifier 122 inputs the reception signal to the demodulating unit 123. The demodulating unit 123 subjects the input reception signal to demodulation, etc., and inputs the results to the controlling unit 126. The controlling unit 126 writes the results received from the demodulating unit onto the memory 125. As a result of the demodulation, when the document managing apparatus 1 reads the document information, the controlling unit 126 generates a transmission signal with reference to the memory 125. The controlling unit outputs the transmission signal to the modulating unit 124. The modulating unit 124 subjects the input transmission signal to encoding, etc., turns a switch therein on/off, and changes impedance of the antenna 121 to transmit a signal.
The R/W unit 15 receives the signal transmitted from the wireless tag 12-1 via the antenna unit 13, and subjects the received signal to demodulation etc., to obtain the document information. Next, the R/W unit 15 outputs the obtained document information to the PC 16. Then, the PC 16 manages the document 11-1 based on the input document information.
On the other hand, when the document information is written onto the wireless tag 12-1, the document information to be written on is input into the R/W unit 15 via the PC. The R/W unit 15 subjects the input document information to modulation, etc., to generate a transmission signal. The transmission signal is transmitted to the wireless tag 12-1 via the antenna unit 13.
Next, the case where the article management system according to the present embodiment is applied to a rack for housing articles will be described with reference to
The rack, to which the article management system shown in
The R/W unit 15 is connected to the PC 16 for managing the article (not shown in
Since operations of the article management system applied to the rack is the same as that of the article management system shown in
As described above, in the first embodiment, a plurality of the branch conductive elements 132-1, 132-2, . . . , 132-n are aligned to communicate with the wireless tags in the vicinity thereof. Thus, the information of the plurality of wireless tags can be read without mechanically moving the antenna unit 13. In addition, since no current flows through the branch conductive element having no wireless tag in the vicinity thereof, the branch conductive elements 132-1, 132-2, . . . , 132-n radiate no unnecessary wave except for the case where the wireless tags are in the vicinity thereof. Accordingly, interference with another wireless device can be suppressed.
Furthermore, the wire element 131 and the branch conductive elements 132-1, 132-2, . . . , 132-n are connected on an identical plane and perpendicularly to each other, so that an unnecessary electromagnetic field coupling therebetween can be suppressed. If the unnecessary electromagnetic field coupling is caused between the wire element 131 and the branch conductive elements 132-1, 132-2, . . . , 132-n, each resonance frequency of the branch conductive elements 132-1, 132-2, . . . , 132-n varies. As a result, a capacity of the antenna unit for reading the information transmitted from the wireless tag is lowered. In the case where the antenna apparatus is designed after the unnecessary electromagnetic field coupling is considered in advance, a significantly large resource is required for design. It is very important to suppress the unnecessary electromagnetic field coupling between the wire element 131 and the branch conductive elements 132-1, 132-2, . . . , 132-n, or between the branch conductive elements 132-1, 132-2, . . . , 132-n in advance.
Next, an article management system according to a second embodiment of the present invention will be described with reference to
Thus, an interval between the branch conductive elements adjacent to each other is widened, and the electromagnetic field coupling between the branch conductive elements is weakened.
Next, a modification of the antenna unit 13 according to the present embodiment will be described with reference to
A constitution of an antenna unit shown in
Since element lengths L1, L2, . . . , Ln are different from each other, the resonance frequencies of the branch conductive elements are slightly different from each other. Thus, the electromagnetic field coupling between the branch conductive elements is weakened, and the branch conductive elements hardly resonate with each other. However, since the element lengths L1, L2, . . . , Ln are slightly different from the quarter wavelengths of the operation frequency of the branch conductive elements 132-1, 132-2, . . . , 132-n, respectively, each branch conductive element resonates with the electromagnetic wave of the operation frequency. Moreover, although the element lengths of the branch conductive elements are different from each other in the first modification, only the element lengths of the two branch conductive elements adjacent to each other may be different from each other.
In the modification of the antenna unit 13 shown in
In the modification of the antenna unit 13 shown in
As described above, according to the second embodiment, the same effect as that of the first embodiment can be obtained. Furthermore, since the branch conductive elements 132-1, 132-2, . . . , 132-n are alternatively arranged on either side of the wire element 131, the interval between the elements can be widened even if the number of branch conductive elements 132-1, 132-2, . . . , 132-n is increased. Accordingly, the unnecessary electromagnetic field coupling between the branch conductive elements 132-1, 132-2, . . . , 132-n can be suppressed.
Furthermore, as shown in the first modification, since the element lengths of the branch conductive elements 132-1, 132-2, . . . , 132-n are slightly different from each other, the resonance frequency of each branch conductive element is slightly changed, and the resonance between the branch conductive elements can be suppressed. Thus, the unnecessary electromagnetic field coupling between the branch conductive elements 132-1, 132-2, . . . , 132-n can be suppressed.
Furthermore, as shown in the second modification, since the wire element 131 and the branch conductive elements 132-1, 132-2, . . . , 132-n serve as the micro-strip line, the elements can be manufactured with a PCB (Print Circuit Board), etc., and productivity can be improved.
Similarly, as shown in the third modification, since the wire element 131 and the branch conductive elements 132-1, 132-2, . . . , 132-n serves as the coplanar waveguide, the ground plane 130, the wire element 131 and the branch conductive elements can be constituted by a single conductor plate, and the productivity can be improved.
According to the antenna apparatus and article management system of the present embodiment, the information of the plurality of wireless tags can be read without mechanically moving the antenna. Unnecessary wave radiation can thus be suppressed.
Moreover, the present invention is not limited only to the above embodiments, and can be modified without departing from the scope thereof in being carried out. In addition, various inventions can be made by properly combining a plurality of components used in the above embodiments. For example, some components may be removed from all the components used in the above embodiments. Alternatively, the components used in the embodiments different from each other may be properly combined with each other.
Number | Date | Country | Kind |
---|---|---|---|
P2006-134545 | May 2006 | JP | national |