The present invention relates to telecommunications antennae, and to particular arrangements of such antennae, and methods of providing them. In particular the disclosure relates to slot antennae, such as Vivaldi antennae and other kinds of slot antennae, and to the installation of such antennae.
It has been proposed to use slot antennae for telecommunications.
A Vivaldi antenna is one example of slot antenna. In a Vivaldi antenna a slot may be terminated at one end by a circular cut-out in a conductor, this cut-out may have a diameter which is greater than the width of the slot. The slot is generally open at its other end, and may have a curved tapered profile so that it broadens out towards this open end, the width of this slot may be an exponential function of position along the length of the slot.
Aspects and examples of the invention are set out in the claims.
Embodiments of the disclosure will now be described, by way of example only, with reference to the accompanying drawings, in which:
In the drawings like reference numerals are used to indicate like elements.
The drawings of
The antenna element 12 may comprise a half-Vivaldi antenna element 12. For example, the edge 6 of the antenna element 12 and/or the wall 16 of the recess may be curved so that the spacing between the edge 6 and the wall 16 of the recess (e.g. the width of the slot 14) is an exponential function of position along the slot 14. In some examples the antenna element 12 may comprise a part-circular “cut-out” sector 18 arranged towards a closed end 22 of the slot in the interior of the recess. It will be appreciated in the context of the present disclosure that the function of the “cut-out” is to present a higher impedance path to signals in the antenna bandwidth than is presented by the conduction path towards the open end of the slot, accordingly any functionally equivalent impedance tuning structure can provide this function.
In operation an image antenna, an electrical mirror-image of the antenna element 12, may be provided by the reflection of signal from a wall 16 of the recess. This image antenna may contribute to the radiation pattern of the antenna, for example the signal from the antenna may comprise two contributions: the waves that travel directly from the antenna element 12 to that point, and the waves that reach that point from the antenna after reflecting off the ground plane provided by the wall of the recess. Because of the reflection, these second waves appear to come from a second antenna behind the ground plane, just as a visible object in front of a flat mirror forms a virtual image that seems to lie behind the mirror. This second apparent source of radio waves may be referred to as an image antenna element. It will be appreciated in the context of the present disclosure that the tangential electric field at the (conductive) surface of the recess may generally be zero, and the reflection of electromagnetic fields from this surface may be governed by this boundary condition.
As noted above, the antenna element 12, and the corresponding image antenna element may behave together as a slot antenna. The slot 14 is generally directed towards the mouth of the recess, for example a closed end 22 of the slot 14 may be arranged towards the interior of the recess and the open end 20 of the slot 14 may arranged towards the mouth of the recess.
A plurality of antenna elements 12 may be arranged in the recess and may be driven independently so as to provide multiple input and/or output channels, for example the antenna may be arranged to provide one input and/or output channel per antenna element 12. The shape of the edge 6 of the antenna elements and/or the form of the wall 16 of the recess may be selected to shape the radiation pattern, for example to adjust the angle of elevation of a centre of intensity of the radiation pattern with respect to the antenna, for example a maximum of the radiation pattern. Having read the present disclosure, a person skilled in the art will recognize that the pattern may also be changed dynamically or statically by exciting the different antenna elements 12, 12′ with suitable electrical signals.
The telecommunications antenna illustrated in
The recess may have an open mouth 19 (e.g. the perimeter of the recess), and sloping walls 16 which taper inwards from the mouth towards a closed base 17 as illustrated in
As shown in
The edge 6 of each antenna element 12 that is closest to the wall 16 of the recess is spaced apart from that wall 16 along at least a part of its length. As explained above, this spacing provides a slot 14 between this adjacent edge 6 and the wall 16. The slot 14 can be driven as an antenna for transmitting and receiving signals by exciting the antenna elements 12, 12′ with an electric signal. The image effect provided by the electrical mirror image of the antenna element 12 in the ground plane may provide a radiation pattern corresponding to that associated with a slot antenna.
In the example illustrated in
The radius of this part-circular sector 18 may be a function of various desired antenna characteristics. For example, the radius of the part-circular sector 18 may be selected based on a dominant or centre frequency of a communication frequency band of the antenna.
The other end of the slot 14 may be open, for example the slot 14 may be tapered so that the edge 6 of the antenna element 12 is separated from the wall 16 of the recess by a gap that is narrower towards the interior (closed) end 22 of the slot 14 than toward the open end 20 of the slot 14 directed towards the mouth of the recess. At least part of the edge 6 of the antenna element 12 may be straight, for example as illustrated in
The part-circular sector 18 may be arranged to so that, for signals in a communication frequency band of the antenna, the impedance of the conduction path from the feed point towards the closed end 22 of the slot is higher, for example significantly higher, than the conduction path towards the open end 20 for those signals. The conductive material of the antenna element may provide a DC conductive path to ground, around the part circular sector 18.
Where the wall 16 of the recess is curved as illustrated in
It can be seen in
Other variations are also within the scope of the appended claims. For example, the example discussed above with reference to
Other configurations may also be used. For example, in some embodiments the disclosure provides a telecommunications antenna comprising a plurality of antenna elements arranged on a common ground plane 32. As illustrated in
As described above, the edge 6 of each antenna element 12 may be spaced from this common ground plane 32 to provide a slot 14 between the edge 6 of each antenna element 12 and the common ground plane 32. The antenna elements may each comprise conductive plates arranged as half-slot antennas (e.g. half-Vivaldi antennae). As also described above, the slot 14 between the edge 6 of an antenna element 12 and this common ground plane may be closed at one end, for example the antenna element 12 may be DC grounded to the ground plane 32 at the closed end 22 of the slot 14. An impedance tuning structure such as a part circular sector 18 may be arranged towards this closed end 22 of the slot 14 to present a high impedance path to the closed (DC grounded) end of the slot 14 from the edge 6 of the slot 14 further towards the open end 20. This part-circular sector 18 may have the features described above with reference to
The edges of the antenna elements may be shaped so that the slot 14 between the antenna element 12 and the common ground plane 32 comprises at least one of an exponential curve, a linear taper, and at least one change in the angle of the slot 14 that broadens the slot 14 out towards its open end 20.
It will be appreciated that the slots of the antenna elements may be directed away from each other, for example by an angle of at least 90° when viewed in plan as illustrated in
Each antenna element 12 may comprise a signal connection arranged to couple an RF signal to or from the antenna, for example from the slot 14. This may comprise a conductive (e.g. ohmic) connection to a signal cable, and the connection may be arranged near the edge of the antenna element 12 that is adjacent to the ground plane 32, for example the connection may be disposed on one of the major surfaces of the antenna element 12 and it may also be on the edge 6 of the antenna element 12.
Where the antenna comprises a plurality of antenna elements, these may each be coupled to a separate transmit and/or receive channel of a telecommunications apparatus for transmitting and/or receiving signals.
As illustrated in
In the context of the present disclosure it will be appreciated that, in the embodiment of
In some embodiments, the distance between a signal feed-point 34, 34′ on the edge of the antenna and the centre of curvature of the part-circular sector 18, 18′ may also be selected based on (e.g. to fix) the centre frequency and/or the bandwidth of the communication frequency band of the antenna. For example this distance and the radius may be selected together to provide a desired centre frequency and the bandwidth. In some embodiments the distance from the centre of the circle 18, 18′ to the feed point 34, 34′ is selected to be one quarter wavelength of the signal at the centre frequency, the radius of the circle may then be selected to provide a desired bandwidth (e.g. the radius may be selected so as to increase the bandwidth around the desired centre frequency). For example: the distance between the feed point and the centre of the circle may be chosen to be about 30 mm a quarter wavelength for a centre frequency of around 2400 MHz. In some examples the radius of the part-circular cut-out may be about 10 mm.
In some embodiments one or more of the antenna elements 12, 12′ of an antenna may be configured to have different frequency characteristics. For example, each antenna element 12, 12′ may be arranged to support a different part of a required frequency range. For example, the radius of the part-circular sectors 18, 18′ of each antenna element may be different to provide antenna elements having different bandwidths. In some embodiments at least one antenna element may be arranged to have a different distance between its feed point 34, 34′ and the centre of its part-circular sector 18, 18′ than at least one other antenna element 12, 12′ so the different antenna elements can accommodate a different part of the bandwidth of the antenna as a whole. The bandwidths of the different antenna elements 12, 12′ may at least partially overlap, or may be distinct, for example non-overlapping.
In some embodiments the orientation and/or the spacing between the antenna elements 12, 12′ may be selected to adjust, for example to reduce, the degree of electromagnetic coupling between the antenna elements.
It will be appreciated that the antenna elements 12 each comprise a conductive planar body, which may be provided by a metal plate. At least one of these antenna elements 12 may comprise an elongate conduction inhibitor, for example a gap in its conductive body.
These conduction inhibitors may be arranged to inhibit the flow of longitudinal surface current on the conductive body, for example along the outer edge of the antenna element that is furthest from (e.g. on the opposite side of the antenna element, away from) the base 17 of the recess. One example of such a current inhibitor is illustrated in
In the example illustrated in
In the example of
This current inhibiting slot may be transverse to the inner edge of the antenna element. As a result, in the arrangement illustrated in
In one example of such an arrangement, an antenna element 12 is modified by an elongated recess or slot 121′. This slot 121′ may be an essentially horizontal cut approximately parallel to the upper edge 6 through the vertical edge juxtaposed to the edge 6 of the antenna element 12.
Pursuant to the present disclosure it has been found that, whilst longitudinal surface currents along the edge 6 of the antenna element 12 could be regarded as being part of the desired emission characteristics or emission pattern of the antenna, longitudinal surface currents along other edges do not contribute to the desired emission. Current inhibitors, such as recesses or cuts in these edges may control (e.g. confine, e.g. reduce) such unwanted longitudinal surface currents. The impact on the confinement of the longitudinal surface current of a horizontal slot 121′ such as that illustrated in
In some examples the width of the slot 121, 121′ of the current inhibitor may be selected so as to inhibit (e.g. confine) unwanted longitudinal surface current whilst maintaining the bandwidth of the antenna, for example the slot may be narrow so that they do not unduly reduce the conductive surface area of the antenna element. Pursuant to the present disclosure it has been appreciated that reducing the area of the antenna element (which is used for accumulation of charges), may have an undesirable effect on bandwidth. The antenna element may be referred to as a “wing”.
In other examples, a current inhibitor, or a slot, 121, 121′ may be present in more than one of the antenna elements 12, and may, for example, be disposed upon the antenna elements symmetrically. In one example, the antenna elements 12 may each have a slot 121 therein, similar to that shown in
In a further example, each antenna element 12 may have a slot 121, 121′ in, with each antenna element having a different shape and/or orientation of slot 121, 121′ therein. In a yet further example, each antenna element 12 may have a slot 121, 121′ therein such that the slots are symmetrical in nature.
It has also been appreciated that the exact orientation, length and/or the width of the current inhibitors have an impact on the input impedance of the antenna. Embodiments of the disclosure therefore provide a method of designing an antenna.
This method comprises selecting an arrangement of planar, conductive, antenna elements such as those described above, and selecting the arrangement of the wall of the recess, for example selecting the orientation, length and/or the width of a slot in at least one of those antenna elements so as to achieve a desired input impedance of the antenna. This selection may be done empirically, for example by testing a physical antenna, and/or for example by a numerical modelling of the antenna, for example using a finite element model. This method may comprise providing data describing the orientation of such slots for use by a manufacturing apparatus to produce the antennae.
Horizontally polarised signals are, in general, generated by the longitudinal surface currents described above. The scatterers 161 may be configured to reflect and scatter a substantial portion of such radiation caused by these longitudinal surface currents. For example the scatterers 161 may be arranged so that they, in general, reflect and scatter horizontally polarised signal.
In the example illustrated in
It is to be understood that the scatterers 161 may take any suitable shape, which may be, for example, an ellipsoid shape, for example a part-spherical shape, for example a hemisphere. In other examples, the scatterers 161 may take an ovoid shape, for example a part-ovoid shape, for example a part-egg shape. Yet further examples of the scatterers 161 may take for example a geometric shape, for example a part polyhedron such as a dodecahedron. Additional examples of the scatterers 161 may take the form of a more general protuberance, for example a cylinder shape, for example a rounded cylinder.
However, it has been found that a generally part spherical shape hemispherical shape is particularly effective in reflecting and scattering a substantial portion of horizontally polarised radiation caused by the flow of longitudinal surface current on the or each antenna 12. Of course, it is to be appreciated that the shape of the scatterers 161 is selected based upon the intended frequency range, bandwidth, and size of the antenna.
In addition, it has been found that in placing scatterers 161 on the wall 16 of the recess, undesirable horizontally polarised signals emanating from the antenna may be reduced and, for example, converted into vertical polarisation. It has been found that in the case of antennas of this type, vertical polarisation is more advantageous than horizontal polarisation.
Further, in the example shown in
Pursuant to the present disclosure it has been found that, whilst longitudinal surface currents along the edge 6 of the antenna element 12 could be regarded as being part of the desired emission characteristics or emission pattern of the antenna, longitudinal surface currents along other edges do not contribute to the desired emission. Scatterers 161, such as the hemispherical scatterers 161 discussed above may serve to mitigate (e.g. confine, e.g. reduce) such unwanted longitudinal surface currents.
In some examples, particularly where the size of the antenna is limited, the scatterers 161 may be placed within the reactive area around the antenna elements 12. In such cases, the scatterers 161 may have an effect upon the coupling between adjacent antenna elements 12. Pursuant to the present disclosure, it has been found that placing the scatterers 161 within the reactive area around the antenna elements may have an undesirable effect on the bandwidth and/or the range of the antenna.
While in the examples above, the conduction inhibitor 121 is shown as being a gap, in other examples the conduction inhibitor 121 may comprise an insert of material, for example a non-conductive material, for example a foam dielectric material. In further examples, the conduction inhibitor may comprise a thinning of the material of the antenna element 12, for example by removing material from the antenna element 12, for example by machining away a portion of the antenna element 12 or otherwise creating an indentation. More than one conduction inhibitor may be provided in each antenna element. Not all of the antenna elements need necessarily comprise conduction inhibitors.
A further example of an antenna is shown in
The four antenna elements 12 are attached to the central portion 1614, spaced evenly at 90° with respect to each other, and the base 16 provides a ground plane for the antenna elements 12. The four part-spherical scatterers 161 shown in
In the example shown in
It will be appreciated that
It will also be appreciated that
Whilst longitudinal surface currents along the edge 6 of the antenna element 12 could be regarded as being part of the desired emission characteristics or emission pattern of the antenna, longitudinal surface currents along other edges do not contribute to the desired emission. Recesses or cuts in these edges may be used to control the longitudinal surface currents. The impact of a horizontal slot 121′ on the confinement of the longitudinal surface current is typically larger than that of a vertical slot 121. The width of the slot 121,121′ should not be too large as they reduce the area of the wing which is used for accumulation of the charges, which has direct effect on bandwidth. The exact orientation, length and/or the width of the slots on an antenna element have an impact on the input impedance of the antenna and are typically optimised numerically to achieve or retain the desired input impedance.
Another embodiment is shown in
The presence of scatterer may be used to reflect and scatter a part of the radiation pattern caused by longitudinal surface current inside the antenna elements. Particularly at higher frequencies the scatterers 161 may be used to maintains the shapes of the emission pattern of the antenna at a shape similar to the case where there is negligible impact of these currents, e.g. at lower frequencies.
Furthermore, choosing a smooth, preferably approximately hemisphere shape for the scatterers 161 can help to partly convert the polarization of the sideways radiated field into a more useful polarization.
To achieve a more compact design of the antenna the scatterers 161 may be located within the space between the antenna elements 12 with each scatterer 161 being shared between two adjacent (in direction of the circumference) antenna elements. However when located close to the centre of the antenna the scatterers may impact the input impedance particularly at lower frequencies and in particular the coupling between the two adjacent antenna elements. Thus, the exact shape, size and/or the location of the scatterers may typically be optimized using numerical methods and simulations. The center of each scatterer in an antenna of frustro-conical shape is best located in the vicinity of the circumference connecting the feedpoints of each antenna element.
In some embodiments antenna elements which are directed away from each other may be coupled to a common transmit/or receive signal.
The communication frequency band of the antenna, and/or of individual antenna elements may comprise one or more frequency bands associated with a telecommunications standard, for example a frequency band associated with the LTE or 3GPP telecommunications standards or with one or more other telecommunications standards and/or protocols.
The above embodiments are to be understood as illustrative examples. Some embodiments have been described an illustrated with a particular number of antenna elements and a particular number of antenna elements, but it will be appreciated that a greater or lesser number of such elements may be used. Further embodiments are envisaged. It is to be understood that any feature described in relation to any one embodiment may be used alone, or in combination with other features described, and may also be used in combination with one or more features of any other of the embodiments, or any combination of any other of the embodiments. Furthermore, equivalents and modifications not described above may also be employed without departing from the scope of the invention, which is defined in the accompanying claims.
With reference to the drawings in general, it will be appreciated that schematic functional block diagrams are used to indicate functionality of systems and apparatus described herein. It will be appreciated however that the functionality need not be divided in this way, and should not be taken to imply any particular structure of hardware other than that described and claimed below. The function of one or more of the elements shown in the drawings may be further subdivided, and/or distributed throughout apparatus of the disclosure. In some embodiments the function of one or more elements shown in the drawings may be integrated into a single functional unit.
In some embodiments the antenna comprises a dielectric cover, for example a radome. For example, the cover may comprise a material such as fibreglass, the cover may be configured to support sufficient load to enable the antenna to be installed in a load carrying surface such as a roadway or a pavement. For example, the cover may be of sufficient tensile and/or compressive strength to support loads of at least 100 kg, for example at least 200 kg. In some embodiments the cover has a strength and/or thickness selected based at least partially on the width of the recess to enable the cover to support the load associated with a human body or a vehicle such as a car. For example this may be a vehicle weighing at least 10 tonnes, or at least 40 tonnes. In some embodiments the manhole cover may comprise metal instead of dielectric.
The cover may be a manhole cover configured to withstand the application of a load of at least 100 kN, and the cover may be configured to withstand the testing procedures envisaged by standard, EN 124-D400, to its upper face, with the manhole cover laid and may comprise a border (measuring a minimum of 5 mm) around the edge of its lower face when resting in position. Examples of suitable materials may be obtained from Industrie Polieco—M.P.B. S.r.l.—Via E. Mattei 49—25046 Cazzago S. Martino (BS)—Italy. The material of the cover may have a thickness of around 40 mm and can withstand a very high pressure.
It will be understood that antennae described herein provide an antenna comprising at least one antenna element arranged in a recess of a ground conductor, wherein a wall of the recess is arranged so that the recess tapers outward from a narrow base inside the recess to a broader mouth, and the wall is configured to provide a ground plane for the at least one antenna element, and the at least one antenna element comprises a conductive plate arranged perpendicular to the mouth of the recess and to the wall and arranged to provide a slot between the edge of the at least one antenna element and the wall of the recess.
The antenna may be manufactured by assembling pre-manufactured components such as metal plates which may be soldered or welded together. Other methods of manufacture may also be used. For example, the antenna may be manufactured by way of ‘3D printing’ whereby a three-dimensional model of the antenna is supplied, in machine readable form, to a ‘3D printer’ adapted to manufacture the antenna. This may be by additive means such as extrusion deposition, Electron Beam Freeform Fabrication (EBF), granular materials binding, lamination, photopolymerization, or stereolithography or a combination thereof. The machine readable model comprises a spatial map of the object to be printed, typically in the form of a Cartesian coordinate system defining the object's surfaces. This spatial map may comprise a computer file which may be provided in any one of a number of file conventions. One example of a file convention is a STL (STereoLithography) file which may be in the form of ASCII (American Standard Code for Information Interchange) or binary and specifies areas by way of triangulated surfaces with defined normals and vertices. An alternative file format is AMF (Additive Manufacturing File) which provides the facility to specify the material and texture of each surface as well as allowing for curved triangulated surfaces. The mapping of the antenna may then be converted into instructions to be executed by 3D printer according to the printing method being used. This may comprise splitting the model into slices (for example, each slice corresponding to an x-y plane, with successive layers building the z dimension) and encoding each slice into a series of instructions. The instructions sent to the 3D printer may comprise Numerical Control (NC) or Computer NC (CNC) instructions, preferably in the form of G-code (also called RS-274), which comprises a series of instructions regarding how the 3D printer should act. The instructions vary depending on the type of 3D printer being used, but in the example of a moving printhead the instructions include: how the printhead should move, when/where to deposit material, the type of material to be deposited, and the flow rate of the deposited material.
The antenna as described herein may be embodied in one such machine readable model, for example a machine readable map or instructions, for example to enable a physical representation of said antenna to be produced by 3D printing. This may be in the form of a software code mapping of the antenna and/or instructions to be supplied to a 3D printer (for example numerical code).
Other examples and variations are contemplated within the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
14188557.4 | Oct 2014 | EP | regional |
1418497.2 | Oct 2014 | GB | national |
1507582.3 | May 2015 | GB | national |
1510361.7 | Jun 2015 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2015/073489 | 10/9/2015 | WO | 00 |