This is a U.S. National Stage of International Patent Application No. PCT/CN2018/124495 filed on Dec. 27, 2018, which is hereby incorporated by reference in its entirety.
The present invention relates to the field of antenna technologies, and in particular, to an antenna apparatus applied to a terminal.
Development of mobile communications technologies promotes application of a multi-input multi-output (multi input multi output, MIMO) antenna technology, such as a wireless fidelity multi-input multi-output (wireless fidelity MIMO, Wi-Fi MIMO) antenna, on terminals. Antennas multiply in quantity, covering increasingly more frequency bands. However, a recent terminal design tends to have a higher screen-to-body ratio, more multimedia devices, and a larger battery capacity, resulting in sharp compression of antenna space. How to deploy multiple antennas in limited design space is a challenging question. In addition, an industrial design (industry design, ID), such as a metal ID or a bezel-less screen ID, of a terminal product needs to be considered during antenna layout, further increasing difficulty of the antenna layout.
Existing MIMO antenna technologies are classified into two types: a stacked antenna and a compact dual-antenna pair.
The stacked antenna is placing together some basic types of antenna units, such as a monopole, a dipole, and a slot, with a combination of some decoupling technologies like neutralization wires and choke slots, to form multiple antennas. This MIMO antenna has a complex design, occupies a large clearance, and is difficult to expand and include more antenna units.
The compact dual-antenna pair is placing two antenna units within a small-scale range, and isolation between the dual-antenna pair is improved by using self-decoupling or orthogonal polarization. This is a modular design solution and easy to expand and include more antenna units. This MIMO antenna array is simple in design, but inapplicable to a terminal with a metal ID because currently only a non-metal ID solution is available.
Embodiments of the present invention provide an antenna apparatus with a simple structure, to implement a multi-antenna structure on a terminal with a metal frame or an all-metal ID.
According to a first aspect, this application provides an antenna apparatus applied to a terminal. The terminal may include a metal frame, a printed circuit board PCB, a PCB floor, and a rear cover. The metal frame may be disposed at edges of the PCB floor, the PCB floor may be disposed between the PCB and the rear cover, and the PCB floor may be used to ground an electronic component carried on the PCB. The antenna apparatus may include: a split antenna formed by a split provided on the metal frame, and a slot antenna formed by a slot connecting to the split. The slot may be connected to the split on one side of the slot, and another side of the slot may touch the PCB floor. Specifically, the slot may be connected to the split at a middle position on one side of the slot.
A first feeding network may be connected to two sides of the split. The first feeding network may be used to excite the antenna apparatus to generate a first radiation mode. A primary radiator of the first radiation mode is the slot. A half wavelength in-phase electric field is distributed over the slot. A second feeding network may be further connected to one side of the split. The second feeding network may be used to excite the antenna apparatus to generate a second radiation mode. A primary radiator of the second radiation mode is the PCB floor. An in-phase current loop is distributed around the slot. A polarization direction of the first radiation mode is orthogonal to a polarization direction of the second radiation mode.
In other words, the antenna apparatus may have two radiation modes: the first radiation mode and the second radiation mode. The first radiation mode may be a half-wavelength slot mode to be mentioned in the embodiments, and the second radiation mode may be an open slot mode (also referred to as an in-phase current loop mode) to be mentioned in the embodiments.
In the first radiation mode, the half wavelength in-phase electric field is distributed over the slot. In this case, the slot may be used as a primary radiator, and a polarization direction is a negative X direction of a horizontal direction of the slot (for an antenna structure shown in
In the second radiation mode, the split divides the slot into two slots on two sides of the split. Both the slots can operate in a ¼ wavelength mode. From one end of the slot to the other end, distribution of an electric field is as follows: The electric field is changed from zero to a maximum value, a direction of the electric field is reversed after passing through the split, and then the electric field changes from a reverse maximum value to zero. The current forms an in-phase current loop around the slot, to effectively excite the PCB floor to generate radiation. In other words, the second radiation mode may excite the PCB floor to generate radiation by using the split. In this case, the PCB floor may be a primary radiator, and a polarization direction is a negative Y direction.
It can be learned that the polarization directions of the primary radiators in the two radiation modes are orthogonal, to be specific, the polarization direction of the slot and the polarization direction of the PCB floor are orthogonal, to achieve high isolation. In addition, the antenna apparatus can provide multi-antenna in the split, with simple structure and modular design, it is easy to expand. Especially when the slot is provided on the metal frame, the antenna apparatus may be implemented as a zero-clearance co-frequency dual-antenna pair or a zero-clearance multi-antenna of another specification applicable to a terminal with an all-metal ID.
With reference to the first aspect, in some embodiments, the rear cover may be a rear cover made of an insulating material, for example, a glass rear cover or a plastic rear cover. Alternatively, the rear cover may be a metal rear cover. If the terminal is a terminal with an all-metal ID, the rear cover is a metal rear cover.
With reference to the first aspect, in some embodiments, the slot may be a slot provided on the PCB floor, or may be a slot provided on the metal frame. An opening direction of the slot may be consistent with an extension direction of the metal frame.
With reference to the first aspect, in some embodiments, the first feeding network may be specifically implemented as follows:
The first feeding network may include feeding points that are separately disposed on two sides of the split on the metal frame: a first feeding point and a second feeding point. The first feeding point is disposed on one side of the split, and the second feeding point is disposed on the other side of the split. The first feeding network may further include a first feeding line and a first feeding port (port 1). The first feeding line may be a microstrip or another wire. Alternatively, the first feeding line may cross the split and may be used to connect the first feeding port and the feeding points on two sides of the split. Alternatively, the first feeding line may cross the split. This can excite the slot to generate the half wavelength in-phase electric field distributed over the slot.
The first feeding line may use a symmetric feeding line structure, so that electric potentials of the first feeding point and the second feeding point can be equal, and the two sides of the split are equipotential.
A matching network may be designed at the first feeding port (port 1), and the matching network may be used to adjust (by adjusting an antenna transmit coefficient, impedance, or the like) a frequency band range covered by the slot.
With reference to the first aspect, in some embodiments, the second feeding network may be specifically implemented as follows:
The second feeding network may include a third feeding point disposed on one side of the split on the metal frame, a second feeding line, and a second feeding port (port 2). The second feeding line may be a microstrip or another wire. The second feeding line may be used to connect the second feeding port and the third feeding point. The second feeding line may cross the split, to excite the split to generate an electric field distributed over the split, finally form the in-phase current loop around the slot, and effectively excite the PCB floor. In this case, the PCB floor may be used as a primary radiator of the antenna structure to generate radiation.
A matching network may be designed at the second feeding port (port 2), and the matching network may be used to adjust (by adjusting an antenna transmiit coefficient, impedance, or the like) a frequency band range covered by the PCB floor.
With reference to the first aspect, in some embodiments, a resonance generated when the antenna apparatus operates in the half-wavelength mode and excites the slot antenna and a resonance generated when the antenna apparatus operates in the in-phase current loop mode and excites the PCB floor may be in a same frequency band. In other words, the antenna apparatus may be a co-frequency dual-antenna pair.
Optionally; the antenna apparatus may be specifically a Sub-6G dual-antenna pair whose operating frequency ranges from 3.4 GHz to 3.6 GHz, or the same frequency band is a Sub-6G frequency hand. Optionally, the antenna apparatus may be specifically a co-frequency dual Wi-Fi antenna pair, for example, a dual Wi-Fi antenna pair for a 2.4 GHz frequency band, or the same frequency band is a Wi-Fi frequency band, for example, a 2.4 GHz Wi-Fi frequency band. This is not limited thereto. The antenna apparatus may be alternatively a co-frequency dual-antenna pair for another frequency band.
With reference to the first aspect, in some embodiments, when operating in the half-wavelength mode, the antenna apparatus may excite the slot to generate a resonance for a first frequency band, and when operating in the in-phase current loop mode, the antenna apparatus may excite the PCB floor to generate a resonance for a second frequency band.
Optionally, the first frequency band may include a Wi-Fi frequency band, and the second frequency band may include a Wi-Fi frequency band and a GPS frequency band. For example, the antenna apparatus may excite the slot to generate a 2.4 GHz Wi-Fi resonance in the half-wavelength mode (the first frequency band is a 2.4 GHz Wi-Fi frequency band), and excite the PCB floor to generate a GPS L1 resonance and a 2.4 GHz Wi-Fi resonance in the in-phase current loop mode (the second frequency band includes a 2.4 GHz Wi-Fi frequency band and a GPS L1 frequency band). This is not limited thereto. The first frequency band and the second frequency band may be alternatively other frequency bands. For example, the antenna structure may excite the slot to generate a 2.4 GHz Wi-Fi resonance in the half-wavelength mode (the first frequency hand is a 2.4 GHz Wi-Fi frequency band), and excite the PCB floor to generate a GPS L5 resonance and a 2.4 GHz Wi-Fi resonance in the in-phase current loop mode (the second frequency band includes a 2.4 GHz Wi-Fi frequency band and a GPS L5 frequency band).
According to a second aspect, this application provides a terminal. The terminal may include a metal frame, a printed circuit board PCB, a PCB floor, a rear cover, and the antenna apparatus described in the first aspect.
To describe the technical solutions in the embodiments of this application more clearly, the following illustrates the accompanying drawings in the embodiments of this application.
The following describes the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention.
Technical solutions according to this application are applicable to a terminal that uses one or more of the following MIMO communications technologies: a long term evolution (long term evolution, LTE) communications technology, a Wi-Fi communications technology, a 5G communications technology, a Sub-6G communications technology, and other future MIMO communications technologies. In this application, the terminal may be an electronic device such as a mobile phone, a tablet, or a personal digital assistant (personal digital assistant, PDA).
The printed circuit board PCB 13 may be an FR-4 dielectric board, or may be a Rogers (Rogers) dielectric board, or may be a Rogers and FR-4 hybrid dielectric board, or the like. Herein, FR-4 is a grade designation for a flame-resistant material, and the Rogers dielectric board is a high frequency board.
The rear cover 19 may be a rear cover made of an insulating material, for example, a glass rear cover or a plastic rear cover. Alternatively, the rear cover 19 may be a metal rear cover. If the terminal shown in
The PCB floor 15 is grounded, and may be disposed between the printed circuit board PCB 13 and the rear cover 19. The PCB floor 15 may also be referred to as a PCB baseboard. Specifically, the PCB floor 15 may be a layer of metal etched on the surface of the PCB 13. This layer of metal may be connected to a metal middle frame (not shown) by using a series of metal springs, and is integrated with the metal middle frame. The PCB floor 15 may be used to ground an electronic component carried on the printed circuit board PCB 13. Specifically, the electronic component carried on the printed circuit board PCB 13 may be grounded by connecting to the PCB floor 15, to prevent an electric shock of a user or a device damage.
The metal frame 17 may be disposed at edges of the printed circuit board PCB 13 and the PCB floor 15, and may cover, from a side, the printed circuit board PCB 13 and the PCB floor 15 that are between the rear cover 19 and the display screen 11, to achieve dust-proof and waterproof purposes. In an implementation, the metal frame 17 may include four metal edges, and the four metal edges may be looped around the display screen 11, the printed circuit board PCB 13, the PCB floor 15, and the rear cover 19. In another implementation, the metal frame 17 may include only two metal edges, and the two metal edges may be disposed on two sides of the display screen 11, the printed circuit board PCB 13, the PCB floor 15, and the rear cover 19 in the Y direction. This is not limited to the two implementations. Alternatively, the metal frame 17 may present another design style, for example, a metal frame 17 with a single metal edge. This is not limited in this application.
Based on the internal environment of the terminal shown in
A main design idea of the multi-antenna design solution according to this application may include: opening a split on the metal frame 17, and forming a multi-antenna structure by using a split antenna formed by the split and a slot antenna formed by a slot communicating with the split. The slot may be connected to the split at a middle position on one side of the slot, and another side of the split may touch the PCB floor.
In some embodiments, the slot may be provided on the PCB floor 15, as shown in
In other embodiments, the slot may be provided on the metal frame 17, as shown in
Two radiation modes of the antenna structure according to this application may be shown in
The antenna structure according to this application may have two radiation modes: a half-wavelength slot mode (shown in
In the half-wavelength slot mode, a half wavelength in-phase electric field is distributed over the slot 21 Two sides of the split 21 may be equipotential. The split 21 does not affect a resonance generated by the slot 23 as a slot antenna (whose two ends are closed), and the slot antenna whose two ends are closed usually generates a resonance in the half-wavelength mode. As shown in
That is to say, the half-wavelength slot mode may excite the slot 23 to generate a half wavelength in-phase electric field distributed over the slot 23 (distributed over the slot 23). In this case, the slot 23 may be used as a primary radiator of the antenna structure to generate radiation. To be specific, the half-wavelength slot mode can generate radiation by using the slot.
In the open slot mode (or referred to as an in-phase current loop mode), the split 21 divides the slot 23 into two slots on two sides of the split 21. Both the slots can operate in a ¼ wavelength mode. From one end of the slat 23 to the other end, distribution of an electric field is as follows: The electric field is changed from zero to a maximum value, a direction of the electric field is reversed after passing through the split 21, and then the electric field changes from a reverse maximum value to zero. As shown in
That is to say, the open slot mode (or referred to as an in-phase current loop mode) may excite the split 21 to generate an in-phase current loop around the slot 23, thereby effectively exciting the PCB floor 15 to generate radiation. In this case, the PCB floor 15 may be used as a primary radiator of the antenna structure to generate radiation.
It can be learned that polarization directions of the two radiation modes are orthogonal, to be specific, the polarization direction of the primary radiator slot 23 in the first radiation mode and the polarization direction of the primary radiator PCB floor 15 in the second radiation mode are orthogonal, to achieve high isolation. In specific implementation, the antenna structure (as shown in
In addition, the antenna design solution according to this application is applicable to a terminal with a metal frame. The slot 23 in the antenna structure shown in
The following describes in detail antenna structures according to the embodiments of this application.
A first feeding network 33 may be connected to two sides of the split 21. The first feeding network 33 may be specifically printed on the first PCB dielectric board 31 and the second PCB dielectric board 32. The first feeding network 33 may be used to excite the antenna structure to operate in the half-wavelength slot mode, to be specific, excite the antenna structure to generate a half wavelength in-phase electric field distributed over the slot 23. In this case, the slot 23 is used as a primary radiator to generate radiation.
Specifically, the first feeding network 33 may include feeding points that are disposed on two sides of the split 21 on the metal frame 17: a first feeding point 33-i and a second feeding point 33-2. The first feeding point 33-1 is disposed on one side of the split 21, and the second feeding point 33-2 is disposed on the other side of the split 21. The first feeding network 33 may further include a first feeding line 33-3 and a first feeding port 33-4 (port 1). The first feeding line 33-3 may be a microstrip or another wire. The first feeding line 33-3 may be used to connect the first feeding port 33-4 and the feeding points on the two sides of the split 21. Specifically, an end of the first feeding line 33-3 may pass through the second PCB dielectric board 32 (in a manner of drilling a hole) and be connected to the feeding points on the two sides of the split 21. The first feeding line 33-3 may use a symmetric feeding line structure, for example, a T-shaped feeding line structure shown in
A second feeding network 35 may be connected to one side of the split 21. The second feeding network 35 may be specifically printed on the second PCB dielectric board 32. The second feeding network 35 may be used to excite the antenna structure to operate in the open slot mode (or referred to as an in-phase current loop mode), to be specific, to excite the antenna structure to generate an in-phase current loop around the slot 23.
Specifically, the second feeding network 35 may include a third feeding point 35-1 disposed on one side of the split 21 on the metal frame, a second feeding line 35-2, and a second feeding port 35-3 (port 2). The second feeding line 35-2 may be a microstrip or another wire. The second feeding line 35-2 may be used to connect the second feeding port 35-3 and the third feeding point 35-1. Specifically, an end of the second feeding line 35-2 may pass through the second PCB dielectric board 32 (in a manner of drilling a hole) and be connected to the third feeding point 35-1. The second feeding line 35-2 may cross the split 21, to excite the split 21 to generate an electric field distributed over the split 21, finally form an in-phase current loop around the slot 23, and effectively excite the PCB floor 15. In this case, the PCB floor 15 may be used as a primary radiator of the antenna structure to generate radiation. A matching network may be designed at the second feeding port 35-3 (port 2), and the matching network may be used to adjust (by adjusting an antenna transmit coefficient, impedance, or the like) a frequency band range covered by the PCB floor 15.
It can be learned from the foregoing content that a polarization direction of the antenna structure when the antenna structure operates in the half-wavelength slot mode is orthogonal to a polarization direction when the antenna structure operates in the open slot mode (or referred to as an in-phase current loop mode), thereby having good isolation.
The antenna structure according to Embodiment 1 may be a Sub-6G dual-antenna pair whose operating frequency ranges from 3.4 GHz to 3.6 GHz. In an optional implementation, an overall size of the terminal may be 150 mm×75 mm×7 mm, the first PCB dielectric board 31 may be an FR-4 dielectric board with a thickness of 0.8 mm, a size of the slot 23 may be 25 mm×1.5 mm, a size of the split 21 may be 7 mm×1.5 mm, and the second PCB dielectric board 32 close to the metal frame 17 may be an FR-4 dielectric board with a thickness of 0.254 mm.
As shown in
The antenna structure according to Embodiment 1 can implement a dual-antenna pair for the Sub-6G frequency band. The antenna structure is compact and has high isolation. The antenna structure shown in
For an antenna structure according to Example 2, refer to
As shown in
The antenna structure according to Embodiment 2 may implement an antenna of a GPS L1+2.4 GHz Wi-Fi MIMO specification, and has high isolation. This is not limited thereto. The antenna structure may alternatively operate in another frequency band, for example, a GPS L5 (whose operating frequency is 1.176 GHz) +2.4 GHz Wi-Fi MIMO operating frequency range, and may be specifically set by adjusting a size of the slot 23 in the antenna structure.
A first feeding network 33 may be connected to two sides of the split 21. The first feeding network 33 may be specifically printed on the first PCB dielectric board 31 and the second PCB dielectric board 32. The first feeding network 33 may be used to excite the antenna structure to operate in the half-wavelength slot mode, to be specific, excite the antenna structure to generate a half wavelength in-phase electric field distributed over the slot 23. In this case, the slot 23 is used as a primary radiator to generate radiation.
Specifically, the first feeding network 33 may include feeding points that are disposed on two sides of the split 21 on the metal frame 17: a first feeding point 33-1 and a second feeding point 33-2. The first feeding point 33-1 is disposed on one side of the split 21, and the second feeding point 33-2 is disposed on the other side of the split 21. The first feeding network 33 may further include a first feeding line 33-3 and a first feeding port 33-4 (port 1). The first feeding line 33-3 may be a microstrip or another wire. The first feeding line 33-3 may be used to connect the first feeding port 33-4 and the feeding points on the two sides of the split 21. Specifically, an end of the first feeding line 33-3 may pass through the second PCB dielectric board 32 (in a manner of drilling a hole) and be connected to the feeding points on the two sides of the split 21. The first feeding line 33-3 may use a symmetric feeding line structure, for example, a T-shaped feeding line structure shown in
A second feeding network 35 may be connected to one side of the split 21. The second feeding network 35 may be specifically printed on the second PCB dielectric board 32. The second feeding network 35 may be used to excite the antenna structure to operate in the open slot mode (or referred to as an in-phase current loop mode), to be specific, to excite the antenna structure to generate an in-phase current loop around the slot 23.
Specifically, the second feeding network 35 may include a third feeding point 35-1 disposed on one side of the split 21 on the metal frame, a second feeding line 35-2, and a second feeding port 35-3 (port 2). The second feeding line 35-2 may be a microstrip or another wire. The second feeding line 35-2 may be used to connect the second feeding port 35-3 and the third feeding point 35-1. Specifically, an end of the second feeding line 35-2 may pass through the second PCB dielectric board 32 (in a manner of drilling a hole) and be connected to the third feeding point 35-1. The second feeding line 35-2 may cross the split 21, to excite the split 21 to generate an electric field distributed over the split 21, finally form an in-phase current loop around the slot 23, and effectively excite the PCB floor 15. In this case, the PCB floor 15 may be used as a primary radiator of the antenna structure to generate radiation. A matching network may be designed at the second feeding port 35-3 (port 2), and the matching network may be used to adjust (by adjusting an antenna transmit coefficient, impedance, or the like) a frequency band range covered by the PCB floor 15.
It can be learned from the foregoing content that a polarization direction of the antenna structure when the antenna structure operates in the half-wavelength slot mode is orthogonal to a polarization direction when the antenna structure operates in the open slot mode (or referred to as an in-phase current loop mode), thereby having good isolation.
The antenna structure according to Embodiment 3 may be a zero-clearance Sub-6G dual-antenna pair applicable to a terminal with an all-metal ID, and an operating frequency of the dual-antenna pair ranges from 3.4 GHz to 3.6 GHz. In an optional implementation, an overall size of the terminal may be 150 mm×75 mm×7 mm, the first PCB dielectric, board 31 may be an FR-4 dielectric board with a thickness of 0.8 mm, a size of the slot 23 may be 25 mm××1.5 mm, a size of the split 21 may be 5.5 mm×1.5 mm, and the second PCB dielectric board 32 close to the metal frame 17 may be an FR-4 dielectric board with a thickness of 0.254 mm.
As shown in
The antenna structure according to Embodiment 3 is applicable to a terminal with a metal frame. The antenna structure may also be applicable to a terminal with an all-metal ID, and may be implemented as a zero-clearance antenna structure for the terminal with an all-metal ID. The antenna structure shown in
The following describes extended implementations related to the foregoing embodiments.
1. The length of the slot 23 is adjusted with reference to a matching technique.
In some embodiments, the length of the slot 23 may be adjusted with reference to a matching technology or a switch, so that the antenna structure can cover more frequency bands. For example, as shown in
The slot 23 may not have to be connected to the split 21 at the middle position on one side of the slot 23.
In some embodiments, as shown in
3. The first feeding network 33 may alternatively use an asymmetric network structure.
In some embodiments, as shown in
It can be learned that, the antenna structures according to the embodiments of this application may form a combo antenna structure by using the split 21 on the metal frame of the terminal and the slot 23 communicating with the split 21. A multi-antenna structure may be implemented at the split 21. The antenna structures are applicable to a terminal with a metal frame or a terminal with an all-metal ID. In addition, the antenna has a simple structure and becomes easy to expand due to a modular design.
In this application, a wavelength in a wavelength mode (for example, a half wavelength mode) of an antenna may be a wavelength of a signal radiated by the antenna. For example, a half wavelength mode of a floating metal antenna may generate a resonance for a 2.4 GHz frequency band. A wavelength in the half wavelength mode is a wavelength of a signal radiated by the antenna in the 2.4 GHz frequency band. It should be understood that a wavelength of the radiated signal in the air may be calculated as follows: Wavelength=Speed of light/Frequency, where the frequency is a frequency of the radiated signal. A wavelength of the radiated signal in a medium may be calculated as follows: Wavelength=(Speed of light/√{square root over (ε)})/Frequency, where √{square root over (ε)} is a relative permittivity of the medium, and the frequency is a frequency of the radiated signal.
The foregoing descriptions are merely specific implementations of this application, but are not intended to limit the protection scope of this application. Any variation or replacement readily figured out by a person skilled in the art within the technical scope disclosed in this application shall fall within the protection scope of this application. Therefore, the protection scope of this application shall be subject to the protection scope of the claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2018/124495 | 12/27/2018 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/133111 | 7/2/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20150048982 | Wang | Feb 2015 | A1 |
20150303568 | Yarga et al. | Oct 2015 | A1 |
20180205146 | Huang | Jul 2018 | A1 |
20180234072 | Kuo et al. | Aug 2018 | A1 |
Number | Date | Country |
---|---|---|
104103888 | Oct 2014 | CN |
204481122 | Jul 2015 | CN |
107317103 | Nov 2017 | CN |
108417973 | Aug 2018 | CN |
108808221 | Nov 2018 | CN |
108987901 | Dec 2018 | CN |
Entry |
---|
Ban, Y., et al., “4G/5G Multiple Antennas for Future Multi-Mode Smartphone Applications,” Jun. 21, 2016, 8 pages. |
Wong, K., et al., “16-Antenna Array in the Smartphone for the 3.5-GHz MIMO operation,” Asia-Pacific Microwave Conference (APMC), 2015, 3 pages. |
Sun, L., et al., “Compact 5G MIMO Mobile Phone Antennas With Tightly Arranged Orthogonal-Mode Pairs,” IEEE Transactions on Antennas and Propagation, vol. 66, No. 11, Nov. 30, 2018, XP011694189, 6 pages. |
Yan, K., et al., “Eight-Antenna Array in the 5G Smartphone for the Dual-Band MIMO System,” IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting, Jul. 13, 2018, XP033496262, 2 pages. |
Ming-Yang, M., et al.:“Eight-Port Orthogonally Dual-Polarized Antenna Array for 5G Smartphone Applications,” IEEE Transactions on Antennas and Propagation, vol. 64, No. 9, Sep. 30, 2016, XP011621881, 2 pages. |
Li, Y., et al., “Multiband 10-Antenna Array for Sub-6 GHz MIMO Applications in 5-G Smartphones,” May 18, 2018, 13 pages. |
Li, M., et al, “Tri-Polarized 12-Antenna MIMO Array for Future 5G Smartphone Applications,” Dec. 11, 2017, 11 pages. |
Wong, K., et al, “Two Asymmetrically Mirrored Gap-Coupled Loop Antennas as a Compact Building Block for Eight-Antenna MIMO Array in the Future Smartphone,” IEEE Transactions on Antennas and Propagation, vol. 65, No. 4, Apr. 2017, 14 pages. |
Number | Date | Country | |
---|---|---|---|
20220123456 A1 | Apr 2022 | US |