Antenna apparatus for performing wireless communication or broadcasting by selecting one of two types of linearly polarized waves

Information

  • Patent Grant
  • 6664928
  • Patent Number
    6,664,928
  • Date Filed
    Friday, March 22, 2002
    22 years ago
  • Date Issued
    Tuesday, December 16, 2003
    20 years ago
Abstract
An antenna for linearly polarized wave is accommodated in a case in which a heat sink is provided. By rotating the case depending on the vertically polarized wave or the horizontally polarized wave, wireless communication or broadcasting using the vertically polarized wave or the horizontally polarized wave can be selectively realized with high precision.
Description




CROSS-REFERENCE TO RELATED APPLICATIONS




This application is based upon and claims the benefit of priority from the prior Japanese Patent Applications No. 2001-258400, filed Aug. 28, 2001; and No. 2002-068140, filed Mar. 13, 2002, the entire contents of both of which are incorporated herein by reference.




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to an antenna apparatus which is installed, e.g., outdoors and is used for performing wireless transmission of voice or data to a base station connected to a basic network.




2. Description of the Related Art




In recent wireless system, data transmission service referred to as, e.g., WLL (Wireless Local Loop) or FWA (Fixed Wireless Access) is proposed. In such services, an antenna apparatus is installed outdoors, and wireless communication or broadcasting via the antenna apparatus to a base station connected to a basic network is performed.




In such services, a horizontally (H) polarization or a vertically (V) polarization is used depending on types of data to be transmitted, purposes of its use, or environment. An antenna, which is selected depending on whether radio wave used for the communication or broadcasting, is a horizontally polarized wave or a vertically polarized wave, is provided as the antenna apparatus used for the service.




However, in the above-described antenna apparatus, two different types of polarizations must be performed in order to a desired communication network or a broadcasting network. Then, the antenna apparatus which handles the polarized waves used for the desired communication or broadcasting network is selected and installed at a desired location to construct the communication or broadcasting network. Consequently, there arise the problems that the ordering of the antenna apparatus, manufacturing thereof and inventory management thereof are complicated and troublesome.




BRIEF SUMMARY OF THE INVENTION




An object of the present invention is to provide an antenna apparatus which has simple configuration and enables wireless communication or broadcasting using two types of linearly polarized waves in order to simplify handling properties including its order, manufacturing process thereof and inventory management thereof.




The antenna apparatus of the present invention comprises an antenna main body for linearly polarized which is accommodated in a case in a direction of vertically polarized wave or in a direction of horizontally polarized wave, both of directions being perpendicular to each other; and a heat sink which is disposed at a rear surface of the case and thermally coupled to the antenna main body to thermally control the antenna main body.




In accordance with this configuration, the antenna main body is accommodated in a case in a direction of vertically polarized wave or in a direction of horizontally polarized wave. As a result, the present invention can be configured as to as correspond to both of wireless communication or broadcasting using the vertically and wireless communication or broadcasting using the horizontally polarized wave.




It is possible to simply and easily set such that the wireless communication or broadcasting using the vertically polarized wave or the horizontally polarized wave can be performed merely by an operation for changing the direction in which the antenna main body is accommodated in the case. Therefore, simplification of handling properties including order for the antenna apparatus, a manufacturing process thereof and inventory management thereof can be realized and diversification of communication or broadcasting can be accomplished.




Additional objects and advantages of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The objects and advantages of the invention may be realized and obtained by means of the instrumentalities and combinations particularly pointed out hereinafter.











BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING




The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate embodiments of the invention, and together with the general description given above and the detailed description of the embodiments given below, serve to explain the principles of the invention.





FIG. 1

is an exploded perspective view of an antenna apparatus according to one embodiment of the present invention in which a main portion thereof is exploded and shown.





FIG. 2

is an exploded perspective view seen from the front, showing an exploded state shown in FIG.


1


.





FIG. 3

is a perspective view showing a state in which radiating fins of a heat sink shown in

FIG. 1

are arranged in a direction of vertically polarized wave.





FIG. 4

is a perspective view showing a state in which the radiating fins of the heat sink shown in

FIG. 1

are arranged in a direction of horizontally polarized wave.





FIG. 5

is a perspective view seen from the back, showing a state in which a case shown in

FIG. 1

is mounted to a support.





FIG. 6

is a perspective view seen from the front, showing the state in which the case shown in

FIG. 1

is mounted to the support.





FIG. 7

is a perspective view showing configuration of a heat sink of an antenna apparatus according to another embodiment of the present invention.





FIG. 8

is a plan view, as seen from the back, of the configuration shown in FIG.


7


.





FIG. 9

is a plan view of configuration of a heat sink of an antenna apparatus according to yet another embodiment of the present invention.





FIG. 10

is a perspective view showing configuration of arrangement of an external connector of an antenna apparatus according to yet another embodiment of the present invention.











DETAILED DESCRIPTION OF THE INVENTION




Embodiments of the present invention will be described hereinafter with reference to the drawings.





FIGS. 1 and 2

show respectively an antenna apparatus according to one embodiment of the present invention.

FIG. 1

shows a state, as seen from the back, in which a case


10


which configures an antenna main body, an antenna


11


for linearly polarized wave and a radome


12


made of resin material are exploded.

FIG. 2

shows such state seen from the front.




The case


10


is made of metallic material such as aluminum or the like and has a substantially concave accommodating portion


101


provided at its one surface. A high-frequency circuit portion


13


is accommodated in the accommodating portion


101


of the case


10


. The antenna


11


is placed on the high-frequency circuit portion


13


. The radome


12


is attached to a front surface of the high-frequency circuit portion


13


so as to cover the antenna


11


. Thus, the high-frequency circuit portion


13


and the antenna


11


are hermetically accommodated within the case


10


and the radome


12


.




As shown in

FIG. 3

, the antenna


11


which is hermetically accommodated within the case


10


and the radome


12


is set so as to be possible to perform communication or broadcasting using vertically (V) polarization in a state in which a plane of polarization governed by the antenna is vertical to the ground. When the case


10


is rotated about 90° from the position of the vertically polarized wave, the plane of polarization governed by the antenna


11


is, as shown in

FIG. 4

, switched such that wireless communication or broadcasting using a horizontally (H) polarization can be performed.




A radiating heat sink


14


is disposed at the rear surface of the case


10


. The heat sink


14


is disposed so as to form a predetermined tilt angle such that radiating fins


141


are disposed so as to form an acute angle of about 45° with respect to, e.g., a direction of gravity in any one of the state of the vertically polarized wave and the state of the horizontally polarized wave. The heat sink


14


is thermally coupled via the case


10


to the high-frequency circuit portion


13


within the accommodating portion


101


of the case


10


. Thus, even if the case


10


is rotated 90° such that the antenna


11


is set to either of the direction of the vertically polarized wave and the direction of the horizontal polarized wave, the heat sink


14


takes two substantially symmetrical positions where radiating fins


141


are tilted about 45° with respect to the direction of gravity, while being thermally coupled to the high-frequency circuit portion


13


.




When heat is transmitted from the high-frequency circuit portion


13


to the heat sink


14


in the above-described two positions, the heat sink


14


irradiates heat by a chimney effect. Namely, in the chimney effect, air is thermally expanded between the radiating fins


141


such that a specific weight of the air becomes light and updraft occurs. A thermal conductivity of the radiating fins


141


is increased by an effect of flow rate of the updraft. The heat generated at the high-frequency circuit portion


13


is subjected to a so-called natural air cooling by the radiation such that the high-frequency circuit portion


13


is thermally controlled so as to have a predetermined temperature.




An external connector


15


which has, for example, water proofing property and is electrically connected to the high-frequency circuit portion


13


is provided at the rear surface of the case


10


so as to protrude in a direction in which the radiating fins


141


of the heat sink


14


are arranged. An exterior data modulator/demodulator (not shown) which is disposed, for example, indoors is electrically connected via a cable


16


to the external connector


15


. The external connector


15


enables electric connection of the external data modulator/demodulator (not shown) with the high-frequency circuit portion


13


within the case


10


.




A plurality of mounting protrusions


102


is provided at the rear surface of the case


10


at predetermined intervals therebetween. As shown in

FIGS. 5 and 6

, a mounting portion


171


of a mounting band


17


is detachably mounted to these mounting protrusions


102


by using unillustrated screw members or the like. The mounting band


17


is mounted to the mounting protrusions


102


of the case


10


by using the above-mentioned screw members (not shown) in any one of the two positions where the mounting portion


171


is rotated 90° depending on whether the polarized wave governed by the antenna


11


is a vertically polarized wave or a horizontally polarized wave.




The mounting band


17


is mounted by a band portion


172


being wound around a support


18


for installation in a state in which the mounting portion


171


is mounted to the mounting protrusions


102


of the case


10


. Thus, the antenna


11


is installed at a desired position where communication or broadcasting is possible with the place of polarization being faced in a direction of vertically polarized wave or a direction of horizontally polarized wave. When the antenna


11


is mounted to the support


18


, the position of the mounting band


17


is adjusted such that orientation of the antenna


11


coincides a desired direction of communication or broadcasting.




In the above-described configuration, when a radio wave used for communication or broadcasting is a vertically polarized wave, the mounting portion


171


of the mounting band


17


is mounted to the mounting protrusions


102


of the case


10


and the band portion


172


is mounted to the support


18


by taking a plane of polarization governed by the antenna


11


into consideration. At this time, the orientation of the antenna


11


within the case


10


is adjusted for a desired direction of communication or broadcasting. Here, the external connector


15


is protruded downward so as to form a tilt angle of about 45° with respect to the case


10


. The external data modulator/demodulator (not shown) is electrically connected via the cable


16


to the external connector


15


.




The antenna


11


receives the vertically polarized and outputs it to the high-frequency circuit portion


13


. The high-frequency circuit portion


13


processes inputted high-frequency signal and directs the resulting signal via the external connector


15


and the cable


16


to the external data modulator/demodulator (not shown). Then, the high-frequency signal sent from the external data modulator/demodulator (not shown) is supplied via the cable


16


and the external connector


15


to the high-frequency circuit portion


13


. At the high-frequency circuit portion


13


the signal is processed, and then is outputted to the antenna


11


which governs the vertically polarized wave. The resulting signal is sent by the antenna


11


in a desired orientation such that communication or broadcasting is performed.




In the position where communication or broadcasting using the vertically polarized wave is performed, the heat sink


14


within the case


10


is set such that radiating fins


141


are arranged so as to form a tilt angle of about 45° with respect to the direction of gravity and a desired chimney effect is obtained. Thus, the heat sink


14


performs thermal control by effectively and naturally cooling heat quantity generated by drive of high-frequency circuit portion


13


.




When switching to a state in which communication or broadcasting using the horizontally polarized wave is possible is performed, the position for mounting the mounting portion


171


of the mounting band


17


to the mounting protrusions


102


of the case


10


is rotated about 90° and the band portion


172


is mounted to the support


18


such that the position of the mounting band


17


is adjusted so as to coincide the direction of communication or broadcasting. Consequently, the antenna


11


is set so as to be possible to perform transmission/receiving of the horizontally polarized wave.




The external connector


15


of the case


10


is protruded downward at the position (where a tilt angle of about 45° is formed) which is rotated about 90° from the position where the communication or broadcasting using the vertically polarized wave is performed. The external data modulator/demodulator is electrically connected via the cable


16


to the external connector


15


.




The antenna


11


receives a horizontally polarized wave and outputs it to the high-frequency circuit portion


13


. The high-frequency circuit portion


13


processes inputted high-frequency signal and directs the resulting signal via the external connector


15


and the cable


16


to the external data modulator/demodulator (not shown). The high-frequency signal sent from the external data modulator/demodulator (not shown) is supplied via the cable


16


and the external connector


15


to the high-frequency circuit portion


13


. Subsequent to the signal being processed at the high-frequency circuit portion


13


, the resulting signal is outputted to the antenna


11


which governs the horizontally polarized wave. Then, the signal is sent by the antenna


11


in a desired orientation such that communication or broadcasting is performed.




In the position where the communication or broadcasting using the horizontally polarized wave is performed, the heat sink


14


within the case


10


is set such that the radiating fins


141


are arranged so as to form a tilt angle of about 45° at the position which is rotated about 90° from the position in which the communication or broadcasting using the vertically polarized wave is performed and a desired chimney effect is obtained. Thus, the heat sink


14


exhibits the same chimney effect as in the state of performing the above-described communication or broadcasting using the vertically polarized wave, and performs thermal control by effectively and naturally cooling heat quantity generated by drive of the high-frequency circuit portion


13


.




As described above, the antenna apparatus accommodates the antenna


11


for linearly polarized wave together with the high-frequency circuit portion


13


within the case


10


in which the heat sink


14


is provided. By rotating the case


10


90° depending on whether the vertically polarized wave is used or the horizontally polarized wave is used, communication or broadcasting using the vertically polarized wave or the horizontally polarized wave is realized with high precision.




It is possible to simply and easily set such that the communication or broadcasting using the vertically polarized wave or the horizontally polarized wave can be performed merely by changing the direction in which the same case


10


is installed to the support


18


. Therefore, simplification of handling properties including order for the antenna apparatus, a manufacturing process thereof and inventory management thereof can be realized and diversification of communication or broadcasting can be accomplished.




The heat sink


14


is disposed at the case


10


such that the radiating fins


141


are tilted so as to form an acute angle with respect to the direction of gravity in both a case of using the vertically polarized wave as a wave governed by the antenna


11


and a case of using the horizontally polarized wave as a wave governed by the antenna


11


.




The heat sink


14


can exhibit substantially same chimney effect in both of the position of the vertically polarized wave governed by the antenna


11


and the position of the horizontally polarized wave governed by the antenna


11


. Thus, thermal control of the high-frequency circuit portion


13


can be realized with high efficiency.




In the above-described embodiment, a case where the radiating fins


141


of the heat sink


14


are arranged at the rear surface of the case


10


so as to form a tilt angle of about 45° with respect to the direction of gravity in both cases of using the vertically polarized wave governed by the antenna


11


and of using the horizontally polarized wave governed by the antenna


11


has been described. However, the present invention is not limited to this angle at which the fins are arranged, and fins may be arranged at other acute angle and the substantially same effect can be expected.




In the above embodiment, the case in which the antenna apparatus is configured by using the heat sink


14


in which the radiating fins


141


are arranged so as to form an acute angle with respect to the direction of gravity has been described. However, the present invention is not limited to this case, and configurations such as those shown in

FIGS. 7

,


8


and


9


may be utilized. In

FIGS. 7 through 9

, for convenience, the same portions as those of

FIGS. 1 through 6

are denoted by the same reference numerals and descriptions thereof are omitted.




A heat sink


19


shown in

FIGS. 7 and 8

is formed such that a plurality of radiating fins


191


which are bent about 90° are radially combined and arranged in two directions which are perpendicular to each other. The heat sink


19


is disposed at the rear surface of the case


10


. Radiation configuration which effectively utilizes a radiation efficiency of radiating fins


191


depending on the direction that the antenna


11


is arranged is configured. Thus, substantially same radiation efficiency as those of the above-described embodiments can be ensured in both of the case of the vertically polarized wave and the case of the horizontally polarized wave. As a result, substantially same effect as those of the above-described embodiments can be expected.




A heat sink


21


shown in

FIG. 9

is configured such that a plurality of curved radiating fins


211


are concentrically arranged. The heat sink


21


is disposed at the rear surface of the case


10


. In the heat sink


21


, radiation configuration which effectively utilizes a radiation efficiency of the radiating fins


211


depending on the direction that the antenna


11


is arranged is configured. Substantially same radiation efficiency as those of the above-described embodiments can be ensured in both of the case of the vertically polarized wave and the case of the horizontally polarized wave. As a result, substantially same effect as those of the above-described embodiments can be expected.




In the above-described embodiments, the configuration in which the radiating fins


211


of the heat sink


21


are concentrically arranged is shown. However, the present invention is not limited to this configuration, and the radiating fins


211


may be arranged substantially circularly.




Further, in the above-described embodiments, the case in which the external connector


15


is provided so as to protrude to make an acute angle with respect to the direction of gravity in both of the case of using the vertically polarized wave and the case of using the horizontally polarized wave has been described. However, the present invention is not limited to this case. For example, the external connector


151


may be disposed as shown in FIG.


10


. In

FIG. 10

, for convenience, the same portions as those of

FIGS. 1 through 6

are denoted by the same reference numerals, and descriptions thereof will be omitted.




In an embodiment shown in

FIG. 10

, the external connector


151


is provided at the rear surface of the case


10


so as to protrude substantially parallel to a direction that the radiating fins


141


are protruded. In this embodiment, as the above-described embodiments, stable connection to the external modulator/demodulator (not shown) can be realized in both of the case that the vertically polarized wave is governed by the case


10


and the case that horizontally polarized wave is governed by the case


10


. Further, substantially same effect as those of the above-described embodiments can be expected.




The external connector


151


shown in

FIG. 10

which is provided so as to protrude substantially parallel to the direction that the radiating fins


141


are protruded may be applied to the heat sink configurations including the heat sink


19


shown in

FIGS. 7 and 8

and the heat sink


21


shown in FIG.


9


. The same effect as those of heat sink configurations shown in

FIGS. 7

,


8


and


9


can be expected.




In the above-described embodiments, the case in which the present invention is applied to the antenna configuration that the antenna


11


is hermetically accommodated in the case


10


and the radome


12


. However, the present invention is not limited to this antenna configuration, and other antenna configurations may be utilized. The same effect as those of the above-described embodiments can be expected.




Additional advantages and modifications will readily occur to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details and representative embodiments shown and described herein. Accordingly, various modifications may be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and their equivalents.



Claims
  • 1. An antenna apparatus comprising:an antenna main body for transmitting or receiving a linearly polarized wave a case which houses said antenna body in accordance with a direction of polarization of a radio wave to be used; and a heat sink which is disposed at a surface of said case which serves as a radio emission/receiving surface of said antenna main body when said case is fixed, said heat sink including a row of radiating fins protruded in a direction where the radio wave is incident onto the surface of said case or emitted from the surface of said case, wherein the radiating fins of said heat sink e shaped such that upper ends of grooves between the radiation fins in a vertical direction are open, when the ease is fixed.
  • 2. The antenna apparatus according to claim 1, wherein said heat sink is configured such that radiating fins are provided so as to form an acute angle with respect to the direction of gravity in any one of the direction of vertically polarized wave governed by said antenna main body and the direction of horizontally polarized wave governed by said antenna main body.
  • 3. The antenna apparatus according to claim 2, wherein said antenna main body is provided with an external connector which is protruded so as to form an acute angle with respect to the direction of gravity in any one of the direction of said vertically polarized wave and the direction of said horizontally polarized wave.
  • 4. The antenna apparatus according to claim 2, wherein said antenna main body is provided with the external connector which is protruded so as to be substantially parallel to The direction that said radiating fins of said heat sink are protruded.
  • 5. The antenna apparatus according to claim 1, wherein said heat sink is configured such that said radiating fins are arranged in two direction which are substantially perpendicular to each other.
  • 6. The antenna apparatus according to claim 5, wherein said antenna main body is provided with an external connector which is protruded so as to form an acute angle with respect to the direction of gravity in any one of the direction of said vertically polarized wave and the direction of said horizontally polarized wave.
  • 7. The antenna apparatus according to claim 5, wherein said antenna main body is provided with the external connector which is protruded so as to be substantially parallel to the direction that said radiating fins of said heat sink are protruded.
  • 8. The antenna apparatus according to claim 1, wherein said heat sink is configured such that said radiating fins are arranged substantially circularly.
  • 9. The antenna apparatus according to claim 8, wherein said antenna main body is provided with an external connector which is protruded so as to form an acute angle with respect to the direction of gravity in any one of the direction of said vertically polarized wave and the direction of said horizontally polarized wave.
  • 10. The antenna apparatus according to claim 8, wherein said antenna main body is provided with the external connector which is protruded so as to be substantially parallel to the direction that said radiating fins of said heat sink are protruded.
  • 11. The antenna apparatus according to claim 1, wherein said antenna main body is provided with an external connector which is protruded so as to form an acute angle with respect to the direction of gravity in any one of the direction of said vertically polarized wave and the direction of said horizontally polarized wave.
  • 12. The antenna apparatus according to claim 1, wherein said antenna main body is provided with the external connector which is protruded so as to be substantially parallel to a direction that said radiating fins of said heat sink are protruded.
  • 13. An antenna apparatus comprising:an antenna main body for transmitting or receiving a linearly polarized wave; and a heat sink which is disposed at a surface of said antenna main body which serves as a radio emission/receiving surface of said antenna main body when the antenna apparatus is fixed, said heat sink including a row of radiating fins protruded in a direction where a radio wave is incident onto the surface of said antenna main body or emitted from the surface of said antenna main body, wherein the radiating fins of said heat sink are shaped such that upper ends of grooves between the radiation fins in a vertical direction are open, when the antenna apparatus is fixed.
  • 14. The antenna apparatus according to claim 13, wherein said heat sink is configured such that radiating fins are provided so as to form an acute angle with respect to the direction of gravity in any one of the direction of vertically polarized wave governed by said antenna main body and the direction of horizontally polarized wave governed by said antenna main body.
  • 15. The antenna apparatus according to claim 14, wherein said antenna main body is provided with an external connector which is protruded so as to form an acute angle with respect to the direction of gravity in any one of the direction of said vertically polarized wave and the direction of said horizontally polarized wave.
  • 16. The antenna apparatus according to claim 14, wherein said antenna main body is provided with the external connector which is protruded so as to be substantially parallel to the direction that said radiating fins of said heat sink are protruded.
  • 17. The antenna apparatus according to claim 13, wherein said heat sink is configured such that said radiating fins are arranged in two direction which are substantially perpendicular to each other.
  • 18. The antenna apparatus according to claim 17, wherein said antenna main body is provided with an external connector which is protruded so as to form an acute angle with respect to the direction of gravity in any one of the direction of said vertically polarized wave and the direction of said horizontally polarized wave.
  • 19. The antenna apparatus according to claim 17, wherein said antenna main body is provided with the external connector which is protruded so as to be substantially parallel to the direction that said radiating fins of said heat sink are protruded.
  • 20. The antenna apparatus according to claim 13, wherein said heat sink is configured such that said radiating fins are arranged substantially circularly.
  • 21. The antenna apparatus according to claim 20, wherein said antenna main body is provided with an external connector which is protruded so as to form an acute angle with respect to the direction of gravity in any one of the direction of said vertically polarized wave and the direction of said horizontally polarized wave.
  • 22. The antenna apparatus according to claim 20, wherein said antenna main body is provided with the external connector which is protruded so as to be substantially parallel to the direction that said radiating fins of said heat sink are protruded.
  • 23. The antenna apparatus according to claim 13, wherein said antenna main body is provided with an external connector which is protruded so as to form an acute angle with respect to the direction of gravity in any one of the direction of said vertically polarized wave and the direction of said horizontally polarized wave.
  • 24. The antenna apparatus according to claim 13, wherein said antenna main body is provided with the external connector which is protruded so as to be substantially parallel to a direction that said radiating fins of said heat sink are protruded.
Priority Claims (2)
Number Date Country Kind
2001-258400 Aug 2001 JP
2001-068140 Mar 2002 JP
US Referenced Citations (4)
Number Name Date Kind
4296355 Fukatsu et al. Oct 1981 A
5828339 Patel Oct 1998 A
6084772 Pell et al. Jul 2000 A
6373447 Rostoker et al. Apr 2002 B1
Foreign Referenced Citations (1)
Number Date Country
9-63762 Mar 1997 JP