The subject matter relates generally to antenna apparatuses having multiple branches.
Antennas are increasingly requested and used for a number of applications within a variety of industries. Examples of such applications include mobile phones, wearable devices, portable computers, and communication systems for vehicles (e.g., automobiles, trains, planes, etc.). But there have been conflicting market demands for such antennas. Users and vendors request multi-band capabilities but would like the antennas to be smaller, hidden, and/or positioned at non-ideal locations, such as near other metal objects.
To meet these demands, manufacturers have attempted to optimize the available space by resizing components or by moving the components to different locations. Although these antennas can be effective in communicating wirelessly, alternative antennas which provide sufficient communication while occupying less space are still desired. In particular, it has become increasingly difficult to achieve greater bandwidth for smaller antennas. For instance, a conventional monopole antenna can extend several centimeters. As the monopole antenna becomes shorter, it becomes increasingly difficult to achieve a desired bandwidth.
Accordingly, there is a need for an antenna apparatus that occupies less space but has a greater bandwidth than conventional antennas with a similar size.
In an embodiment, an antenna apparatus is provided. The antenna apparatus includes a dielectric body having first and second broad sides and a thickness of the dielectric body extending therebetween. The antenna apparatus also includes a ground plane coupled to the dielectric body. The antenna apparatus also includes a driven trace coupled to the dielectric body and extending parallel to the ground plane. The driven trace includes first and second branches and an impedance-tuning portion that joins the first and second branches. Each of the first and second branches are configured to resonate at a respective radio-frequency (RF) band. The respective RF bands may or may not be the same. The antenna apparatus also includes a first conductive pathway extending from the driven trace through the dielectric body and configured to feed the driven trace. The antenna apparatus also includes a second conductive pathway that extends from the driven trace through the dielectric body and electrically connects the driven trace to the ground plane. The impedance-tuning portion extends between the first and second conductive pathways.
In some aspects, the driven trace and the ground plane are separated by at most three millimeters.
In some aspects, a parasitic trace is coupled to the dielectric body. The parasitic trace may be co-planar with respect to the driven trace. The parasitic trace is ungrounded and positioned adjacent to an edge of the driven trace. The driven trace excites the parasitic trace to resonate at a respective RF band.
In some aspects, the parasitic trace is a first parasitic trace and the driven trace excites the first parasitic trace to resonate at a first respective RF band. The antenna apparatus also includes a second parasitic trace. The second parasitic trace is co-planar with respect to the driven trace. The second parasitic trace is ungrounded and positioned adjacent to an edge of the driven trace. The driven trace excites the second parasitic trace to resonate at a second respective RF band.
In some aspects, the first branch is positioned between the first and second parasitic traces. The first and second branches resonate at the same RF band.
In some aspects, the driven trace also includes a third branch coupled to the impedance-tuning portion. The third branch is configured to resonate at a respective RF band.
In some aspects, the second and third branches extend away from the impedance-tuning portion in one direction. The first branch extends away from the impedance-tuning portion in an opposite direction.
In some aspects, the antenna apparatus also includes a printed circuit that has the driven trace and the first and second conductive pathways.
In an embodiment, a communication system includes the above antenna apparatus and also includes a metallic surface. The ground plane is positioned adjacent to the metallic surface.
In some aspects, the communication system also includes a printed circuit that has the driven trace and the first and second conductive pathways.
In an embodiment, a low-profile antenna apparatus is provided that includes a dielectric body having first and second broad sides and a thickness of the dielectric body extending therebetween. The antenna apparatus also includes a ground plane and a driven trace supported by the dielectric body and extending parallel to the ground plane. The driven trace and the ground plane are separated by at most three millimeters. The driven trace includes first and second branches. Each of the first and second branches is configured to resonate at a radio-frequency (RF) band. The RF band may or may not be the same band. The antenna apparatus also includes a parasitic trace coupled to the dielectric body. The parasitic trace is ungrounded and positioned adjacent to an edge of the first branch of the driven trace. The driven trace excites the parasitic trace to resonate at a respective RF band.
In some aspects, the antenna apparatus also includes a first conductive pathway extending from the driven trace through the dielectric body and configured to feed the driven trace. The antenna apparatus also includes a second conductive pathway extending from the driven trace through the dielectric body and electrically connecting the driven trace to the ground plane. The impedance-tuning portion extends between the first and second conductive pathways.
In some aspects, the driven trace and the ground plane are separated by at most three millimeters.
In some aspects, the parasitic trace is a first parasitic trace and the driven trace excites the first parasitic trace to resonate at a first respective RF band. The antenna apparatus also includes a second parasitic trace. The second parasitic trace is co-planar with respect to the driven trace. The second parasitic trace is ungrounded and positioned adjacent to an edge of the driven trace. The driven trace excites the second parasitic trace to resonate at a second respective RF band.
In some aspects, the first branch is positioned between the first and second parasitic traces.
In some aspects, the driven trace also includes an impedance-tuning portion that joins the first and second branches and a third branch coupled to the impedance-tuning portion. The third branch is configured to resonate at a respective RF band.
In some aspects, the second and third branches extend away from the impedance-tuning portion in one direction. The first branch extends away from the impedance-tuning portion in an opposite direction.
In some aspects, The antenna apparatus also includes a printed circuit that includes the driven trace and the parasitic trace.
In an embodiment, a communication system is provided that includes the above antenna apparatus. The communication system also includes a metallic surface. The ground plane is positioned adjacent to the metallic surface.
In some aspects, the communication system includes a printed circuit that includes the driven trace and the parasitic trace.
Embodiments set forth herein include antenna apparatuses. The antenna apparatuses include a dielectric body and conductive elements that are operably coupled to the dielectric body. In some embodiments, the antenna apparatus may be referred to as a multi-band antenna apparatus. Optionally, the antenna apparatuses may be “low-profile.” As used herein, a low-profile antenna apparatus is one in which the conductive elements extend parallel to one another and are separated by a distance that is less than 3.0% of a wavelength of the operating frequency. In particular embodiments, the conductive elements are separated by a distance that is less than 2.0% of a wavelength of the operating frequency or less than 1.5% of a wavelength of the operating frequency. In certain embodiments, the conductive elements are separated by a distance that is less than 1.0% of a wavelength of the operating frequency or about 0.8% of a wavelength of the operating frequency. In some embodiments, the conductive elements (e.g., driven trace and ground plane) extend parallel to one another and are separated by a distance that is no more than five millimeters. In some embodiments, the conductive elements are separated by a distance that is no more than three millimeters or no more than two millimeters. In certain embodiments, the conductive elements are separated by a distance that is no more than 1.5 millimeters or 1.1 millimeters.
In some embodiments, the antenna apparatus may be part of a larger system and positioned adjacent to metal objects. For example, the antenna apparatus may be coupled to a metallic surface, such as a frame of a device.
In the illustrated embodiment, the antenna apparatus may be manufactured through known printed circuit board (PCB) technologies. The antenna apparatus for such embodiments may be a laminate or sandwich structure that includes a plurality of stacked substrate layers. Each substrate layer may include, at least partially, an insulating dielectric material. By way of example, the substrate layers may include a dielectric material (e.g., flame-retardant epoxy-woven glass board (FR4), polyimide, polyimide glass, polyester, epoxy-aramid, and the like); a bonding material (e.g., acrylic adhesive, modified epoxy, phenolic butyral, pressure-sensitive adhesive (PSA), preimpregnated material, and the like); a conductive material that is disposed, deposited, or etched in a predetermined manner; or a combination of the above. The conductive material may be copper (or a copper-alloy), cupro-nickel, silver epoxy, conductive polymer, and the like. It should be understood that substrate layers may include sub-layers of, for example, bonding material, conductive material, and/or dielectric material. The dielectric body may include only a single dielectric element or may include a combination of dielectric elements. In certain embodiments, the antenna apparatus may be or include a printed circuit and, more specifically, a printed circuit board.
It should be understood, however, that the antenna apparatus 200 may be manufactured through other methods, such as laser direct structuring (LDS), two-shot molding (dielectric with copper traces), and/or ink-printing. As described above, structural components may be manufactured by molding a dielectric material (e.g., thermoplastic) into a designated shape. Conductive elements (e.g., traces) may then be disposed on surfaces of the mold through, for example, ink-printing. Alternatively, conductive elements may be first formed and then a dielectric material may be molded around the conductive components. For example, the conductive elements may be stamped from sheet metal, disposed within a cavity, and then surrounded by a thermoplastic material that is injected into the cavity.
Embodiments may communicate within one or more radio-frequency (RF) bands. For purposes of the present disclosure, the term “RF” is used broadly to include a wide range of electromagnetic transmission frequencies including, for instance, those falling within the radio frequency, microwave, or millimeter wave frequency ranges. An RF band may also be referred to as a frequency band. An antenna apparatus may communicate through one or more RF bands (or frequency bands). In particular embodiments, the antenna apparatus communicates through multiple frequency bands. For example, in some embodiments, the antenna apparatus has one or more center frequencies within the range of 2.4-2.5 GHz and one or more center frequencies within the range of 5.15-5.875 GHz. For example, the antenna apparatus may have a first RF band that is centered at 2.45 GHz, a second RF band that is centered at 5.25 GHz, a third RF band that is centered at 5.6 GHz, and a RF band that is centered at 5.8 GHz. It should be understood, however, that wireless devices and antenna apparatus described herein are not limited to particular RF bands and other RF bands may be used. Likewise, it should be understood that antenna apparatuses described herein are not limited to particular wireless technologies (e.g., WLAN, Wi-Fi, WiMax) and other wireless technologies may be used. Optionally, embodiments may be configured for global navigation satellite system (GNSS) or a global positioning system (GPS).
The system circuitry 110 includes a module (e.g., transmitter/receiver) 112 that decodes the signals received from the antenna apparatus 102 and/or transmitted by the antenna apparatus 102. In other embodiments, however, the module may be a receiver that is configured for receiving only (e.g., GPS). The system circuitry 110 may also include one or more processors 114 (e.g., central processing units (CPUs), microcontrollers, field programmable arrays, or other logic-based devices), one or more memories 116 (e.g., volatile and/or non-volatile memory), and one or more data storage devices 118 (e.g., removable storage device or non-removable storage devices, such as hard drives). The system circuitry 110 may also include a wireless control unit 120 (e.g., mobile broadband modem) that enables the communication system 100 to communicate via a wireless network. The communication system 100 may be configured to communicate according to one or more communication standards or protocols (e.g., Wi-Fi, Bluetooth, cellular standards, etc.).
During operation of the communication system 100, the communication system 100 may communicate through the antenna apparatus 102. To this end, the antenna apparatus 102 may include conductive elements that are configured to exhibit electromagnetic properties that are tailored for desired applications. For instance, the antenna apparatus 102 may be configured to operate in multiple RF bands simultaneously. The structure of the antenna apparatus 102 can be configured to effectively operate in particular radio bands. The structure of the antenna apparatus 102 can be configured to select specific radio bands for different networks. The antenna apparatus 102 may be configured to have designated performance properties, such as a voltage standing wave ratio (VSWR), gain, bandwidth, and a radiation pattern.
As shown in
As shown, the antenna apparatus 200 includes a dielectric body 210 having a first broad side 212 (
With respect to
The antenna apparatus 200 may be a hybrid antenna as the antenna apparatus 200 includes features of at least two different types of antenna. For example, the first and second branches 222, 224 extend away from each other and, therefore, appear similar to a dipole. However, the driven trace 220 is grounded to the ground plane 218 through the second conductive pathway 234 in a manner that is similar to planar inverted-F antenna (PIFA)-type antenna.
The driven trace 220 also includes an impedance-tuning portion 230 that joins the first and second branches 222, 224. In the illustrated embodiment, the impedance-tuning portion 230 also joins the third branch 226 to the first and second branches 222, 224.
As shown in
The second conductive pathway 234 is also configured to be electrically connected to the transmission line 246, such as a cable shield layer 250. More specifically, the second conductive pathway 234 extends from the second branch 224 to the ground plane 218. The second conductive pathway 234 electrically connects the second branch 224 and the third branch 226 to the ground plane 218. The second conductive pathway 234 electrically connects the driven trace 220 generally, but the second branch 224 and the third branch 226 have more direct connections to the ground plane 218 than the first branch 222. As shown in
With respect to
The antenna apparatus 200 may be configured to communicate at different RF bands. For example, in some embodiments, the antenna apparatus 200 has one or more center frequencies within the range of 2.4-2.5 GHz and one or more center frequencies within the range of 5.15-5.875 GHz. For example, the antenna apparatus may have a first RF band that has a center frequency of 2.45 GHz, a second RF band that has a center frequency of 5.25 GHz, a third RF band that has a center frequency of 5.6 GHz, and a fourth RF band that has a center frequency of 5.8 GHz. It should be understood, however, that the antenna apparatus 200 may be configured to have other combinations of RF bands.
The first conductive pathway 232 (
The driven trace 220 (
In certain embodiments, the driven trace 220 and the parasitic traces 240, 242 are coplanar along an exterior surface 260 of the dielectric body 210. The exposed exterior surface 260 of the dielectric body 210 and the driven trace 220 and the parasitic traces 240, 242 form the first broad side 212. It is contemplated, however, that the driven trace 220 and the parasitic traces 240, 242 are not coplanar in other embodiments and/or are not required to be positioned along an exterior surface of the dielectric body 210. For example, in other embodiments, the driven trace 220 and the parasitic traces 240, 242 may be embedded within the dielectric body 210. The driven trace 220 and the parasitic traces 240, 242 may have different Z-positions (or positions relative to the Z-axis) with respect to one another.
The dielectric body 210 has a first dimension (or length) 262 along the X axis and a second dimension (or width) 264 along the Y axis. In an exemplary embodiment, the antenna apparatus 200 is configured to be secured to another component, such as one having a metallic surface. The ground plane 218 may be positioned between the other component and the dielectric body 210. The ground plane 218 may also be secured directly to the metallic surface.
The parasitic traces 240, 242 are positioned relative to the driven trace 220 to enable the antenna apparatus 200 to communicate within an additional RF band or bands. The additional RF band or bands may be higher than the RF band of the driven trace 220.
In some embodiments, the parasitic traces 240, 242 may operate as passive resonators that absorb the electromagnetic waves from the driven trace 220 and re-radiate the electromagnetic waves at a different RF band. In particular embodiments, the driven trace 220 communicates at first, second, and third RF bands through the first, second, and third branches 222, 224, 226, respectively. The parasitic trace 240 and the parasitic trace 242 may communicate at fourth and fifth RF bands, respectively. For example, the fourth RF band may have a center frequency within the range of 5.15-5.35 GHz. The fifth RF band may have a center frequency within the range of 5.47-5.725 GHz.
The first branch 222, the second branch 224, the third branch 226, and the impedance-tuning portion 230 may be dimensioned to determine the RF band (or bands) at which the driven trace 220 communicates. For example, the first branch 222 has a width 302 and a length 304. The second branch 224 has a width 306 and a length 308. The second branch 224 has a base section 235 that also extends away from the impedance-tuning portion 230 along the Y-axis. The third branch 226 has a width 310 and a length 312. The impedance-tuning portion 230 has a width 314 and a length 316.
As shown, the second and third branches 224, 226 extend away from the impedance-tuning portion 230 in one direction (or first direction) along the X-axis. The first branch 222 extends away from the impedance-tuning portion 230 in an opposite direction (or second direction) along the X-axis. The second and third branches 224, 226 are separated by a gap 290. The widths 306, 310 of the second and third branches 224, 226, respectively, are different. More specifically, the width 310 is shorter than the width 306.
The parasitic traces 240, 242 may also be sized and shaped so that the antenna apparatus achieves a designated performance. For example, respective widths 270, 272 of the parasitic traces 240, 242 may be designated to determine the RF band of the corresponding parasitic trace. As shown, the widths 270, 272 may be uniform (e.g., the width 270) or varying (e.g., the width 272). Respective lengths 274, 276 of the parasitic trace 240, 242 may also be designated to select the RF band of the respective parasitic trace 240, 242.
In addition to the above parameters, a gap 276 between the parasitic trace 240 and an edge 280 of the first branch 222 may be configured to achieve a designated performance. A gap 278 between the parasitic trace 242 and an edge 282 of the first branch 222 may be configured to achieve a designated performance. The edges 280, 282 are on opposite sides of the first branch 222 such that the first branch 222 is positioned between the first and second parasitic traces 240, 242. A distal portion 284 of the second parasitic trace 242 extends beyond an end of the first branch 222 and partially in front of a distal edge 286 of the first branch 222.
As shown in
Accordingly, impedance of the antenna may be based on (a) positions of the first and second conductive pathways 232, 234 relative to each other; (b) dimensions of the impedance-tuning portion 230; (c) dimensions of the gap 320 that exists between the first and second conductive pathways 232, 234; or (d) dimensions of the second conductive pathway 234 (e.g., size of via). The impedance-tuning portion 230 may only affect the RF band (or bands) of the driven trace 220.
It is to be understood that the above description is intended to be illustrative, and not restrictive. For example, the above-described embodiments (and/or aspects thereof) may be used in combination with each other. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the various embodiments without departing from its scope. Dimensions, types of materials, orientations of the various components, and the number and positions of the various components described herein are intended to define parameters of certain embodiments, and are by no means limiting and are merely exemplary embodiments. Many other embodiments and modifications within the spirit and scope of the claims will be apparent to those of skill in the art upon reviewing the above description. The patentable scope should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.
As used in the description, the phrase “in an exemplary embodiment” and the like means that the described embodiment is just one example. The phrase is not intended to limit the inventive subject matter to that embodiment. Other embodiments of the inventive subject matter may not include the recited feature or structure. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Moreover, in the following claims, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects. Further, the limitations of the following claims are not written in means-plus-function format and are not intended to be interpreted based on 35 U.S.C. § 112(f), unless and until such claim limitations expressly use the phrase “means for” followed by a statement of function void of further structure.