The present invention relates to an antenna apparatus, and more particularly to an antenna apparatus mounted in a vehicle or the like.
Conventionally, a system such as an ETC, a VICS and a GPS has been widespread, and therefore an antenna used for such a system is commonly mounted in a vehicle. The antenna is typically mounted in or in the vicinity of an instrument panel provided in the front part of a vehicle interior, so as to favorably receive a radio wave from the outside of the vehicle.
On the other hand, well-known is an antenna apparatus which has a radome for enclosing an antenna thereof so as to, for example, protect the antenna (for example, Patent Document 1). The radome is typically made of synthetic resin material having a uniform thickness, or the like, and positioned so as to enclose the entire radiating surface of an antenna element.
When an antenna is mounted in a vehicle, a reflected wave generated by an object near the antenna reflecting a radio wave transmitted from the antenna may deteriorate a performance of the antenna. For example, when an antenna is provided near an instrument panel of a vehicle, a reflected wave from a windshield or a wiper of the vehicle may adversely affect a performance of the antenna, depending on a frequency of a radio wave, a position at which the antenna is mounted, and the like. Specifically, when a direct wave from the antenna and the reflected wave are in opposite phase to each other, a gain performance of the antenna is deteriorated. Further, since a distance from a feeding point of the antenna to a reflector varies depending on directions in which the antenna radiates the radio wave, phases of the reflected waves from the respective directions are also different from each other. Therefore, gains of the antenna are different depending on the respective directions, and therefore a desired directivity may not be obtained, thereby deteriorating the performance of the antenna. Further, a conventional radome provided near an antenna has a uniform thickness, and therefore it is impossible to avoid variations in gain depending on the directions. That is, when a conventional radome is used as it is, it is impossible to improve a performance of an antenna.
Therefore, an object of the present invention is to provide an antenna apparatus capable of improving a performance of an antenna.
To achieve the above objects, the present invention has the following features. That is, a first aspect of the present invention is directed to an antenna apparatus comprising: a first antenna; and a resin material positioned between the first antenna and a reflector. The resin material has portions, and at least one of a thickness and a dielectric constant of the resin material is determined for each portion in accordance with a length of a straight line connecting a feeding point of the first antenna, a corresponding one of the portions of the resin material, and the reflector.
In a second aspect, at least one of the thickness and the dielectric constant of the resin material may be determined for each portion such that a phase difference between a direct wave from the first antenna and a corresponding reflected wave among reflected waves ranges between −90 degrees and 90 degrees, the reflected waves being obtained by reflecting, by the reflector, the direct wave having passed through the portions of the resin material.
In a third aspect, at least one of the thickness and the dielectric constant of the resin material may be determined for each portion such that a phase difference among the reflected waves obtained by reflecting, by the reflector, the direct wave which has been radiated from the feeding point and has passed through the portions of the resin material is smaller than a phase difference among the reflected waves obtained when each of the thickness and the dielectric constant is uniform in each portion of the resin material.
In a fourth aspect, courses each extend from the feeding point of the first antenna toward the reflector, and the thickness of the resin material may be determined such that the thickness of the resin material is greater on the course on which the length of the straight line connecting the feeding point of the first antenna and the reflector is relatively short than on the course on which the length of the straight line is relatively long.
In a fifth aspect, courses each extend from the feeding point of the first antenna toward the reflector, and the dielectric constant of the resin material may be determined such that the dielectric constant of the resin material is greater on the course on which the length of the straight line connecting the feeding point of the first antenna and the reflector is relatively short than on the course on which the length of the straight line is relatively long.
In a sixth aspect, a second antenna which is different from the first antenna, and a holder for holding the first antenna and the second antenna may be further provided.
In a seventh aspect, a second antenna which is different from the first antenna, and a holder for holding the first antenna and the second antenna may be further provided. In this case, at least one of the thickness and the dielectric constant of the resin material is determined for each portion in accordance with a length of a straight line connecting a feeding point of the second antenna, a corresponding one of the portions of the resin material, and the reflector.
In an eighth aspect, the resin material may correspond to an instrument panel of a vehicle. In this case, the antenna is provided in the instrument panel.
According to the first aspect, a phase of a reflected wave obtained by reflecting, by the reflector, a wave transmitted by the first antenna may be optionally adjusted by adjusting the resin material in accordance with the distance between the first antenna and the reflector. Therefore, adjustment of a gain performance of the first antenna prevents deterioration of a performance of the antenna.
According to the second aspect, an adjustment is performed such that the phase difference between the direct wave and the reflected wave ranges between −90 degrees and 90 degrees, and therefore reduction of a gain of the antenna due to the direct wave and the reflected wave being in opposite phase to each other is prevented.
According to the third aspect, it is possible to prevent a gain of the antenna from being changed depending on a radiating direction, that is, it is possible to prevent occurrence of variations in directivity of the antenna.
According to the fourth aspect, the thickness of the resin material varies so as to easily adjust a phase of the reflected wave. Further, the shorter the distance from the antenna to the reflector is, the greater the thickness of the resin material is, and therefore a phase difference among the reflected waves from the respective different directions can be reduced as compared to a case where the resin material has a uniform thickness.
According to the fifth aspect, when the dielectric constant of the resin material varies, it is possible to optionally determine the thickness of the resin material and adjust a phase of the reflected wave. Further, the shorter the distance from the antenna to the reflector is, the greater the dielectric constant of the resin material is, and therefore a phase difference among the reflected waves from the respective different directions can be reduced as compared to a case where the resin material has a uniform dielectric constant.
According to the sixth and the seventh aspects, the present invention is applicable to an integrated antenna including a plurality of antennas. That is, it is difficult for a conventional integrated antenna to allow all of a plurality of antennas to achieve satisfactory performances. However, according to the sixth aspect, an antenna performance is adjusted for each antenna, and therefore all of the plurality of antennas are allowed to achieve satisfactory performances.
According to the eighth aspect, the antenna is provided in an instrument panel, and therefore the resin material can serve as the instrument panel of the vehicle. When the resin material serves as an instrument panel of a vehicle, the features of the present invention can be realized without using a dedicated resin material.
Hereinafter, with reference to
In
The antenna 1 is provided in an instrument panel corresponding to the resign material 2, that is, provided on the opposite side of an interior of the vehicle. In the present embodiment, the antenna 1 is an antenna, such as an ETC antenna, a VICS antenna, and a GPS antenna, for transmitting to and receiving from the outside of the vehicle a radio wave. Therefore, the antenna 1 is provided so as to orient its radiating surface forward and slightly upward with respect to the vehicle. In another embodiment, the antenna 1 may be any antenna, such as an in-vehicle wireless LAN antenna, mounted in a vehicle, in addition to an ETC antenna, a VICS antenna, and a GPS antenna. The antenna 1 may be provided at any position in a vehicle interior. Further, an antenna element may be of any structure. The antenna element may be structured as a flat-panel antenna such as a patch antenna, or the like.
The resin material 2 corresponds to the instrument panel (a substrate frame of the instrument panel) of the vehicle. That is, in the first embodiment, the resin material 2 serves as the instrument panel (the substrate frame thereof). The resin material 2 is provided between the antenna 1 and the windshield 3 corresponding to a reflector. The resin material 2 is made of ABS resin or the like. The resin material 2 preferably has a dielectric constant lower than an object corresponding to a reflector so as to reduce an influence of reflection on the resin material 2. For example, when the windshield 3 is made of glass having a relative dielectric constant of about 5 to 7, the resin material may have a relative dielectric constant of about 2.4 to 3. In the first embodiment, the instrument panel (the resin material 2) has a uniform dielectric constant.
As shown in
As shown in
As describe above, the thickness of each portion of the resin material 2 is determined such that the direct wave and the reflected wave are substantially in phase with each other at the feeding point 1a. For example, as shown in
The distance from the feeding point to the windshield 3 is different for each course, and therefore the thickness of the resin material 2 varies for each course as shown in
The thickness of the resin material 2 may be determined such that the direct wave and the reflected wave are substantially in phase with each other. Therefore, the number of wavelengths between the windshield 3 and the feeding point 1a may be different for each course. For example, although in
Further, although in
Further, the thickness of each portion of the resin material 2 is preferably determined such that a phase difference among reflected waves from portions of the windshield 3 is minimized at the feeding point 1a. When the phase difference among the respective reflected waves is reduced, the antenna 1 is allowed to obtain a constant gain throughout respective directions, and therefore it is possible to obtain a constant gain performance throughout the respective directions.
Further,
When the resin material 2 has a structure as described above, the following effects are produced by the antenna apparatus. That is, when the thickness of the resin material 2 varies in accordance with the distance from the feeding point 1a of the antenna 1 to the reflector (the windshield 3), it is possible to adjust each of the reflected waves from different directions so as to be in phase with the direct wave from the antenna 1. Thus, it is possible to prevent the reflected wave from deteriorating a gain performance of the antenna 1. Further, when the thickness of the resin material 2 varies in accordance with the distance from the feeding point a of the antenna 1 to the reflector, it is possible to reduce the phase difference among the reflected waves from the respective different directions. Thus, the antenna is capable of achieving a uniform gain performance throughout the respective different directions.
Specifically, when the antenna 1 corresponding to an ETC antenna for transmitting and receiving a radio wave of 5.8 GHz is provided in the instrument panel, the windshield 3 is distanced from the antenna 1 by several tens of centimeters, that is, by the length corresponding to several wavelengths of the radio wave of about 5.8 GHz. At this time, a reflected wave from the wind shield 3 may adversely affect again of the antenna 1. However, in the first embodiment, the thickness of the resin material 2 is determined in accordance with the distance from the antenna 1 to the windshield 3, and therefore it is possible to prevent the reflected wave from deteriorating the performance of the antenna 1.
Next, with reference to
In
As shown in
In the second embodiment, the resin material 6 and the instrument panel 5 are provided between the feeding point 1a and the windshield 3. Therefore, in another embodiment, the thickness of the resin material 6 may be determined considering that a phase of the reflected wave from the windshield 3 may have been shifted due to the instrument panel 5 as well as the distance as described above, when the reflected wave arrives at the feeding point 1a. When the phase shift caused by the instrument panel 5 is small enough to be neglected, the thickness of the resin material 6 may be determined in accordance with only the distance as described above.
Further, in the second embodiment, a phase of the reflected wave is adjusted by adjusting the thickness of the radome. However, in another embodiment, the phase of the reflected wave may be adjusted by adjusting both the thickness of the radome and the thickness of the instrument panel 5. Specifically, in another embodiment, the antenna apparatus shown in
As described above, according to the second embodiment, as in the first embodiment, when the phase of the reflected wave is adjusted by adjusting the thickness of the resin material 6, it is possible to prevent the reflected wave from deteriorating a gain performance of the antenna 1, and to allow the antenna to achieve a uniform gain performance throughout the respective different directions. Further, according to the second embodiment, the resin material functioning as means for adjusting the phase of the reflected wave forms a portion of the radome, and therefore it is unnecessary to modify the instrument panel of the vehicle. Therefore, manufacture of a vehicle is facilitated as compared to manufacture of a vehicle in which the resin material serves as an instrument panel of the vehicle.
Next, with reference to
In
In the third embodiment, the resin material 8 includes portions having varying dielectric constants. Specifically, a dielectric constant of a certain portion of the resin material 8 is determined in accordance with a length of a straight line connecting the feeding point 1a of the antenna 1, the certain portion of the resin material 8, and the windshield 3. More specifically, the dielectric constant of each portion of the resin material 8 is determined such that a direct wave from the antenna 1 and a reflected wave from the windshield 3 are substantially in phase with each other, at the feeding point 1a. In the third embodiment, the resin material 8 has an almost uniform thickness. Hereinafter, with reference to
As shown in
As describe above, the dielectric constant of each portion of the resin material 8 is determined such that the direct wave and the reflected wave are substantially in phase with each other, at the feeding point 1a (for example, such that a phase difference between the direct wave and the reflected wave ranges between −90 degrees and 90 degrees). For example, as shown in
The distance from the feeding point to the windshield 3 is different for each course, and therefore the dielectric constant of the resin material 8 varies for each course as shown in
In the third embodiment, the resin material 8 is formed as shown in
In the present embodiment, the resin material 8 includes the three materials 81 to 83 having the dielectric constants different from each other. However, in another embodiment, the resin material 8 may include at least two members having the dielectric constants different from each other. Thus, it is easy to fabricate the resin material which includes portions having the dielectric constants different from each other. Further, in the present embodiment, the dielectric constant of the resin material 8 varies for each portion in a stepwise manner. However, in another embodiment, the dielectric constant of the resin material 8 may vary for each portion in a continuous manner. Thus, the dielectric constant of each portion of the resin material may be determined with enhanced accuracy, and therefore it is possible to adjust a phase difference between the direct wave and the reflected wave with enhanced accuracy.
In the third embodiment, as in the first and the second embodiments, a phase difference among the respective reflected waves from portions of the windshield 3 is preferably minimized at the feeding point 1a. That is, in the third embodiment, the dielectric constants of the respective materials 81 to 83 are preferably determined such that the phase difference among the respective reflected waves is minimized.
As described above, according to the third embodiment, the dielectric constant of the resin material 8 varies, and therefore it is possible to adjust a phase of the reflected wave as in a case where the thickness of the resin material varies. Therefore, as in the first embodiment, it is possible to prevent the reflected wave from deteriorating a gain performance of the antenna 1, and to allow the antenna to achieve a uniform gain performance throughout the respective different directions. Further, in the third embodiment, the thickness of the radome (the resin material) may be determined in a more flexible manner than in the second embodiment, and therefore the resin material may have any outer shape. Therefore, in the third embodiment, the radome may have a shape nice to look at, and the size and the shape of the radome may be determined in a more flexible manner than in the second embodiment.
In the third embodiment, the resin material having the varied dielectric constant is used as a portion of the radome. However, in another embodiment, the resin material having the varied dielectric constant may be used as a portion of an instrument panel. That is, the resin material is used for the instrument panel of the vehicle, and the instrument panel may have a varied dielectric constant.
Next, with reference to
In
In the fourth embodiment, the resin material 12 serves as a radome. The radome holds and encloses the antennas 1 and 11. The radome (and the antennas 1 and 11 enclosed in the radome) is provided in an instrument panel of the vehicle, as in the second embodiment. The resin material 12 (radome) may be made of the same material as that of the resin material 2 of the first embodiment. Further, in the fourth embodiment, the radome (the resin material 12) has a uniform dielectric constant.
As shown in
When an integrated antenna apparatus including a plurality of antennas is mounted in a vehicle, even if one antenna is allowed to be positioned so as to achieve a satisfactory antenna performance (that is, such that the direct wave and the reflected wave are substantially in phase with each other), it is substantially difficult to position the other antennas used for a frequency band other than a frequency band used for the one antenna such that each of the other antennas is also allowed to achieve a satisfactory antenna performance. For example, in an example shown in
Specifically, in the fourth embodiment, the radome includes portions, between the second antenna 11 and the windshield 3, having the thicknesses different from each other (see
As described above, according to the fourth embodiment, when a phase of the reflected wave is adjusted by adjusting the thickness of the resin material 12, it is possible to prevent the reflected wave from deteriorating a gain performance of the second antenna 11, and to allow the second antenna 11 to achieve a uniform gain performance throughout the respective different directions, as in the first embodiment. That is, the present invention is applicable to the integrated antenna apparatus including a plurality of antennas.
Next, with reference to
In
In the fifth embodiment, the resin material 15 serves as a radome as in the fourth embodiment. The radome (and the antennas 1 and 11 enclosed in the radome) is provided in an instrument panel of the vehicle, as in the fourth embodiment. The resin material 15 (radome) may be made of the same material as that of the resin material 2 of the first embodiment. Further, in the fifth embodiment, the radome (the resin material 15) has a uniform dielectric constant.
As shown in
According to the fifth embodiment, when the antenna apparatus has the structure described above, a phase of the reflected wave is allowed to be adjusted for each of the first antenna 1 and the second antenna 11. Therefore, it is possible to prevent the reflected wave from deteriorating a gain performance of each of the first antenna 1 and the second antenna 11, and to allow each of the first antenna 1 and the second antenna 11 to achieve a uniform gain performance throughout the respective different directions. That is, adjustment can be performed so as to allow each antenna included in the integrated antenna apparatus to achieve a desired performance.
In the fourth and the fifth embodiments, a phase of the reflected wave is adjusted by adjusting the thickness of the resin material. However, as in the third embodiment, in the integrated antenna apparatus, a phase of the reflected wave may be adjusted by adjusting the dielectric constant of the resin material.
In the first, the second, the fourth, and the fifth embodiments, it is unnecessary to adjust the thicknesses of the entire portions of the instrument panel or the radome corresponding to the resin material such that the direct wave and the reflected wave are substantially in phase with each other. The thicknesses of only predetermined portions thereof may be adjusted. That is, only portions each located in a predetermined direction from the antenna may have their thickness adjusted in accordance with the distance between the antenna and the reflector. The predetermined direction represents a direction in which the antenna radiates a radio wave, and from which a gain of the antenna to be adjusted is obtained. For example, in an example shown in
As described above, the present invention is applicable to, for example, the antenna apparatus (integrated antenna apparatus) mounted in a vehicle.
Number | Date | Country | Kind |
---|---|---|---|
2006-238964 | Sep 2006 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2007/067541 | 8/31/2007 | WO | 00 | 3/4/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/029928 | 3/13/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6144343 | Furuya et al. | Nov 2000 | A |
6421017 | Inoue | Jul 2002 | B1 |
6496138 | Honma | Dec 2002 | B1 |
6788255 | Sakamoto et al. | Sep 2004 | B2 |
7113136 | Marx | Sep 2006 | B2 |
7289074 | Yamaguchi | Oct 2007 | B2 |
Number | Date | Country |
---|---|---|
06-224614 | Aug 1994 | JP |
10-290110 | Oct 1998 | JP |
2001-297347 | Oct 2001 | JP |
2003 240838 | Aug 2003 | JP |
2003 273639 | Sep 2003 | JP |
99 62137 | Dec 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20100019978 A1 | Jan 2010 | US |