1. Field of the Invention
The present invention relates to an antenna apparatus using a clearance between an end portion of a flange of a vehicle body that forms a window opening portion of the vehicle body and a conductive film.
2. Description of the Related Art
To remove such a disadvantage, a window glass is known in which an antenna function is provided by using a conductive film (see, for example, Patent Documents 1, 2 and 3).
Generally, a window glass is fixed to a flange of a vehicle body that forms a window opening portion of the vehicle body. Patent Documents 1 and 2 disclose a slot antenna using a clearance between an end portion of the flange of the vehicle body and an outer edge of the conductive film. The size of the window opening portion is different in accordance with the kinds of the vehicles. Thus, the perimeter of the clearance between the end portion of the flange of the vehicle body and the outer edge of the conductive film surrounding the conductive film is different in accordance with the kinds of the vehicles. Thus, in a conventional slot antenna, it is necessary to finely adjust the perimeter of the clearance by adjusting the size of the conductive film in order to match the antenna. However, it is a troublesome operation to match the antenna by adjusting the size of the conductive film, which requires a large amount of time and cost.
Further, in the conventional slot antenna, if it is necessary to expand the width (space) of the clearance between the end portion of the flange of the vehicle body and the outer edge of the conductive film in order to obtain a desired antenna gain, the size of the conductive film is reduced. At this time, an area in which the transmission of heat waves such as sunlight or the like cannot be suppressed is increased with respect to the decreasing of the area of conductive film so that the function of the conductive film to suppress the heat waves is decreased.
The present invention is made in light of the above problems, and provides an antenna apparatus capable of being matched without changing a width of a clearance between an end portion of a flange of the vehicle body and an outer edge of a conductive film as well as capable of improving radiation efficiency and antenna gain.
According to an embodiment, there is provided an antenna apparatus including a glass plate that is fixed to a flange of a vehicle body at a window opening portion of the vehicle body; a dielectric material; a conductive film provided between the glass plate and the dielectric material; and a monopolar feeding portion provided on the dielectric material at a surface opposite to a glass plate side and at a position capable of being capacitively coupled to the conductive film, the antenna apparatus being configured such that a clearance between an end portion of the flange of the vehicle body and an outer edge of the conductive film functions as a slot antenna, the conductive film being provided with a notch having one end as an open end at the outer edge of the conductive film in the vicinity of the feeding portion.
According to the embodiment, the antenna can be matched without changing the width of the clearance between the end portion of the flange of the vehicle body and the outer edge of the conductive film, so that radiation efficiency and antenna gain can be improved.
Note that also arbitrary combinations of the above-described elements, and any changes of expressions in the present invention, made among methods, devices, systems and so forth, are valid as embodiments of the present invention.
Other objects, features and advantages of the present invention will become more apparent from the following detailed description when read in conjunction with the accompanying drawings.
The invention will be described herein with reference to illustrative embodiments. In the drawings for explaining the embodiments, a direction shows a direction in the drawings unless otherwise explained and a reference direction in each of the drawings corresponds to a direction of marks or numerals. Further, a direction in parallel, a direction in perpendicular and the like may include a distortion as long as it does not influence an advantage of the present invention. Further, the present invention may be applicable for a front glass attached to a front portion of a vehicle, a rear glass attached to a rear portion of a vehicle, and a side glass attached to a side portion of a vehicle.
Those skilled in the art will recognize that many alternative embodiments can be accomplished using the teachings of the present invention and that the invention is not limited to the embodiments illustrated for explanatory purposes.
It is to be noted that, in the explanation of the drawings, the same components are given the same reference numerals, and explanations are not repeated.
The vehicle window glass 100 includes the glass plate 11, the glass plate 12, an electrode (feeding portion) 16 and a conductive film 13. Here, the glass plate 12 is used for a dielectric material which sandwiches the conductive film 13 with the glass plate 11. The glass plate 11 and the glass plate 12 have substantially the same size and outer peripheral ends (11a to 11d) of the glass plate 11 and outer peripheral ends (12a to 12d) of the glass plate 12 have the same shape, respectively, when seen from a direction (which will be referred to as a “stacked direction” hereinafter) in which the glass plate 12, the conductive film 13 and the glass plate 11 are stacked.
The electrode 16 is a monopolar feeding portion provided at a surface of the glass plate 12 opposite to a surface at a glass plate 11 side. The monopolar means that only a single feeding portion is provided and no grounded feeding portion is provided. The conductive film 13 is provided between the glass plate 11 and the glass plate 12 so as to overlap a projection of the electrode 16 onto the glass plate 11 side. With this configuration, the electrode 16 capacitively couples with a projected area 21 in the conductive film 13 via the glass plate 12. The conductive film 13 is provided with notches, each having an open end at an outer edge 13a of the conductive film 13 in the vicinity of the projected area 21 of the electrode 16.
With this structure, while making the electrode 16 as a feeding point, the current flowing along the clearances 10a to 10d can be varied by adjusting the positions or the lengths of the notches 23 and 24. Thus, the slot antenna can be easily matched by adjusting embodiments (for example, sizes, shapes or the like) of the notches 23 and 24 formed in the conductive film 13 without varying the gap lengths of the clearances 10a to 10d, which are the widths between the end portions 41 to 44 of the flange of the vehicle body and the outer edges 13a to 13d of the conductive film, respectively. Then, as it is unnecessary to change the gap lengths of the clearances 10a to 10d for matching, the slot antenna can be easily matched while the area of the conductive film 13 for suppressing transmission of heat waves such as sunlight or the like is retained to be larger. Further, compared with a case when the notch is not formed at the conductive film 13, the current that flows along the outer edge 13a of the conductive film 13 can be suppressed by the notches 23 and 24 so that the radiation efficiency as the slot antenna can be increased and the antenna gain is easily improved.
The present embodiment is further explained in detail. The vehicle window glass 100 shown in
There is provided an intermediate film 14A between the glass plate 11 and the conductive film 13. There is provided an intermediate film 14B between the conductive film 13 and the glass plate 12. The glass plate 11 and the conductive film 13 are bonded by the intermediate film 14A, and the conductive film 13 and the glass plate 12 are bonded by the intermediate film 14B. The intermediate films 14A and 14B are, for example, thermo plastic polyvinyl butyral. The relative dielectric constant ∈r of the intermediate films 14A and 14B may be more than or equal to 2.8 and less than or equal to 3.0, which is a general relative dielectric constant of an intermediate film of a laminated glass.
The glass plates 11 and 12 are transparent dielectric plates, respectively. Further, alternatively, one of the glass plates 11 and 12 may be translucent, or both of the glass plates 11 and 12 may be translucent.
The conductive film 13 is a conductive heat wave reflection film capable of reflecting heat waves coming from the outside. The conductive film 13 is transparent or translucent. The conductive film 13 may be a conductive film formed on a surface of a polyethylene terephthalate film, for example, or a conductive film formed on a surface of the glass plate (11 or 12) as shown in
As shown in
As shown in
Here, the projected area 21 of the electrode 16 may be positioned in an area between the outer edge 13a of the conductive film on which the open ends 23a and 24a are provided and an interface line which is parallel to the outer edge 13a and passes the front end portions 23b and 24b opposite to the open ends 23a and 24a, respectively. In other words, when the projected area 21 of the electrode 16 is positioned at a side of the open ends 23a and 24a rather than that of the front end portions 23b and 24b of the notches 23 and 24, respectively, there is an advantage in that the antenna can be easily matched. Further, in a view point of easily adjusting the matching of the antenna, the number of notches formed in the vicinity of the electrode 16 is not limited to two, but may be one or three or more. By providing a plurality of the notches in the vicinity of the electrode 16, the radiation efficiency of the antenna can be improved in addition to making it easy to adjust matching. Specifically, as shown in the drawings, the electrode 16 may be provided between the two notches.
The embodiments (shapes, sizes or the like) of the electrode 16 and the notches 23 and 24 may be determined to satisfy a required value of antenna gain necessary for receiving radio waves that the antenna is to receive. For example, when the frequency band that the antenna is to receive is digital terrestrial television broadcasting band 470 to 710 MHz, the electrode 16 and the notches 23 and 24 are formed to be adaptable for receiving radio waves of the digital terrestrial television broadcasting band 470 to 710 MHz.
When it is assumed that the wavelength in the air at the center frequency of a predetermined frequency band received by the present antenna apparatus is λ0, the glass shortening coefficient of wavelength is k (here, k=0.64) and λg=λ0·k, the minimum distance between the center of the electrode 16 and the center line of the notch 23 in its width direction may be more than or equal to 0.25 λg and less than or equal to λg. With this configuration, a preferable result in improving the antenna gain at the frequency band can be obtained.
For example, in order to improve the antenna gain of the predetermined frequency band whose center frequency is 590 MHz, provided that the speed of the radio wave is 3.0×108 m/s, the minimum distance between the center of the electrode 16 and the center line of the notch 23 in its width direction may be adjusted to be more than or equal to 81 mm and less than or equal to 330 mm.
Similarly, the length of the notch 23 from the open end 23a to the front end may be more than or equal to 0.25 λg and less than or equal to λg. With this configuration, a preferable result in improving the antenna gain at the frequency band can be obtained.
For example, in order to improve the antenna gain of the predetermined frequency band whose center frequency is 590 MHz, the length of the notch 23 from the open end 23a to the front end may be adjusted to be more than or equal to 81 mm and less than or equal to 330 mm.
Further, positions of the electrode 16 and the notches 23 and 24 on the glass plate are not specifically limited as long as they are adaptable for receiving the radio waves of a frequency band that the antenna is to receive. For example, the antenna of the embodiment may be provided in the vicinity of the flange of the vehicle body to which the vehicle window glass is to be attached. As shown in
For a case shown in
An attachment angle of the window glass to the vehicle may be 15 to 90°, specifically, 30 to 90° with respect to a horizontal surface (a level surface) when considering easiness in matching and improvement of radiation efficiency.
The electrode 16 is electrically connected to a signal path of an external signal processing apparatus (for example, an on-vehicle amplifier) via a predetermined conductive member 201. As the conductive member 201, for example, a feeding line such as an AV line, a coaxial cable or the like is used. When the AV line is used, the AV line is electrically connected to the electrode 16. When the coaxial cable is used, an inner conductor of the coaxial cable may be electrically connected to the electrode 16 while an outer conductor of the coaxial cable may be grounded to the vehicle body. Further, a structure in which a connector for electrically connecting a conductive member such as a conductor or the like connected to the signal processing apparatus to the electrode 16 is mounted on the electrode 16 may be adopted. The AV line or the inner conductor of the coaxial cable can be easily attached to the electrode 16 by such a connector. Further, a protruding conductive member may be provided on the electrode 16 such that the protruding conductive member contacts and engages a flange 45 of the vehicle body to which the vehicle window glass 100 is attached.
The shape of the electrode 16 may be determined based on the shape or the like of a mounting surface of the above described conductive member or the connector. For example, the electrode 16 may have a rectangular shape such as foursquare, substantially square, rectangular, substantially rectangular or the like, or a polygonal shape when considering an implementation. The electrode 16 may have a circular shape such as circle, substantially circle, ellipse, substantially ellipse or the like.
The electrode 16 is formed by printing a paste including a conducting metal such as a silver paste or the like on a surface of the glass plate 12 at the vehicle interior side and baking. However, the method of forming the electrode 16 is not limited so. Alternatively, the electrode 16 may be formed by forming a linear portion or film of a conductive material such as copper or the like on the surface of the glass plate 12 at the vehicle interior side, or adhering by an adhesive agent to the glass plate 12.
Further, a masking film formed at a surface of the glass plate may be provided between the electrode 16 and the glass plate 11 (at a deeper side in
As shown in
For the case shown in
Further, as shown in
As can be understood from
As shown in
In
H1: 5
H3: 0
H4: 20
W1: 3
W3: 20
W5: 3
Here, “H1” corresponds to the gap length of the clearance 10a. “H3” indicates an interval between the outer edge of the conductive film and an upper end of the electrode. “H4” indicates the length of the electrode in the vertical direction. “W1” indicates the width of the notch. “W2” indicates an interval between a side end portion of the left notch and a left side portion of the electrode. “W3” indicates the width of the electrode in the lateral direction. “W4” indicates an interval between a side end portion of the right notch and a left side portion of the electrode. “W5” indicates the width of the notch.
Further, it is set as follows.
The relative dielectric constant of the glass plate: 7.0
The thickness of each of the intermediate films: 0.38 mm (15 mil)
The sheet resistance of the conductive film 13: 2.0Ω
The thickness of the conductive film 13: 0.01 mm
The thickness of the electrode 16: 0.01 mm
Normalized impedance: 200Ω
For the antenna apparatuses defined above, values of S11 (return-loss (reflection coefficient)) are calculated for every 5 Hz within a frequency range of 25 to 1000 MHz by an electromagnetic field simulation based on Finite-Difference Time-Domain method (FDTD). For S11, as the value is close to zero, it means that the return-loss is large and the antenna gain becomes small and as the minus values becomes large, it means that the return-loss is small and the antenna gain is large.
As shown in
Table 1 shows the difference of radiation efficiencies at the respective frequency shown in table 1 for each of the examples 1 to 4. The radiation efficiency is a benchmark of energy conversion efficiency between the antenna and the air.
There are many cases that the characteristics of the antenna depend on a degree of impedance matching in addition to the radiation efficiency. Thus, it is desirable to consider actual gain of the antenna when studying the characteristics in an actual environment. The actual gain is defined by a value obtained by subtracting radiation efficiency η (losses by the dielectric material and conductive material) and mismatching loss (loss originated from impedance mismatching) from directional gain Gd.
Thus, the actual gain is expressed as follows.
Actual gain Gw=(1−Γ2)×radiation efficiency η×directional gain Gd
Here, β is reflection coefficient (linear expression of S11). It means that the actual gain includes influences of both the radiation efficiency and S11 (return-loss). Here, it is assumed that S11 (return-loss) is the same and the significance of the antenna characteristics is evaluated based on the difference of radiation efficiencies.
Each of the values expressing the difference of radiation efficiencies in table 1 is a relative value with respect to the radiation efficiency of the structure shown in
As such, by providing the notch in the vicinity of the electrode, the antenna can be matched without changing the gap length of the clearance between the end portion of the flange of the vehicle body and the outer edge of the conductive film. As a result, as the antenna can be matched by adjusting the notch without changing the size of the conductive film, an area where the transmission of the heat waves cannot be suppressed can be prevented from becoming large. Further, the radiation efficiency can be increased so that the antenna gain can be easily improved.
The present invention may be preferably used for a vehicle antenna that receives, for example, digital terrestrial television broadcasting, analog television broadcasting of UHF band, digital television broadcasting of the USA, digital television broadcasting of European Union regions, or digital television broadcasting of China. In addition, the present invention may be used for FM broadcast band of Japan (76 to 90 MHz), FM broadcast band of the USA (88 to 108 MHz), television VHF band (90 to 108 MHz, 170 to 222 MHz) or a vehicle keyless entry system (300 to 450 MHz).
The present invention may also be used for an 800 MHz band mobile telephone system (810 to 960 MHz), an 1.5 GHz band mobile telephone system (1.429 to 1.501 GHz), a Global Positioning System (GPS: artificial satellite GPS signal 1575.42 MHz) or a Vehicle Information and Communication System (registered trademark) (VICS: 2.5 GHz).
Further, the present invention may also be used for communication of Electronic Toll Collection System (transmit frequency of roadside radio equipment: 5.795 GHz or 5.805 GHz, a received frequency of roadside radio equipment: 5.835 GHz or 5.845 GHz), Dedicated Short Range Communication (DSRC: 915 MHz band, 5.8 GHz band, 60 GHz band), microwave (1 GHz to 3 THz), millimeter wave (30 to 300 GHz) or Satellite Digital Audio Radio Service (SDARS: 2.34 GHz, 2.6 GHz).
Although a preferred embodiment of antenna apparatus has been specifically illustrated and described, it is to be understood that minor modifications may be made therein without departing from the spirit and scope of the invention as defined by the claims.
The present invention is not limited to the specifically disclosed embodiments, and numerous variations and modifications and modifications may be made without departing from the spirit and scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2010-293249 | Dec 2010 | JP | national |
This application is a continuation application filed under 35 U.S.C. 111(a) claiming the benefit under 35 U.S.C. 120 and 365(c) of PCT International Application No. PCT/JP2011/079930 filed on Dec. 22, 2011, which is based upon and claims the benefit of priority of Japanese Priority Application No. 2010-293249 filed on Dec. 28, 2010, the entire contents of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
5012255 | Becker | Apr 1991 | A |
5124714 | Harada | Jun 1992 | A |
5355144 | Walton et al. | Oct 1994 | A |
5831580 | Taniguchi et al. | Nov 1998 | A |
5898407 | Paulus | Apr 1999 | A |
6320276 | Sauer | Nov 2001 | B1 |
7190316 | Yegin | Mar 2007 | B2 |
20040070540 | Wang et al. | Apr 2004 | A1 |
20050190112 | Thudor et al. | Sep 2005 | A1 |
20060017632 | Funatsu | Jan 2006 | A1 |
20060202898 | Li et al. | Sep 2006 | A1 |
20120154229 | Kagaya | Jun 2012 | A1 |
Number | Date | Country |
---|---|---|
0 561 272 | Sep 1993 | EP |
0 961 342 | Dec 1999 | EP |
1 580 839 | Sep 2005 | EP |
6-45817 | Feb 1994 | JP |
H07-235821 | Sep 1995 | JP |
9-175166 | Jul 1997 | JP |
H11-163625 | Jun 1999 | JP |
2000-59123 | Feb 2000 | JP |
2005-012587 | Jan 2005 | JP |
2005-278159 | Oct 2005 | JP |
2006-525691 | Nov 2006 | JP |
2010-263646 | Nov 2010 | JP |
Entry |
---|
International Search Report PCT/JP2011/079930 dated Apr. 3, 2012. |
Number | Date | Country | |
---|---|---|---|
20130285861 A1 | Oct 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2011/079930 | Dec 2011 | US |
Child | 13929659 | US |