Embodiments of the present disclosure generally relate to radio base station antennas and a radio base station. More particularly, embodiments herein relate to antenna arrangements used for multiple frequency band operation in Frequency-Division Duplexing, FDD, systems.
Antenna arrangements of today are used for transmitting and receiving Radio Frequency (RF) signals in mobile communication systems. Usually the antenna arrangements are dedicated towards a single frequency band or sometimes towards two or more frequency bands. Antenna arrangements with a single frequency band have been in operation for a long time and typically include a number of antenna elements arranged in a vertical row. If an operator wants to add another frequency band then a second antenna arrangement may be added beside the first one. However, using single frequency band antennas to cover more than a single frequency band requires a lot of space during implementation, since each antenna arrangement will have its own antenna elements tuned into its specific frequency. There is also a potential problem that the two different frequency bands cause interference between the RF signals from the different antenna arrangements.
One way to solve this problem in prior art is to use two different types of antenna elements arranged alternated or interleaved in a column. One type of antenna elements may be configured to operate at one frequency band and the other type of antenna elements may be configured to operate at another frequency band. In such a solution the frequency bands may couple to each other due a close distance between the parts that make up the antenna. However, this is not a major problem when the frequency bands have a big separation. A big separation on the other hand makes the antenna more bulky. Instead of providing a big separation it is also possible to use filters with high Q values. Such filters generally require space and may be both expensive and heavy.
Another problem when designing wideband antennas is the requirement of an antenna spacing of 0.5λ in order to avoid grating lobes, where λ is the wavelength of the transmitter, Tx, signal. If a wideband transmitter and antenna elements are used, it is not possible to comply with this rule in a simple way. If, for example, one would like to cover frequencies from 1 to 2 GHz this would mean that the wavelength of the carrier span is between 15 and 30 cm. Traditionally the antenna arrays are designed such that the centre frequency is used to determine the element spacing. This will have the effect that the end frequencies for wideband antennas suffer from deteriorated performance.
U.S. Pat. No. 6,211,841 discloses an antenna arrangement solving the above problems with a different approach. This antenna arrangement includes first antenna elements positioned in two parallel columns, which operate in a lower frequency band. Furthermore, there are second antenna elements which alternately are positioned in two adjacent columns and operate in a higher frequency band. One of the two columns of the second antenna elements is provided in the same column as one of the columns of the first antenna elements and the other column is positioned between the two parallel columns of the first antenna elements. By positioning columns spaced apart and in parallel it is possible to accomplish low coupling between frequency bands being relatively close to each other, since the antenna elements are interleaved. Each antenna element is configured to receive and transmit at a certain frequency band. This US patent focuses on the configuration of the antenna elements in a common aperture such that the dimensions are kept at a minimum.
WO2007/011295 discloses an antenna arrangement for transmitting and receiving RF signals in at least two frequency bands. Sets of antenna elements are provided in an interleaved arrangement and positioned along a straight line so as to form a single column. A high band antenna is interleaved with low band apertures, where the antenna elements in each aperture are tuned to respective frequency, i.e. each element is dedicated to a specific frequency band.
In prior art there are also antennas which are used for multiple frequency band operation in FDD system for receiving and transmitting signals at the same time. The advantage with FDD systems is that one utilizes the bandwidth in a better way since it may be used for receiving and transmitting at the same time. Normally the same antenna is used for receiving and transmitting, and hence a duplex filter is generally needed to avoid interference from the transmitted signal at the receiver side. For example, Band 17 as specified in the 3rd Generation Partnership Project (3 GPP) TS 36.104, Rel. 11.2.0, Table 5.5-1, uses 704-716 MHz as an Uplink (UL) band and 734-746 MHz as a Downlink (DL) band. Thus, for this particular band a duplex gap of 30 MHz is used. Since the received signal could be 100 dB smaller than the transmitted signal the received signal will be blocked out by emissions from the transmitter if not a duplex filter is used. The duplex filter should protect the receiver band from the out of band emissions from the transmitter. In general, this requires a filter with sharp edges and high attenuation in the stop band which require large and bulky cavity filters if there is a high output from the transmitter. A typical filter size for radio base station antennas using FDD and suitable for frequencies below 1 GHz, may for example be 35 cm×30 cm×17 cm and weigh about 5.5 kg. If many filters are required, e.g. in the case of a multi-band or wideband antenna system, the physical size of the total antenna arrangement will become large or very large. In case of multi-band antennas it is also possible to use a separate aperture for each supported frequency band in order to minimize interference between the frequency bands. Such a solution would of cause contribute to even larger and bulkier antenna solutions.
In view of the above, an improved way to utilize a wideband antenna arrangement is desirable. The inventors of the present invention have realized that when designing a wideband antenna having more than one antenna element, each having a different antenna element spacing in order to avoid grating lobes as mentioned above, it is possible to use an antenna element configured for beamforming in the lower part of the frequency band of the wideband antenna to receive signals in the higher frequency band of the wideband antenna. The other way around it is possible to use an antenna element configured for beamforming in the higher part of the frequency band of the wideband antenna to receive signals in the lower frequency band of the wideband antenna.
Thus, it is therefore a general object of embodiments of the present disclosure to reduce the size of antenna arrangements used for multiple frequency band operation in FDD systems.
According to an aspect of the present invention this is accomplished by an antenna arrangement that is connectable to a transceiver for simultaneously transmitting RF signals. The antenna arrangement comprises at least two sets of antenna elements, wherein a first set of antenna elements has a first antenna element spacing and a second set of antenna elements has a second antenna element spacing. An interface unit of the first set of antenna elements is connected to the transceiver for transmitting RF signals with a first frequency and for receiving RF signals with a second frequency and an interface unit of the second set of antenna elements is connected to the transceiver for transmitting RF signals with the second frequency and for receiving RF signals with the first frequency.
According to embodiments of the present invention the antenna arrangement may also comprise a third set of antenna elements. The third set of antenna elements has a third antenna element spacing and an interface unit of the third set of antenna elements is connected to the transceiver for transmitting RF signals with a third frequency and for receiving RF signals with the first or second frequency.
According to other embodiments of the antenna arrangement each set of antenna elements may be provided in a separate aperture.
According to another aspect of the present invention there is accomplished a radio base station comprising a transceiver connected to an antenna arrangement according to embodiments of the present invention.
These and other aspects, features and advantages of embodiments of the present disclosure will be apparent and elucidated from the following description of various embodiments, reference being made to the accompanying drawings, in which:
The invention will now be described more fully hereinafter with reference to the accompanying drawings, in which certain exemplary embodiments of the invention are shown. The invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided by way of example so that this disclosure will be thorough and complete, and will fully convey the scope of the present disclosure to those persons skilled in the art. Like numbers refer to like elements throughout the description.
Before different embodiments of the present invention will be described any closer a typical antenna arrangement used in a FDD system will be described in conjunction with
Turning now to
It may seem odd to receive low band RF signals, RxLB, with the high band antenna elements 14 and receive high band RF signals, TxHB, with the low band antenna elements 16. Normally the same set of antenna elements and aperture used for both transmitting and receiving in a specified frequency band such as a low or high frequency band. However, the inventers realized that antenna element spacing is less important for receiving RF signals. The main reason for this is that the signals transmitted from for example an user equipment, UE, usually comprise pilot or reference signals. This makes it possible for the transceiver 10 to estimate the channel between the UE and the antenna arrangement 12. These channel estimates are in general used for coherent detection of the received signal. This also means that the exact phase relation between the receiver antennas can be considered known, i.e. within channel estimation error bounds. This information is then used to form the receiver weights, which then constitutes the UL beamformer weights. From this it is clear that an antenna aperture designed for transmitting at one frequency also may be used as a receiver antenna aperture for another frequency and still has reasonable performance. Thus, the use of bulky filters is not longer necessary when using the antenna arrangement 12 according to
In an exemplary embodiment the of antenna arrangement 12 in
Turning now to
In the antenna arrangement 12 described in conjunction with
Even if it is not shown in any figures it is also possible to extend the concept described in
The above embodiments have been described with an antenna element spacing that is configured for two or more of the following frequencies 900 MHz, 1800 MHz, 2100 MHz and 2600 MHz. However, it should be understood that there may be other frequencies relating to other standards that might be applicable as well within the scope of the present invention. Such other frequencies may be but are not limited to 700 MHz, MHz, 850 MHz and 1500 MHz. The exact combinations of different frequencies may be decided by an operator.
For various embodiments of the present invention each set of the antenna elements (14, 16, 22) may be provided in a separate aperture.
The above examples of sets of antenna elements have all been depicted and described as “one dimensional” arrays (one column or one row) for the sake of simplicity. However, it should be understood that the sets of antenna elements may be realized as two dimensional arrays. Normally, there would be one column where the antenna elements are connected by a passive feeder network to form one antenna port to the base stations. Typical element spacing in vertical domain would then be around 1λ (wavelength). Several columns or polarization states within one column are then used to provide several antenna ports to the base station.
With reference to
With embodiments of the antenna arrangement described above it is possible to provide good beamforming properties. This is due to the use of different sets of antenna elements having different antenna element spacing that fulfill the antenna spacing requirements of around 0.5λ or less. With the disclosed embodiments it is further possible to build a small and compact antenna system without any heavy duplex filters.
Although the present disclosure has been described above with reference to specific exemplary embodiments, it is not intended to be limited to the specific form set forth herein. In the pending claims, the term “comprise/comprises” does not exclude the presence of other elements or steps. Furthermore, although individual features may be included in different claims, these may possibly advantageously be combined, and the inclusion of different claims does not imply that a combination of features is not feasible and/or advantageous. In addition, singular references do not exclude a plurality. Reference signs in the claims are provided merely as a clarifying example and should not be construed as limiting the scope of the claims in any way.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/SE2013/050096 | 2/6/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/123461 | 8/14/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5400042 | Tulintseff et al. | Mar 1995 | A |
5940048 | Martek | Aug 1999 | A |
6211841 | Smith et al. | Apr 2001 | B1 |
7346323 | Ahonpaa | Mar 2008 | B2 |
20070205955 | Korisch et al. | Sep 2007 | A1 |
20090009392 | Jacomb-Hood | Jan 2009 | A1 |
20090128253 | Goi | May 2009 | A1 |
20090135078 | Lindmark | May 2009 | A1 |
20090322608 | Adams | Dec 2009 | A1 |
20100053024 | Andersson et al. | Mar 2010 | A1 |
20100157858 | Lee | Jun 2010 | A1 |
20110014958 | Black | Jan 2011 | A1 |
20110065472 | Zhu | Mar 2011 | A1 |
20110102289 | Leem | May 2011 | A1 |
20120113873 | Sanchez | May 2012 | A1 |
20130050056 | Lee | Feb 2013 | A1 |
20130154886 | Isohatala | Jun 2013 | A1 |
20130244586 | Nabar | Sep 2013 | A1 |
20130265912 | Ikonen | Oct 2013 | A1 |
20140024322 | Khlat | Jan 2014 | A1 |
20140078000 | Huang | Mar 2014 | A1 |
20140120991 | Wong | May 2014 | A1 |
20140187174 | Safavi | Jul 2014 | A1 |
20140333486 | Greetis | Nov 2014 | A1 |
20150180514 | Pavacic | Jun 2015 | A1 |
Number | Date | Country |
---|---|---|
202050054 | Nov 2011 | CN |
2487800 | Aug 2012 | EP |
06224628 | Aug 1994 | JP |
1020110130389 | Dec 2011 | KR |
03107540 | Dec 2003 | WO |
2007011295 | Jan 2007 | WO |
2010075190 | Jul 2010 | WO |
2012057674 | May 2012 | WO |
Entry |
---|
Unknown, Author, “Linear Arrays of n Elements of Equal Amplitude and Spacing”, Available online at http://www.gmrt.ncra.tifr.res.in/gmrt_hpage/Users/doc/WEBLF/LFRA/node44.html, Apr. 12, 2010, 1-3. |
3GPP, “3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) radio transmission and reception”, 3GPP TS 36.104 V11.2.0, Sep. 2012, 1-198. |
Number | Date | Country | |
---|---|---|---|
20150372396 A1 | Dec 2015 | US |