The present disclosure relates to an antenna array.
There is a known class of antenna arrays (hereinafter also referred to as “array antennas”) whose individual antenna elements are horn antennas. A horn antenna has desirable characteristics, such as capability to radiate/receive electromagnetic waves of a relatively wide frequency band. However, in order to attain such desirable characteristics, the opening of each horn antenna needs to be somewhat large. This makes it difficult, in an array antenna in which a plurality of horn antenna elements are arranged, to reduce the arraying interval of the horns. On the other hand, the performance of an array antenna generally becomes higher as the arraying interval of its antenna elements becomes smaller.
Patent Document 1 discloses a slot waveguide antenna having a pair of flares functioning as a horn. A plurality of slots are arranged along the longitudinal direction of a hollow waveguide, with a pair of flares being disposed on the opposite ends of this slot row. Such structure realizes a horn antenna with a large opening size.
Patent Document 2 discloses a horn antenna having a pair of stepped ridges inside each horn. Inclusion of the pair of ridges provides a relatively wide frequency band, while reducing the width dimension of the horn.
Patent Document 1: Japanese Laid-Open Patent Publication No. 5-095222
Patent Document 2: the specification of U.S. Pat. No. 5,359,339
An embodiment of the present disclosure provides a technique that realizes an antenna array in which antenna elements have a small arraying interval and which also has a wide band.
An antenna array according to one implementation of the present disclosure includes an electrically conductive member having an electrically conductive surface in which a plurality of slots are open, the plurality of slots being arranged along at least one direction, a central portion of each slot extending along a first direction that extends in a manner of following along the electrically conductive surface; and a plurality of electrically-conductive ridge pairs on the electrically conductive surface, each pair protruding from opposite edges of the central portion of a corresponding one of the plurality of slots. The plurality of slots include a first slot and a second slot that are adjacent to each other. The plurality of ridge pairs include a first ridge pair protruding from opposite edges of the central portion of the first slot and a second ridge pair protruding from opposite edges of the central portion of the second slot. A first gap between the first ridge pair enlarges from a root toward an apex of the first ridge pair. A second gap between the second ridge pair enlarges from a root toward an apex of the second ridge pair. A width of the root of the first ridge pair along the first direction is smaller than a dimension of the first slot along the first direction. A width of the root of the second ridge pair along the first direction is smaller than a dimension of the second slot along the first direction. As viewed along the first direction, at least a portion of the first gap and at least a portion of the second gap overlap each other, with no other intervening electrically-conductive member therebetween; or at least a portion of the first ridge pair and at least a portion of the second ridge pair overlap each other, with no other intervening electrically-conductive member therebetween.
An antenna array according to another implementation of the present disclosure includes: a plate-shaped first electrically conductive member having a first electrically conductive surface; a plate-shaped second electrically conductive member having a second electrically conductive surface opposing the first electrically conductive surface; a ridge-like first waveguide member protruding from the second electrically conductive surface, the first waveguide member having an electrically-conductive waveguide face extending in opposition to the first electrically conductive surface, and one end of the first waveguide member reaching an edge of the second electrically conductive member; a ridge-like second waveguide member protruding from the second electrically conductive surface, the second waveguide member extending in parallel to the first waveguide member and having an electrically-conductive waveguide face which extends in opposition to the first electrically conductive surface, and one end of the second waveguide member reaching the edge of the second electrically conductive member; an artificial magnetic conductor extending around the first and second waveguide members in between the first and second electrically conductive members; an electrically-conductive first ridge pair, one of the first ridge pair protruding from the one end of the first waveguide member, and another of the first ridge pair protruding from a first portion of an edge of the first electrically conductive member that is opposed to the one end of the first waveguide member; and an electrically-conductive second ridge pair, one of the second ridge pair protruding from the one end of the second waveguide member, and another of the second ridge pair protruding from a second portion of the edge of the first electrically conductive member that is opposed to the one end of the second waveguide member. A first gap between the first ridge pair enlarges from a root toward an apex of the first ridge pair. A second gap between the second ridge pair enlarges from a root toward an apex of the second ridge pair. As viewed along the edge of the first electrically conductive member, at least a portion of the first gap and at least a portion of the second gap overlap each other, with no other intervening electrically-conductive member therebetween; or at least a portion of the first ridge pair and at least a portion of the second ridge pair overlap each other, with no other intervening electrically-conductive member therebetween.
An antenna array according to still another implementation of the present disclosure includes: a plate-shaped first electrically conductive member having a first electrically conductive surface; a plate-shaped second electrically conductive member having a second electrically conductive surface opposing the first electrically conductive surface and a third electrically conductive surface on an opposite side from the second electrically conductive surface, the second electrically conductive member having a first slit at an end thereof; a plate-shaped third electrically conductive member having a fourth electrically conductive surface opposing the third electrically conductive surface, the third electrically conductive member having a second slit at an end thereof; the first artificial magnetic conductor extending around the first slit in between the first and second electrically conductive members; and a second artificial magnetic conductor extending around the second slit in between the second and third electrically conductive members. An edge of the second electrically conductive member has a shape defining an electrically-conductive first ridge pair connected to the first slit. An edge of the third electrically conductive member has a shape defining an electrically-conductive second ridge pair connected to the second slit. A first gap between the first ridge pair enlarges from a root toward an apex of the first ridge pair. A second gap between the second ridge pair enlarges from a root toward an apex of the second ridge pair. As viewed along a direction perpendicular to the first electrically conductive surface, at least a portion of the first gap and at least a portion of the second gap overlap each other, with no other intervening electrically-conductive member therebetween, or at least a portion of the first ridge pair and at least a portion of the second ridge pair overlap each other, with no other intervening electrically-conductive member therebetween.
According to an embodiment of the present disclosure, there is provided an antenna array in which antenna elements have a small arraying interval and which also has a wide band.
<Findings Serving as a Basis for the Present Disclosure>
In conventional horn antennas, it has been difficult to realize an antenna array which has a wide band and in which the antenna elements have a small arraying interval.
For example, in the antenna array disclosed in Patent Document 1, a horn antenna having a large opening size is realized by disposing a plurality of slots within a long horn which extends along the direction that the plurality of slots are arranged. In such construction, however, signal waves between adjacent antenna elements (which in this example are slots) will become mixed, such that the whole structure can only function as one antenna. That is, it impossible to transmit or receive a plurality of independent signals.
A horn antenna disclosed in Patent Document 2 utilizes a horn having a pair of ridges, thereby realizing a relatively wide frequency band while reducing the dimension of the horn along its width direction. However, in order to further reduce the arraying interval of horns, or when in need of a wider frequency band, an antenna array utilizing this kind of horn antennas will not suffice.
The inventors have arrived at the idea of removing some or all of the wall(s) between two adjacent horns in a horn antenna array, thereby being able to further reduce the interval between antenna elements, while providing a wide band. By removing some or all of the wall(s) between two adjacent horns, the opening of each horn is enlarged at least by the thickness of the walls. This contributes to enlarging the frequency band of electromagnetic waves that can be transmitted or received. On the other hand, the inventors have found that eliminating walls between two adjacent horns does not lead to considerable mixing of signal waves between horns. This is presumably because, as is believed by one of the inventors, the electric field will concentrate at a pair(s) of opposing ridge portions, such that less of the electric field is able to reach any other adjacent horn.
In an embodiment of the present disclosure, at least a portion of the wall surface that is located around a pair of ridge portions (which may hereinafter be referred to also as “a ridge pair”), any such portion being a component part of conventional constructions, is removed. For example, at least a portion of the wall surface extending along the E-plane direction, or at least a portion of the wall surface extending along the H-plane direction, is removed. As used herein, the “E-plane direction” means the chief direction of an electric field vector of an electromagnetic wave propagating along a pair of ridge portions. The “H-plane direction” means the chief direction of a magnetic field vector of an electromagnetic wave propagating along a pair of ridge portions. In one embodiment, between two ridge pairs that are adjacent to each other along the H-plane direction, no wall surface that extends along the E-plane direction exists at all. In another embodiment, between two ridge pairs that are adjacent to each other along the E-plane direction, no wall surface that extends along the H-plane direction exists at all. In still another embodiment, neither any wall surface extending along the E-plane direction nor any wall surface extending along the H-plane direction exists, while only leaving the pair of ridge portions intact.
In an antenna array according to an embodiment of the present disclosure, feeding for each ridged antenna element in the array may be made via a slot or an opening that is made at the root of the ridge pair, or via a waveguide that is connected to the gap between the ridge pair, for example. For instance, each antenna element may be fed from any waveguide, such as a hollow waveguide or a WRG waveguide (which will be described later). In an implementation where a horn having a pair of ridge portions is connected to a slot on the surface of an electrically conductive member, the width of the slot or opening will be greater than the width of the pair of ridge portion at its root; even such dimensional relationship will not give rise to any substantial problem in terms of performance. The same is also true of the case where an antenna array is used to receive an electromagnetic wave.
Hereinafter, illustrative embodiments of the present disclosure will be described. Note however that unnecessarily detailed descriptions may be omitted. For example, detailed descriptions on what is well known in the art or redundant descriptions on what is substantially the same constitution may be omitted. This is to avoid lengthy description, and facilitate the understanding of those skilled in the art. The accompanying drawings and the following description, which are provided by the inventors so that those skilled in the art can sufficiently understand the present disclosure, are not intended to limit the scope of claims. In the present specification, identical or similar constituent elements are denoted by identical reference numerals.
Note that any structure appearing in a figure of the present application is shown in an orientation that is selected for ease of explanation, which in no way should limit its orientation when an embodiment of the present disclosure is actually practiced. Moreover, the shape and size of a whole or a part of any structure that is shown in a figure should not limit its actual shape and size. Moreover, the constructions of the embodiments describe below may be used in combinations to compose other embodiments.
The antenna array according to the present embodiment includes an electrically conductive member 110 (hereinafter also referred to as the “base member 110”) having an electrically conductive surface 110b in which a plurality of slots 112 are open. The plurality of slots 112 extend through the conductive member 110. The plurality of slots 112 are arranged in a two-dimensional array along the X direction and along the Y direction. In the present embodiment, six slots 112 are arranged in two rows and three columns. The number and arrangement of the slots 112 may be different from those shown in the figure. For example, the plurality of slots 112 may be arranged in a one-dimensional array.
Each slot 112 has a shape such that a central portion thereof extends along a first direction (which in the present embodiment is the X direction). Each slot 112 in the present embodiment has a shape resembling the alphabetical letter “H” as viewed from the Z direction. A slot 112 of such shape may be referred to as an “H-slot”. As will be described later, the slots 112 may have other shapes. Each slot 112 may be shaped so that at least a central portion thereof extends along the first direction.
On the conductive surface 110b, this antenna array includes a plurality of ridge pairs 114 each pair protruding from opposite edges of the central portion of a corresponding one of the plurality of slots 112. Roots 114b of the ridge pair 114 are connected to two opposing edges 112e of the central portion of the slot 112. The size of the gap between the ridge pair 114 (i.e., the opposing distance between the ridge pair 114 along the Y direction) monotonically increases from the roots 114b of the ridge pair 114 toward their apices 114t. The width Wr of each ridge pair 114 along the X direction is smaller than the dimension Ws of each slot 112 along the X direction.
A combination of a ridge pair 114 and a slot 112 functions as one antenna element. Therefore, in the present specification, a combination of a ridge pair 114 and a slot 112 may be referred to as a “ridged antenna element”, or simply as an “antenna element”. The ridge pair 114 may also be referred to as a “double-ridge horn”.
In the antenna array according to the present embodiment, six antenna elements 150 each functioning as a box horn antenna are disposed in a two-dimensional array. The six antenna elements 150 are surrounded by a continuous electrically-conductive outer wall. On the inside of this outer wall, a plurality of electrically-conductive inner walls that partition the antenna elements 150 from one another are provided. These inner walls include a plurality of inner walls 160E extending along the E-plane direction (which in the present embodiment is the Y direction) and a plurality of inner walls 160H extending along the H-plane direction (which in the present embodiment is the X direction). Each of the inner walls 160E and 160H is not continuous in its central portion, but is disrupted.
In the present embodiment, “the E plane” is a plane that contains an electric field vector which is created in the central portion of a slot 112 upon transmission or reception, and is parallel to the YZ plane. The “H plane” is a plane that contains a magnetic field vector which is created in the central portion of a slot 112 upon transmission or reception, and is parallel to the XZ plane. The H plane is perpendicular to the E plane. As viewed from a direction perpendicular to the conductive surface 110b, the direction which is parallel to the H plane is “the H-plane direction”, whereas the direction which is parallel to the E plane is “the E-plane direction”. In the present embodiment, the H-plane direction coincides with the X direction, and the E-plane direction coincides with the Y direction.
Since the central portion of each inner wall 160E extending along the E-plane direction is disrupted, as viewed along the first direction (the X direction), at least a portion of a gap between one ridge pair 114 and at least a portion of a gap between another ridge pair 114 that is adjacent to the one ridge pair 114 along the X direction overlap each other and directly see each other. As used herein, the expression that gaps “directly see each other” means that the gaps overlap each other with no other intervening member therebetween. Even if any other member that is not electrically conductive (e.g., a dielectric such as a resin) is present in such a gap, the radiation and reception of electromagnetic waves will not be much affected; therefore, presence of such a member may be tolerated. In an embodiment of the present disclosure, at least one of relationships (1) and (2) below may be satisfied as viewed along the first direction that the central portion of each slot 112 extends: (1) at least a portion of the gap between one ridge pair 114 and at least a portion of the gap between another adjacent ridge pair 114 overlap each other, with no other intervening electrically-conductive member therebetween; and/or that (2) at least a portion of one ridge pair 114 and at least a portion of another adjacent ridge pair 114 overlap each other, with no other intervening electrically-conductive member therebetween.
In the present embodiment, furthermore, the central portion of each inner wall 160H extending along the H-plane direction (the X direction) is disrupted. As a result, a gap exists between two adjacent ridge pairs 114 along the Y direction. Regarding each antenna element 180 and another antenna element 180 that is adjacent to that antenna element 180 along the Y direction, the farther end (i.e., from the slot 112) of one of the ridge pair 114 (defining an end face extending along the Z direction in this example) of the former antenna element 180 is opposed to the farther end (i.e., from the slot 112) of one of the ridge pair 114 of the latter antenna element 180. Note also that no gap may be present between such ridge pairs 114. In other words, the farther end (i.e., from the slot 112) of one of the former ridge pair 114 may be continuous with the farther end (i.e., from the slot 112) of one of the latter ridge pair 114.
In
In the present embodiment, as viewed along the first direction that the central portion of each slot 112 extends, at least a portion of the first gap, at least a portion of the second gap, and at least a portion of the third gap overlap one another, with no other intervening electrically-conductive member therebetween. Furthermore, at least a portion of the first ridge pair, at least a portion of the second ridge pair, and at least a portion of the third ridge pair overlap one another, with no other intervening electrically-conductive member therebetween. Similar relationships are also satisfied with respect to the fourth to sixth ridge pairs.
The first and the fourth slots are arranged along a second direction (which in the present embodiment is the Y direction) which intersects the first direction. An end of one of the first ridge pair that is farther away from the first slot is opposed to an end of the other of the fourth ridge pair that is farther away from the fourth slot. Similar relationships are also satisfied by the pair consisting of second and fifth slots, and by the pair consisting of third and sixth slots.
In the present embodiment, the arraying interval (i.e., the distance between the centers thereof) of the slots 112 along the E-plane direction (the Y direction) is 1.125λo. The arraying interval of the slots 112 along the H-plane direction (the X direction) is 0.75λo. Herein, λo is a free space wavelength of an electromagnetic wave at a center frequency of the frequency band of electromagnetic waves to be transmitted or received via each slot 112. The aforementioned arraying intervals are examples; the arraying intervals may be adjusted as appropriate, depending on the required characteristics.
Each slot 112 may be fed via a WRG (Waffle iron Ridge Waveguide) which will be described later, for example. In an antenna array that is fed via a WRG, a second conductive member having a WRG structure may be disposed on the rear side (—Z side) of the conductive member 110 as shown in
Each waveguide member 122 has an electrically-conductive waveguide face 122a extending in opposition to the second conductive surface 110a, the waveguide face 122a having a stripe shape. Herein, a “stripe shape” means a shape which is defined by a single stripe, rather than a shape constituted by stripes. Not only shapes that extend linearly in one direction, but also any shape that bends or branches along the way is also encompassed by a “stripe shape”. Note that a portion(s) that undergoes a change in height or width may be provided on the waveguide face 122a; in that case, too, the shape falls under the meaning of “stripe shape” so long as it includes a portion that extends in one direction as viewed from a direction perpendicular to the waveguide face 122a. The waveguide face 122a of each waveguide member 122 is opposed to two slots 112 that are arranged along the Y direction.
With such structure, a waveguide is created in the gap between the waveguide face 122a and the second conductive surface 110a. Such a waveguide is called a WRG. An electromagnetic wave having propagated through a WRG can excite the plurality of slots 112, whereby the electromagnetic wave can be radiated.
Although this example illustrates that the antenna array includes three waveguide members 122, the number of waveguide members 122 is not limited to this example. For example, a single waveguide member 122 that has a plurality of bends or deflecting portions may excite a plurality of slots 112 that are arranged along the X direction.
In the example of
Without being limited to a WRG, the antenna array according to the present embodiment may be fed via any other type of waveguide, such as a hollow waveguide. This is true of any other embodiment below.
Thus, in the present embodiment, the inner walls 160E and 160H between a plurality of antenna elements 180 are partially removed. Such structure does not lead to considerable mixing of signal waves.
Without being limited to an H-slot as shown in
In this variant, each inner wall 160E extending along the E-plane direction and the inner wall 160H extending along the H-plane direction has recesses 161 along its way. The recesses 161 allow the opening of each horn to be continuous with the opening of any other adjacent horn along the E-plane direction and along the H-plane direction.
Each recess 161 does not reach the bottom face (i.e., the conductive surface 110b) of each horn. In other words, one of the pair of ridges 114 and one of another pair of ridges 114 adjacent along the Y-direction or E-plane direction are continuous at the root of these ridges. In this example, each recess 161 in the inner wall 160H extending along the H-plane direction has a depth of λo/4. The recesses 161 with a depth of λo/4 provide improved isolation between adjacent horns along the E-plane direction.
The length and depth of each recess 161 in the inner walls 160E extending along the E-plane direction are to be appropriately selected in accordance with the characteristics required of the horns.
In the example of
In this antenna array, side walls 110s of the horns are inclined with respect to the H plane (the XZ plane). As a result, regarding the space that is surrounded by the side walls 110s of each horn, its dimension along the E-plane direction (the Y direction) increases toward the front side (+Z side). Otherwise, it is similar in construction to
In this example, side walls 110s of the horns have a staircase structure, rather than being slopes. Each ridge pair 114 also has a staircase-shaped structure. Between two adjacent slots 112 along the H-plane direction (the X direction), no walls exist that extend along the E-plane direction. Therefore, there is a continuous opening between two horn antenna elements that are adjacent to each other along the H-plane direction.
To a plate-shaped base member 110 having a plurality of slots 112, a plurality of members 113 (hereinafter referred to as “ridge members 113”) constituting a plurality of ridge pairs 114 are connected. An antenna array of such a shape will also be referred to as an “horn antenna array” in the present specification.
In the present embodiment, the arraying interval of slots 112 along the E-plane direction (the Y direction) is 1.125λo. The arraying interval of slots 112 along the H-plane direction (the X direction) is 0.50λo. As in Embodiment 2 and its variants, an antenna array with a narrow interval between slots 112 along the X direction can be realized.
At the apex of each ridge member 113, a choke groove 115 having a depth of λo/4 exists. The choke grooves 115 provide improved isolation between two adjacent antenna elements along the E-plane direction.
A ridge member 113 is located between two adjacent slots 112 along the E-plane direction (the Y direction), while another ridge member 113 is located between two adjacent slots along the H-plane direction (the X direction). A choke groove 115 exists in the central portion of each ridge member 113.
In the examples of
Thus, the plurality of slots 112 do not need to be in a lattice arrangement, but may be in a staggered arrangement.
In this variant, the arraying interval of slots 112 along the E-plane direction is 0.50λo, and the arraying interval of slots 112 along the H-plane direction is also 0.50λo. An antenna array with short arraying intervals between slots 112 regarding both of the E-plane direction and the H-plane direction can be realized.
In this variant, too, each slot 112 does not need to be an H-slot, but may be a slot of any other shape.
The antenna array according to the present embodiment includes a plurality of electrically-conductive pillars 117 protruding from the conductive surface 110b of the base member 110. Each pillar 117 is disposed between two adjacent slots 112 along the X direction. Each pillar 117 is located at a position corresponding to a side face of a slot 112. Instead of pillars 117, wall-like structural elements may be provided. The structural elements such as pillars 117 or walls are electrically conductive at least on their surface.
In the present embodiment, the electric field intensity in the opening of each antenna element 180 has peaks that are separated in two places. Arrows in
When radiating or receiving an electromagnetic wave, an intense electric field occurs between the ridge pair 114 and the two pillars 117 located on opposite sides of each slot 112. This is because, when one of the ridge pair 114 is at a high potential and the other is at a low potential, the two pillars 117 on opposite sides take an intermediate potential. The two pillars 117 act to cut or mediate the electric lines of force between the ridge pair 114. In other words, the two pillars 117 behave so as to split the distribution of electric field intensity between the ridge pair 114 into two portions, along the Y direction. A central portion of each of the two split portions of the distribution of electric field intensity functions as a radiation source (or a wave source). In
With such structure, the interval between the radiation sources can be made shorter than the distance (also referred to as the “period of arrangement”) between the centers of two adjacent antenna elements 180 along the Y direction. For example, the interval between two adjacent radiation sources along the Y direction can become approximately a half of the period of arrangement of the antenna elements 180. This provides a similar effect to reducing the period of arrangement of the antenna elements 180.
In the present embodiment, an electrically-conductive pillar 117 exists between the central portion of the gap between the ridge pair 114 of one antenna element 180 and the central portion of the gap between the ridge pair 114 of another antenna element 180 that is adjacent to the one antenna element 180 along the first direction (in which the central portion of each slot 112 extends). However, as viewed along the X direction, the remainders of such gaps except for their central portions can directly see each other. In other words, as viewed along the X direction, a portion of the gap between the ridge pair 114 of one antenna element 180 overlaps a portion of the gap between the ridge pair 114 of another adjacent antenna element 180, with no other intervening member therebetween. Furthermore, as viewed along the X direction, at least a portion of the ridge pair 114 of one antenna element 180 overlaps at least a portion of the ridge pair 114 of another adjacent antenna element 180, with no other intervening member therebetween. Instead of the pillars 117, walls extending along the E-plane direction, each being either split apart or recessed, may be provided to realize a similar construction.
The two electrically-conductive pillars 117 that are located on opposite sides of each slot 112 in this variant provide similar effects to those of the electrically-conductive pillars 117 in the antenna array shown in
In this antenna array, the base member 110 is a block-shaped conductive member, rather than being plate-shaped. The base member 110 has nine cavities that are arranged in a two-dimensional array along the X direction and along the Y direction. Each cavity extends along the Z direction, its inner surface being electrically conductive. Each cavity functions as a hollow waveguide. The opening at the end of this hollow waveguide corresponds to the slot 112. Each antenna element is fed via the hollow waveguide.
In its central portion, each ridge member 113 has a choke groove 115 having a depth of λo/4. The choke groove 115 provides improved isolation between two adjacent antenna elements along the E-plane direction (the Y direction).
According to the present embodiment, signal waves which are supplied from a transmitter via the plurality of hollow waveguides can be radiated from the plurality of slots 112. Conversely, signal waves impinging on the plurality of slots 112 can be transmitted to a receiver via the plurality of hollow waveguides.
The antenna array in this example includes, in addition to the ridge pair 114 protruding from edges of the central portion of the slot 112, a ridge pair 118 protruding from edges of opposite sides of each slot. In other words, each antenna element includes not only the ridge pair 114 having electrically conductive faces that are perpendicular to the electric field, but also a ridge pair 118 having an electrically conductive face whose width extends in a direction that follows along the electric field.
With such structure, as compared to a horn that only includes a ridge pair 114 having faces which are perpendicular to the electric field, the range of transmission or reception of electromagnetic waves along an orthogonal direction to the electric field (i.e., magnetic field direction) can be narrowed. A structure having such ridge pairs 118 may also be applied to the antenna arrays of Embodiments 1 to 5 described above.
This antenna array includes a plurality of layered conductive members. The plurality of conductive members include a first conductive member 110, a second conductive member 120, a third conductive member 130, and a fourth conductive member 140. Each conductive member is plate-shaped. At portions not shown, the conductive members 110, 120, 130 and 140 are fixed so that their relative positions will not change.
In the present embodiment, each double-ridge horn is fed via a WRG (Waffle Iron Ridge Waveguide), rather than via a hollow waveguide.
As shown in
On the respective conductive surfaces 120a, 130a and 140a of the second conductive member 120, the third conductive member 130, and the fourth conductive member 140, three waveguide members 122, and a plurality of conductive rods 124 which are disposed on both sides of each waveguide member 122, are provided. Each waveguide member 122 has a ridge-like structure extending along the Z direction. Each waveguide member 122 and each conductive rod 124 are composed of an electrically conductive material at least on their surfaces. The plurality of conductive rods 124 function as an artificial magnetic conductor that suppresses propagation of electromagnetic waves. The interval between any two adjacent conductive members is set to less than a half of the free space wavelength λm of an electromagnetic wave of the highest frequency in the frequency band used. Such structure is referred to as a waffle-iron ridge waveguide (WRG). The gap between the upper face of the waveguide member 122 and the conductive surface of the opposing conductive member can be allowed to function as a waveguide. More detailed construction of a WRG will be described later.
At the edge of an end of each of the conductive members 110, 120, 130 and 140, three ridge members 113 which are arranged along the X direction are connected. Among these, each of the ridge members 113 that are connected to the second conductive member 120, the third conductive member 130, and the fourth conductive member 140 is also connected to one end of a waveguide member 122. Each ridge member 113 has a choke groove 115 in its central portion, the choke groove 115 having a depth of λo/4.
With such structure, an electromagnetic wave which is propagated along each waveguide member 122 can be radiated into the external space via the corresponding ridge pair 114. Conversely, an electromagnetic wave impinging from the external space via each ridge pair 114 can be propagated along the corresponding waveguide member 122.
Although the array according to the present embodiment is illustrated as including nine double-ridge horn antenna elements, the number of antenna elements may be any number that is two or greater. The antenna array may include two antenna elements that are arranged along the X direction, for example.
A first gap between the first ridge pair 114A enlarges from the root of the first ridge pair 114A toward its apex. A second gap between the second ridge pair 114B enlarges from the root of the second ridge pair 114B toward its apex. As viewed along the edge of the first conductive member 110, at least a portion of the first gap and at least a portion of the second gap overlap each other, with no other intervening electrically-conductive member therebetween; or at least a portion of the first ridge pair 114A and at least a portion of the second ridge pair 114B overlap each other, with no other intervening electrically-conductive member therebetween.
This antenna array includes five plate-shaped conductive members 110, 120, 130, 140 and 150 that are layered along the X direction. Among these, the four conductive members 120, 130, 140 and 150 have a plurality of conductive rods 124 arranged in a two-dimensional array, the conductive rods 124 constituting an artificial magnetic conductor. In the present specification, such a conductive member is referred to as a WIMP (Waffle Iron Metal Plate). The three conductive members 120, 130 and 140, which are located between the two conductive members 110 and 150 on both sides, each have three slits 128.
This antenna array has nine ridge pairs 114 which are respectively connected to the nine slits 128. Each ridge pair 114 is shaped so that its gap enlarges from the root toward the apex thereof.
The edge of each of the conductive members 120, 130 and 140 has a shape that defines three electrically-conductive ridge pairs 114 which are respectively connected to three slits 128. As viewed along a direction which is perpendicular to the conductive surface of each conductive member (which in the present embodiment is the X direction), at least a portion of the gap between one ridge pair 114 overlaps at least a portion of the gap between another ridge pair 114 that is adjacent to the one ridge pair 114 along the X direction, with no other member that is electrically conductive therebetween. Also, as viewed along the X direction, at least a portion of one ridge pair 114 overlaps at least a portion of another ridge pair 114 that is adjacent to the one ridge pair 114 along the X direction, with no other member that is electrically conductive therebetween.
In the present embodiment, each double-ridge horn is fed via a slit 128. Each slit 128 may be connected to a microwave integrated circuit (MMIC) not shown, for example. Each slit 128 may function as a feeding path between the microwave integrated circuit and the ridge pair 114.
Although the present embodiment illustrates that the number of ridge pairs 114 is nine, the antenna array may include any number of ridge pairs 114 which is equal to or greater than two. For example, an antenna array including two adjacent ridge pairs 114 along the X direction or the Y direction may be constructed. In that case, the number of slits 128 is also two. The plurality of ridge pairs 114 may be arranged along a direction that intersects a direction which is perpendicular to the conductive surface of each conductive member.
<Production Process>
The antenna array according to each of the above embodiments may be produced by, while one or more dies or molds are assembled, the inside thereof is filled with a material in fluid state, and thereafter solidifying the material, for example.
As a material in fluid state, a melted metal, a metal in semi-solidified state, a resin in fluid state, a thermosetting resin material before being set, a metal powder which has acquired fluidity by being mixed with a binder, etc. can be used.
As a method of filling the interior of a die or mold with the aforementioned material in fluid state, a gravity casting technique of pouring in the material by utilizing gravity, a die casting or injection molding technique of introducing the material with pressurization, or the like can be used.
From the standpoint of mass production, preferable materials of the die(s) or mold(s) may be mold alloys that are durable; however, this is not a limitation.
The most common die/cast construction may be a construction where two dies or molds, or three or more dies or molds are put together to create an internal cavity into which a material can be poured. In this case, after the material has solidified, the dies or molds may be separated to allow the molding to be taken out. However, this is not a limitation; for example, a method may be adopted where the dies or molds are destroyed after the metal has solidified, e.g., sand molds.
<Exemplary WRG Construction>
As an example waveguide to be used in an embodiment according to the present disclosure, an exemplary WRG (Waffle-iron Ridge waveguide) construction will be described. A WRG is a ridge waveguide that may be provided in a waffle-iron structure functioning as an artificial magnetic conductor. In the microwave or millimeter wave band, such a ridge waveguide can realize an antenna feeding network with little loss. Moreover, using such a ridge waveguide allows antenna elements to be disposed with a high density. Hereinafter, an example of the fundamental construction and operation of such a waveguide structure will be described.
An artificial magnetic conductor is a structure which artificially realizes the properties of a perfect magnetic conductor (PMC), which does not exist in nature. One property of a perfect magnetic conductor is that “a magnetic field on its surface has zero tangential component”. This property is the opposite of the property of a perfect electric conductor (PEC), i.e., “an electric field on its surface has zero tangential component”. Although no perfect magnetic conductor exists in nature, it can be embodied by an artificial structure, e.g., an array of a plurality of electrically conductive rods. An artificial magnetic conductor functions as a perfect magnetic conductor in a specific frequency band which is defined by its structure. An artificial magnetic conductor restrains or prevents an electromagnetic wave of any frequency that is contained in the specific frequency band (propagation-restricted band) from propagating along the surface of the artificial magnetic conductor. For this reason, the surface of an artificial magnetic conductor may be referred to as a high impedance surface.
For example, an artificial magnetic conductor may be realized by a plurality of electrically conductive rods which are arrayed along row and column directions. Such rods are may also be referred to as posts or pins. Each of these waveguide devices includes, as a whole, a pair of opposing electrically conductive plates. One conductive plate has a ridge protruding toward the other conductive plate, and stretches of an artificial magnetic conductor extending on both sides of the ridge. An upper face (i.e., its electrically conductive face) of the ridge opposes, via a gap, a conductive surface of the other conductive plate. An electromagnetic wave (signal wave) of a wavelength which is contained in the propagation-restricted band of the artificial magnetic conductor propagates along the ridge, in the space (gap) between this conductive surface and the upper face of the ridge.
See
On the conductive member 120, a ridge-like waveguide member 122 is provided among the plurality of conductive rods 124. More specifically, stretches of an artificial magnetic conductor are present on both sides of the waveguide member 122, such that the waveguide member 122 is sandwiched between the stretches of artificial magnetic conductor on both sides. As can be seen from
On both sides of the waveguide member 122, the space between the surface 125 of each stretch of artificial magnetic conductor and the conductive surface 110a of the conductive member 110 does not allow an electromagnetic wave of any frequency that is within a specific frequency band to propagate. This frequency band is called a “prohibited band”. The artificial magnetic conductor is designed so that the frequency of an electromagnetic wave (signal wave) to propagate in the waveguide device 100 (which may hereinafter be referred to as the “operating frequency”) is contained in the prohibited band. The prohibited band may be adjusted based on the following: the height of the conductive rods 124, i.e., the depth of each groove formed between adjacent conductive rods 124; the width of each conductive rod 124; the interval between conductive rods 124; and the size of the gap between the leading end 124a and the conductive surface 110a of each conductive rod 124.
Next, with reference to
(1) Width of the Conductive Rod
The width (i.e., the size along the X direction and the Y direction) of the conductive rod 124 may be set to less than λm/2. Within this range, resonance of the lowest order can be prevented from occurring along the X direction and the Y direction. Since resonance may possibly occur not only in the X and Y directions but also in any diagonal direction in an X-Y cross section, the diagonal length of an X-Y cross section of the conductive rod 124 is also preferably less than λm/2. The lower limit values for the rod width and diagonal length will conform to the minimum lengths that are producible under the given manufacturing method, but is not particularly limited.
(2) Distance from the Root of the Conductive Rod to the Conductive Surface of the Conductive Member 110
The distance from the root 124b of each conductive rod 124 to the conductive surface 110a of the conductive member 110 may be longer than the height of the conductive rods 124, while also being less than λm/2. When the distance is λm/2 or more, resonance may occur between the root 124b of each conductive rod 124 and the conductive surface 110a, thus reducing the effect of signal wave containment.
The distance from the root 124b of each conductive rod 124 to the conductive surface 110a of the conductive member 110 corresponds to the spacing between the conductive member 110 and the conductive member 120. For example, when a signal wave of 76.5±0.5 GHz (which belongs to the millimeter band or the extremely high frequency band) propagates in the waveguide, the wavelength of the signal wave is in the range from 3.8934 mm to 3.9446 mm. Therefore, λm equals 3.8934 mm in this case, so that the spacing between the conductive member 110 and the conductive member 120 may be set to less than a half of 3.8934 mm. So long as the conductive member 110 and the conductive member 120 realize such a narrow spacing while being disposed opposite from each other, the conductive member 110 and the conductive member 120 do not need to be strictly parallel. Moreover, when the spacing between the conductive member 110 and the conductive member 120 is less than λm/2, a whole or a part of the conductive member 110 and/or the conductive member 120 may be shaped as a curved surface. On the other hand, the conductive members 110 and 120 each have a planar shape (i.e., the shape of their region as perpendicularly projected onto the XY plane) and a planar size (i.e., the size of their region as perpendicularly projected onto the XY plane) which may be arbitrarily designed depending on the purpose.
Although the conductive surface 120a is illustrated as a plane in the example shown in
(3) distance L2 from the leading end of the conductive rod to the conductive surface
The distance L2 from the leading end 124a of each conductive rod 124 to the conductive surface 110a is set to less than λm/2. When the distance is λm/2 or more, a propagation mode where electromagnetic waves reciprocate between the leading end 124a of each conductive rod 124 and the conductive surface 110a may occur, thus no longer being able to contain an electromagnetic wave. Note that, among the plurality of conductive rods 124, at least those which are adjacent to the waveguide member 122 do not have their leading ends in electrical contact with the conductive surface 110a. As used herein, the leading end of a conductive rod not being in electrical contact with the conductive surface means either of the following states: there being an air gap between the leading end and the conductive surface; or the leading end of the conductive rod and the conductive surface adjoining each other via an insulating layer which may exist in the leading end of the conductive rod 124 or in the conductive surface.
(4) Arrangement and Shape of Conductive Rods
The interspace between two adjacent conductive rods 124 among the plurality of conductive rods 124 has a width of less than λm/2, for example. The width of the interspace between any two adjacent conductive rods 124 is defined by the shortest distance from the surface (side face) of one of the two conductive rods 124 to the surface (side face) of the other. This width of the interspace between rods is to be determined so that resonance of the lowest order will not occur in the regions between rods. The conditions under which resonance will occur are determined based by a combination of: the height of the conductive rods 124; the distance between any two adjacent conductive rods; and the capacitance of the air gap between the leading end 124a of each conductive rod 124 and the conductive surface 110a. Therefore, the width of the interspace between rods may be appropriately determined depending on other design parameters. Although there is no clear lower limit to the width of the interspace between rods, for manufacturing ease, it may be e.g. λm/16 or more when an electromagnetic wave in the extremely high frequency range is to be propagated. Note that the interspace does not need to have a constant width. So long as it remains less than λm/2, the interspace between conductive rods 124 may vary.
The arrangement of the plurality of conductive rods 124 is not limited to the illustrated example, so long as it exhibits a function of an artificial magnetic conductor. The plurality of conductive rods 124 do not need to be arranged in orthogonal rows and columns; the rows and columns may be intersecting at angles other than 90 degrees. The plurality of conductive rods 124 do not need to form a linear array along rows or columns, but may be in a dispersed arrangement which does not present any straightforward regularity. The conductive rods 124 may also vary in shape and size depending on the position on the conductive member 120.
The surface 125 of the artificial magnetic conductor that are constituted by the leading ends 124a of the plurality of conductive rods 124 does not need to be a strict plane, but may be a plane with minute rises and falls, or even a curved surface. In other words, the conductive rods 124 do not need to be of uniform height, but rather the conductive rods 124 may be diverse so long as the array of conductive rods 124 is able to function as an artificial magnetic conductor.
Each conductive rod 124 does not need to have a prismatic shape as shown in the figure, but may have a cylindrical shape, for example. Furthermore, each conductive rod 124 does not need to have a simple columnar shape. The artificial magnetic conductor may also be realized by any structure other than an array of conductive rods 124, and various artificial magnetic conductors are applicable to the waveguide device of the present disclosure. Note that, when the leading end 124a of each conductive rod 124 has a prismatic shape, its diagonal length is preferably less than λm/2. When the leading end 124a of each conductive rod 124 is shaped as an ellipse, the length of its major axis is preferably less than λm/2. Even when the leading end 124a has any other shape, the dimension across it is preferably less than λm/2 even at the longest position.
The height of each conductive rod 124 (in particular, those conductive rods 124 which are adjacent to the waveguide member 122), i.e., the length from the root 124b to the leading end 124a, may be set to a value which is shorter than the distance (i.e., less than λm/2) between the conductive surface 110a and the conductive surface 120a, e.g., λo/4.
(5) Width of the Waveguide Face
The width of the waveguide face 122a of the waveguide member 122, i.e., the size of the waveguide face 122a along a direction which is orthogonal to the direction that the waveguide member 122 extends, may be set to less than λm/2 (e.g. λo/8). If the width of the waveguide face 122a is λm/2 or more, resonance will occur along the width direction, which will prevent any WRG from operating as a simple transmission line.
(6) Height of the Waveguide Member
The height (i.e., the size along the Z direction in the example shown in the figure) of the waveguide member 122 is set to less than λm/2. The reason is that, if the distance is λm/2 or more, the distance between the root 124b of each conductive rod 124 and the conductive surface 110a will be λm/2 or more.
(7) Distance L1 Between the Waveguide Face and the Conductive Surface
The distance L1 between the waveguide face 122a of the waveguide member 122 and the conductive surface 110a is set to less than λm/2. If the distance is λm/2 or more, resonance will occur between the waveguide face 122a and the conductive surface 110a, which will prevent functionality as a waveguide. In one example, the distance L1 is λm/4 or less. In order to ensure manufacturing ease, when an electromagnetic wave in the extremely high frequency range is to propagate, the distance L1 is preferably λm/16 or more, for example.
The lower limit of the distance L1 between the conductive surface 110a and the waveguide face 122a and the lower limit of the distance L2 between the conductive surface 110a and the leading end 124a of each conductive rod 124 depends on the machining precision, and also on the precision when assembling the two upper/lower conductive members 110 and 120 so as to be apart by a constant distance. When a pressing technique or an injection technique is used, the practical lower limit of the aforementioned distance is about 50 micrometers (μm). In the case of using an MEMS (Micro-Electro-Mechanical System) technique to make a product in e.g. the terahertz range, the lower limit of the aforementioned distance is about 2 to about 3 μm.
Next, variants of waveguide structures including the waveguide member 122, the conductive members 110 and 120, and the plurality of conductive rods 124 will be described. The following variants are applicable to the WRG structure in any place in each embodiment described below.
The dielectric layer on the outermost surface will allow losses to be increased in the electromagnetic wave propagating through the WRG waveguide, but is able to protect the conductive surfaces 110a and 120a (which are electrically conductive) from corrosion. It also prevents influences of a DC voltage, or an AC voltage of such a low frequency that it is not capable of propagation on certain WRG waveguides.
In the waveguide device 100 of the above-described construction, a signal wave of the operating frequency is unable to propagate in the space between the surface 125 of the artificial magnetic conductor and the conductive surface 110a of the conductive member 110, but propagates in the space between the waveguide face 122a of the waveguide member 122 and the conductive surface 110a of the conductive member 110. Unlike in a hollow waveguide, the width of the waveguide member 122 in such a waveguide structure does not need to be equal to or greater than a half of the wavelength of the electromagnetic wave to propagate. Moreover, the conductive member 110 and the conductive member 120 do not need to be electrically interconnected by a metal wall that extends along the thickness direction (i.e., in parallel to the YZ plane).
On both sides of the waveguide member 122, stretches of artificial magnetic conductor that are created by the plurality of conductive rods 124 are present. An electromagnetic wave propagates in the gap between the waveguide face 122a of the waveguide member 122 and the conductive surface 110a of the conductive member 110.
In the waveguide structure of
For reference,
For reference's sake,
On the other hand, a waveguide device 100 including an artificial magnetic conductor can easily realize a structure in which waveguide members 122 are placed close to one another. Thus, such a waveguide device 100 can be suitably used in an array antenna that includes plural antenna elements in a close arrangement.
In the slot array antennas 200 and 300 shown in
The slot array antennas 200 and 300 shown in FIG. 23A and
Effects of embodiments of the present disclosure can be attained by using a conductive member having double-ridge horn antenna elements as described with reference to
An antenna array according to the present disclosure can be suitably used in a radar or a radar system to be incorporated in moving entities such as vehicles, marine vessels, aircraft, robots, or the like, for example. A radar would include an antenna array according to the present disclosure and a microwave integrated circuit that is connected to the antenna array. A radar system would include the radar and a signal processing circuit that is connected to the microwave integrated circuit of the radar. A combination of an antenna array according to an embodiment of the present disclosure and a WRG structure, which permits downsizing, allows the area of the face on which antenna elements are arrayed to be significantly reduced as compared to a construction in which a conventional hollow waveguide is used. Therefore, a radar system incorporating the antenna array can be easily mounted in a narrow place such as a face of a rearview mirror in a vehicle that is opposite to its specular surface, or a small-sized moving entity such as a UAV (an Unmanned Aerial Vehicle, a so-called drone). Note that, without being limited to the implementation where it is mounted in a vehicle, a radar system may be used while being fixed on the road or a building, for example.
An antenna array according to an embodiment of the present disclosure can also be used in a wireless communication system. Such a wireless communication system would include an antenna array according to any of the above embodiments and a communication circuit (a transmission circuit or a reception circuit). Details of exemplary applications to wireless communication systems will be described later.
An antenna array according to an embodiment of the present disclosure can further be used in an indoor positioning system (IPS). An indoor positioning system is able to identify the position of a moving entity, such as a person or an automated guided vehicle (AGV), that is in a building. An antenna array can also be used as a radio wave transmitter (beacon) for use in a system which provides information to an information terminal device (e.g., a smartphone) that is carried by a person who has visited a store or any other facility. In such a system, once every several seconds, a beacon may radiate an electromagnetic wave carrying an ID or other information superposed thereon, for example. When the information terminal device receives this electromagnetic wave, the information terminal device transmits the received information to a remote server computer via telecommunication lines. Based on the information that has been received from the information terminal device, the server computer identifies the position of that information terminal device, and provides information which is associated with that position (e.g., product information or a coupon) to the information terminal device.
The present specification employs the term “artificial magnetic conductor” in describing the technique according to the present disclosure, this being in line with what is set forth in a paper by one of the inventors Kirino (Kirino et al., “A 76 GHz Multi-Layered Phased Array Antenna Using a Non-Metal Contact Metamaterial Waveguide”, IEEE Transaction on Antennas and Propagation, Vol. 60, No. 2, February 2012, pp 840-853) as well as a paper by Kildal et al., who published a study directed to related subject matter around the same time. However, it has been found through a study by the inventors that the invention according to the present disclosure does not necessarily require an “artificial magnetic conductor” under its conventional definition. That is, while a periodic structure has been believed to be a requirement for an artificial magnetic conductor, the invention according to the present disclosure does not necessary require a periodic structure in order to be practiced.
The artificial magnetic conductor according to the present disclosure consists of rows of conductive rods. Therefore, in order to prevent electromagnetic waves from leaking away from the waveguide face, it has been believed essential that there exist at least two rows of conductive rods on one side of the waveguide member(s) (ridge(s)), such rows of conductive rods extending along the waveguide member(s). The reason is that it takes at least two rows of conductive rods for them to have a “period”. However, according to a study by the inventors, even when only one row of conductive rods or one conductive rod exists between two waveguide members that extend in parallel to each other, the intensity of a signal that leaks from one waveguide member to the other waveguide member can be suppressed to −10 dB or less, which is a practically sufficient value in many applications. The reason why such a sufficient level of separation is achieved with only an imperfect periodic structure is so far unclear. However, in view of this fact, in the present disclosure, the conventional notion of “artificial magnetic conductor” is extended so that the term also encompasses a structure including only one row of conductive rods or one conductive rod.
Next, as an Application Example of utilizing the above-described horn antenna array, an instance of an onboard radar system including a ridged horn antenna array will be described. A transmission wave used in an onboard radar system may have a frequency of e.g. 76 gigahertz (GHz) band, which will have a wavelength λo of about 4 mm in free space.
In safety technology of automobiles, e.g., collision avoidance systems or automated driving, it is particularly essential to identify one or more vehicles (targets) that are traveling ahead of the driver's vehicle. As a method of identifying vehicles, techniques of estimating the directions of arriving waves by using a radar system have been under development.
The onboard radar system 510 of this Application Example includes a horn antenna array according to an embodiment of the present disclosure. The horn antenna array may include a plurality of waveguide members that are parallel to one another. They are to be arranged so that the plurality of waveguide members each extend in a direction which coincides with the vertical direction, and that the plurality of waveguide members are arranged in a direction which coincides with the horizontal direction. As a result, the lateral and vertical dimensions of the plurality of slots as viewed from the front can be further reduced.
Exemplary dimensions of an antenna device including the above array antenna may be 60 mm (wide)×30 mm (long)×10 mm (deep). It will be appreciated that this is a very small size for a millimeter wave radar system of the 76 GHz band.
Note that many a conventional onboard radar system is provided outside the vehicle, e.g., at the tip of the front nose. The reason is that the onboard radar system is relatively large in size, and thus is difficult to be provided within the vehicle as in the present disclosure. The onboard radar system 510 of this Application Example may be installed within the vehicle as described above, but may instead be mounted at the tip of the front nose. Since the footprint of the onboard radar system on the front nose is reduced, other parts can be more easily placed.
The Application Example allows the interval between a plurality of antenna elements that are used in the transmission antenna to be narrow. This reduces the influences of grating lobes. For example, when the interval between the centers of two laterally adjacent slots is shorter than the free-space wavelength λo of the transmission wave (i.e., less than about 4 mm), no grating lobes will occur frontward. As a result, influences of grating lobes are reduced. Note that grating lobes will occur when the interval at which the antenna elements are arrayed is greater than a half of the wavelength of an electromagnetic wave. If the interval at which the antenna elements are arrayed is less than the wavelength, no grating lobes will occur frontward. Therefore, in the case where no beam steering is performed to impart phase differences among the radio waves radiated from the respective antenna elements composing an array antenna, grating lobes will exert substantially no influences so long as the interval at which the antenna elements are arrayed is smaller than the wavelength. By adjusting the array factor of the transmission antenna, the directivity of the transmission antenna can be adjusted. A phase shifter may be provided so as to be able to individually adjust the phases of electromagnetic waves that are transmitted on plural waveguide members. In that case, even if the interval between antenna elements is made less than the free-space wavelength λo of the transmission wave, grating lobes will appear as the phase shift amount is increased. However, when the intervals between the antenna elements is reduced to less than a half of the free space wavelength λo of the transmission wave, grating lobes will not appear irrespective of the phase shift amount. By providing a phase shifter, the directivity of the transmission antenna can be changed in any desired direction. Since the construction of a phase shifter is well-known, description thereof will be omitted.
A reception antenna according to the Application Example is able to reduce reception of reflected waves associated with grating lobes, thereby being able to improve the precision of the below-described processing. Hereinafter, an example of a reception process will be described.
The array antenna AA receives plural arriving waves that simultaneously impinge at various angles. Some of the plural arriving waves may be arriving waves which have been radiated from the transmission antenna of the same onboard radar system 510 and reflected by a target(s). Furthermore, some of the plural arriving waves may be direct or indirect arriving waves that have been radiated from other vehicles.
The incident angle of each arriving wave (i.e., an angle representing its direction of arrival) is an angle with respect to the broadside B of the array antenna AA. The incident angle of an arriving wave represents an angle with respect to a direction which is perpendicular to the direction of the line along which antenna elements are arrayed.
Now, consider a kth arriving wave. Where K arriving waves are impinging on the array antenna from K targets existing at different azimuths, a “kth arriving wave” means an arriving wave which is identified by an incident angle θk.
S=[s1,s2, . . . ,sM]T [Math. 1]
In the above, sm (where m is an integer from 1 to M; the same will also be true hereinbelow) is the value of a signal which is received by an mth antenna element. The superscriptT means transposition. S is a column vector. The column vector S is defined by a product of multiplication between a direction vector (referred to as a steering vector or a mode vector) as determined by the construction of the array antenna and a complex vector representing a signal from each target (also referred to as a wave source or a signal source). When the number of wave sources is K, the waves of signals arriving at each individual antenna element from the respective K wave sources are linearly superposed. In this state, sm can be expressed by Math. 2.
In Math. 2, ak, θk and φk respectively denote the amplitude, incident angle, and initial phase of the kth arriving wave. Moreover, λ denotes the wavelength of an arriving wave, and j is an imaginary unit.
As will be understood from Math. 2, sm is expressed as a complex number consisting of a real part (Re) and an imaginary part (Im).
When this is further generalized by taking noise (internal noise or thermal noise) into consideration, the array reception signal X can be expressed as Math. 3.
X=S+N [Math. 3]
N is a vector expression of noise.
The signal processing circuit generates a spatial covariance matrix Rxx (Math. 4) of arriving waves by using the array reception signal X expressed by Math. 3, and further determines eigenvalues of the spatial covariance matrix Rxx.
In the above, the superscriptH means complex conjugate transposition (Hermitian conjugate).
Among the eigenvalues, the number of eigenvalues which have values equal to or greater than a predetermined value that is defined based on thermal noise (signal space eigenvalues) corresponds to the number of arriving waves. Then, angles that produce the highest likelihood as to the directions of arrival of reflected waves (i.e. maximum likelihood) are calculated, whereby the number of targets and the angles at which the respective targets are present can be identified. This process is known as a maximum likelihood estimation technique.
Next, see
The array antenna AA includes a plurality of antenna elements, each of which outputs a reception signal in response to one or plural arriving waves. As mentioned earlier, the array antenna AA is capable of radiating a millimeter wave of a high frequency.
In the radar system 510, the array antenna AA needs to be attached to the vehicle, while at least some of the functions of the radar signal processing apparatus 530 may be implemented by a computer 550 and a database 552 which are provided externally to the vehicle travel controlling apparatus 600 (e.g., outside of the driver's vehicle). In that case, the portions of the radar signal processing apparatus 530 that are located within the vehicle may be perpetually or occasionally connected to the computer 550 and database 552 external to the vehicle so that bidirectional communications of signal or data are possible. The communications are to be performed via a communication device 540 of the vehicle and a commonly-available communications network.
The database 552 may store a program which defines various signal processing algorithms. The content of the data and program needed for the operation of the radar system 510 may be externally updated via the communication device 540. Thus, at least some of the functions of the radar system 510 can be realized externally to the driver's vehicle (which is inclusive of the interior of another vehicle), by a cloud computing technique. Therefore, an “onboard” radar system in the meaning of the present disclosure does not require that all of its constituent elements be mounted within the (driver's) vehicle. However, for simplicity, the present application will describe an implementation in which all constituent elements according to the present disclosure are mounted in a single vehicle (i.e., the driver's vehicle), unless otherwise specified.
The radar signal processing apparatus 530 includes a signal processing circuit 560. The signal processing circuit 560 directly or indirectly receives reception signals from the array antenna AA, and inputs the reception signals, or a secondary signal(s) which has been generated from the reception signals, to an arriving wave estimation unit AU. A part or a whole of the circuit (not shown) which generates a secondary signal(s) from the reception signals does not need to be provided inside of the signal processing circuit 560. A part or a whole of such a circuit (preprocessing circuit) may be provided between the array antenna AA and the radar signal processing apparatus 530.
The signal processing circuit 560 is configured to perform computation by using the reception signals or secondary signal(s), and output a signal indicating the number of arriving waves. As used herein, a “signal indicating the number of arriving waves” can be said to be a signal indicating the number of preceding vehicles (which may be one preceding vehicle or plural preceding vehicles) ahead of the driver's vehicle.
The signal processing circuit 560 may be configured to execute various signal processing which is executable by known radar signal processing apparatuses. For example, the signal processing circuit 560 may be configured to execute “super-resolution algorithms” such as the MUSIC method, the ESPRIT method, or the SAGE method, or other algorithms for direction-of-arrival estimation of relatively low resolution.
The arriving wave estimation unit AU shown in
In the present disclosure, the term “signal processing circuit” is not limited to a single circuit, but encompasses any implementation in which a combination of plural circuits is conceptually regarded as a single functional part. The signal processing circuit 560 may be realized by one or more System-on-Chips (SoCs). For example, a part or a whole of the signal processing circuit 560 may be an FPGA (Field-Programmable Gate Array), which is a programmable logic device (PLD). In that case, the signal processing circuit 560 includes a plurality of computation elements (e.g., general-purpose logics and multipliers) and a plurality of memory elements (e.g., look-up tables or memory blocks). Alternatively, the signal processing circuit 560 may be a set of a general-purpose processor(s) and a main memory device(s). The signal processing circuit 560 may be a circuit which includes a processor core(s) and a memory device(s). These may function as the signal processing circuit 560.
The travel assistance electronic control apparatus 520 is configured to provide travel assistance for the vehicle based on various signals which are output from the radar signal processing apparatus 530. The travel assistance electronic control apparatus 520 instructs various electronic control units to fulfill predetermined functions, e.g., a function of issuing an alarm to prompt the driver to make a braking operation when the distance to a preceding vehicle (vehicular gap) has become shorter than a predefined value; a function of controlling the brakes; and a function of controlling the accelerator. For example, in the case of an operation mode which performs adaptive cruise control of the driver's vehicle, the travel assistance electronic control apparatus 520 sends predetermined signals to various electronic control units (not shown) and actuators, to maintain the distance of the driver's vehicle to a preceding vehicle at a predefined value, or maintain the traveling velocity of the driver's vehicle at a predefined value.
In the case of the MUSIC method, the signal processing circuit 560 determines eigenvalues of the spatial covariance matrix, and, as a signal indicating the number of arriving waves, outputs a signal indicating the number of those eigenvalues (“signal space eigenvalues”) which are greater than a predetermined value (thermal noise power) that is defined based on thermal noise.
Next, see
At least one of the transmission antenna Tx and the reception antenna Rx has the aforementioned waveguide structure. The transmission antenna Tx radiates a transmission wave, which may be a millimeter wave, for example. The reception antenna Rx that is dedicated to reception only outputs a reception signal in response to one or plural arriving waves (e.g., a millimeter wave(s)).
A transmission/reception circuit 580 sends a transmission signal for a transmission wave to the transmission antenna Tx, and performs “preprocessing” for reception signals of reception waves received at the reception antenna Rx. A part or a whole of the preprocessing may be performed by the signal processing circuit 560 in the radar signal processing apparatus 530. A typical example of preprocessing to be performed by the transmission/reception circuit 580 may be generating a beat signal from a reception signal, and converting a reception signal of analog format into a reception signal of digital format.
In the present specification, a device that includes a transmission antenna, a reception antenna, a transmission/reception circuit, and a waveguide device that allows an electromagnetic wave to propagate between the transmission antenna and reception antenna and the transmission/reception circuit is referred to as “radar device”. A system that includes a signal processing device such as an object detection apparatus (including a signal processing circuit) in addition to the radar device is referred to as a radar system”.
Note that the radar system according to the present disclosure may, without being limited to the implementation where it is mounted in the driver's vehicle, be used while being fixed on the road or a building.
Next, an example of a more specific construction of the vehicle travel controlling apparatus 600 will be described.
The onboard camera system 700 includes an onboard camera 710 which is mounted in a vehicle, and an image processing circuit 720 which processes an image or video that is acquired by the onboard camera 710.
The vehicle travel controlling apparatus 600 of this Application Example includes an object detection apparatus 570 which is connected to the array antenna AA and the onboard camera 710, and a travel assistance electronic control apparatus 520 which is connected to the object detection apparatus 570. The object detection apparatus 570 includes a transmission/reception circuit 580 and an image processing circuit 720, in addition to the above-described radar signal processing apparatus 530 (including the signal processing circuit 560). The object detection apparatus 570 detects a target on the road or near the road, by using not only the information which is obtained by the radar system 510 but also the information which is obtained by the image processing circuit 720. For example, while the driver's vehicle is traveling in one of two or more lanes of the same direction, the image processing circuit 720 can distinguish which lane the driver's vehicle is traveling in, and supply that result of distinction to the signal processing circuit 560. When the number and azimuth(s) of preceding vehicles are to be recognized by using a predetermined algorithm for direction-of-arrival estimation (e.g., the MUSIC method), the signal processing circuit 560 is able to provide more reliable information concerning a spatial distribution of preceding vehicles by referring to the information from the image processing circuit 720.
Note that the onboard camera system 700 is an example of a means for identifying which lane the driver's vehicle is traveling in. The lane position of the driver's vehicle may be identified by any other means. For example, by utilizing an ultra-wide band (UWB) technique, it is possible to identify which one of a plurality of lanes the driver's vehicle is traveling in. It is widely known that the ultra-wide band technique is applicable to position measurement and/or radar. Using the ultra-wide band technique enhances the range resolution of the radar, so that, even when a large number of vehicles exist ahead, each individual target can be detected with distinction, based on differences in distance. This makes it possible to accurately identify distance from a guardrail on the road shoulder, or from the median strip. The width of each lane is predefined based on each country's law or the like. By using such information, it becomes possible to identify where the lane in which the driver's vehicle is currently traveling is. Note that the ultra-wide band technique is an example. A radio wave based on any other wireless technique may be used. Moreover, LIDAR (Light Detection and Ranging) may be used together with a radar. LIDAR is sometimes called “laser radar”.
The array antenna AA may be a generic millimeter wave array antenna for onboard use. The transmission antenna Tx in this Application Example radiates a millimeter wave as a transmission wave ahead of the vehicle. A portion of the transmission wave is reflected off a target which is typically a preceding vehicle, whereby a reflected wave occurs from the target being a wave source. A portion of the reflected wave reaches the array antenna (reception antenna) AA as an arriving wave. Each of the plurality of antenna elements of the array antenna AA outputs a reception signal in response to one or plural arriving waves. In the case where the number of targets functioning as wave sources of reflected waves is K (where K is an integer of one or more), the number of arriving waves is K, but this number K of arriving waves is not known beforehand.
The example of
The signal processing circuit 560 receives and processes the reception signals which have been received by the reception antenna Rx and subjected to preprocessing by the transmission/reception circuit 580. This process encompasses inputting the reception signals to the arriving wave estimation unit AU, or alternatively, generating a secondary signal(s) from the reception signals and inputting the secondary signal(s) to the arriving wave estimation unit AU.
In the example of
As shown in
In the array antenna AA, the antenna elements 111 to 11M are arranged in a linear array or a two-dimensional array at fixed intervals, for example. Each arriving wave will impinge on the array antenna AA from a direction at an angle θ with respect to the normal of the plane in which the antenna elements 111 to 11M are arrayed. Thus, the direction of arrival of an arriving wave is defined by this angle θ.
When an arriving wave from one target impinges on the array antenna AA, this approximates to a plane wave impinging on the antenna elements 111 to 11M from azimuths of the same angle θ. When K arriving waves impinge on the array antenna AA from K targets with different azimuths, the individual arriving waves can be identified in terms of respectively different angles θ1 to θK.
As shown in
The transmission/reception circuit 580 includes a triangular wave generation circuit 581, a VCO (voltage controlled oscillator) 582, a distributor 583, mixers 584, filters 585, a switch 586, an A/D converter 587, and a controller 588. Although the radar system in this Application Example is configured to perform transmission and reception of millimeter waves by the FMCW method, the radar system of the present disclosure is not limited to this method. The transmission/reception circuit 580 is configured to generate a beat signal based on a reception signal from the array antenna AA and a transmission signal from the transmission antenna Tx.
The signal processing circuit 560 includes a distance detection section 533, a velocity detection section 534, and an azimuth detection section 536. The signal processing circuit 560 is configured to process a signal from the A/D converter 587 in the transmission/reception circuit 580, and output signals respectively indicating the detected distance to the target, the relative velocity of the target, and the azimuth of the target.
First, the construction and operation of the transmission/reception circuit 580 will be described in detail.
The triangular wave generation circuit 581 generates a triangular wave signal, and supplies it to the VCO 582. The VCO 582 outputs a transmission signal having a frequency as modulated based on the triangular wave signal.
In addition to the transmission signal,
When the reception signal and the transmission signal are mixed, a beat signal is generated based on their frequency difference. The frequency of this beat signal (beat frequency) differs between a period in which the transmission signal increases in frequency (ascent) and a period in which the transmission signal decreases in frequency (descent). Once a beat frequency for each period is determined, based on such beat frequencies, the distance to the target and the relative velocity of the target are calculated.
In the example shown in
The switch 586 performs switching in response to a sampling signal which is input from the controller 588. The controller 588 may be composed of a microcomputer, for example. Based on a computer program which is stored in a memory such as a ROM, the controller 588 controls the entire transmission/reception circuit 580. The controller 588 does not need to be provided inside the transmission/reception circuit 580, but may be provided inside the signal processing circuit 560. In other words, the transmission/reception circuit 580 may operate in accordance with a control signal from the signal processing circuit 560. Alternatively, some or all of the functions of the controller 588 may be realized by a central processing unit which controls the entire transmission/reception circuit 580 and signal processing circuit 560.
The beat signals on the channels Ch1 to ChM having passed through the respective filters 585 are consecutively supplied to the A/D converter 587 via the switch 586. In synchronization with the sampling signal, the A/D converter 587 converts the beat signals on the channels Ch1 to ChM, which are input from the switch 586, into digital signals.
Hereinafter, the construction and operation of the signal processing circuit 560 will be described in detail. In this Application Example, the distance to the target and the relative velocity of the target are estimated by the FMCW method. Without being limited to the FMCW method as described below, the radar system can also be implemented by using other methods, e.g., 2 frequency CW and spread spectrum methods.
In the example shown in
The signal processing circuit 560 in this Application Example is configured to estimate the position information of a preceding vehicle by using each beat signal converted into a digital signal as a secondary signal of the reception signal, and output a signal indicating the estimation result. Hereinafter, the construction and operation of the signal processing circuit 560 in this Application Example will be described in detail.
For each of the channels Ch1 to ChM, the memory 531 in the signal processing circuit 560 stores a digital signal which is output from the A/D converter 587. The memory 531 may be composed of a generic storage medium such as a semiconductor memory or a hard disk and/or an optical disk.
The reception intensity calculation section 532 applies Fourier transform to the respective beat signals for the channels Ch1 to ChM (shown in the lower graph of
In the case where there is one target, i.e., one preceding vehicle, as shown in
From the signal intensities of beat frequencies, the reception intensity calculation section 532 detects any signal intensity that exceeds a predefined value (threshold value), thus determining the presence of a target. Upon detecting a signal intensity peak, the reception intensity calculation section 532 outputs the beat frequencies (fu, fd) of the peak values to the distance detection section 533 and the velocity detection section 534 as the frequencies of the object of interest. The reception intensity calculation section 532 outputs information indicating the frequency modulation width Δf to the distance detection section 533, and outputs information indicating the center frequency f0 to the velocity detection section 534.
In the case where signal intensity peaks corresponding to plural targets are detected, the reception intensity calculation section 532 find associations between the ascents peak values and the descent peak values based on predefined conditions. Peaks which are determined as belonging to signals from the same target are given the same number, and thus are fed to the distance detection section 533 and the velocity detection section 534.
When there are plural targets, after the Fourier transform, as many peaks as there are targets will appear in the ascent portions and the descent portions of the beat signal. In proportion to the distance between the radar and a target, the reception signal will become more delayed and the reception signal in
Based on the beat frequencies fu and fd which are input from the reception intensity calculation section 532, the distance detection section 533 calculates a distance R through the equation below, and supplies it to the target link processing section 537.
R={c·T/(2·Δf)}·{(fu+fd)/2}
Moreover, based on the beat frequencies fu and fd being input from the reception intensity calculation section 532, the velocity detection section 534 calculates a relative velocity V through the equation below, and supplies it to the target link processing section 537.
V={c/(2·f0)}·{(fu−fd)/2}
In the equation which calculates the distance R and the relative velocity V, c is velocity of light, and T is the modulation period.
Note that the lower limit resolution of distance R is expressed as c/(2Δf). Therefore, as Δf increases, the resolution of distance R increases. In the case where the frequency f0 is in the 76 GHz band, when Δf is set on the order of 660 megahertz (MHz), the resolution of distance R will be on the order of 0.23 meters (m), for example. Therefore, if two preceding vehicles are traveling abreast of each other, it may be difficult with the FMCW method to identify whether there is one vehicle or two vehicles. In such a case, it might be possible to run an algorithm for direction-of-arrival estimation that has an extremely high angular resolution to separate between the azimuths of the two preceding vehicles and enable detection.
By utilizing phase differences between signals from the antenna elements 111, 112, . . . , 11M, the DBF processing section 535 allows the incoming complex data corresponding to the respective antenna elements, which has been Fourier transformed with respect to the time axis, to be Fourier transformed with respect to the direction in which the antenna elements are arrayed. Then, the DBF processing section 535 calculates spatial complex number data indicating the spectrum intensity for each angular channel as determined by the angular resolution, and outputs it to the azimuth detection section 536 for the respective beat frequencies.
The azimuth detection section 536 is provided for the purpose of estimating the azimuth of a preceding vehicle. Among the values of spatial complex number data that has been calculated for the respective beat frequencies, the azimuth detection section 536 chooses an angle θ that takes the largest value, and outputs it to the target link processing section 537 as the azimuth at which an object of interest exists.
Note that the method of estimating the angle θ indicating the direction of arrival of an arriving wave is not limited to this example. Various algorithms for direction-of-arrival estimation that have been mentioned earlier can be employed.
The target link processing section 537 calculates absolute values of the differences between the respective values of distance, relative velocity, and azimuth of the object of interest as calculated in the current cycle and the respective values of distance, relative velocity, and azimuth of the object of interest as calculated 1 cycle before, which are read from the memory 531. Then, if the absolute value of each difference is smaller than a value which is defined for the respective value, the target link processing section 537 determines that the target that was detected 1 cycle before and the target detected in the current cycle are an identical target. In that case, the target link processing section 537 increments the count of target link processes, which is read from the memory 531, by one.
If the absolute value of a difference is greater than predetermined, the target link processing section 537 determines that a new object of interest has been detected. The target link processing section 537 stores the respective values of distance, relative velocity, and azimuth of the object of interest as calculated in the current cycle and also the count of target link processes for that object of interest to the memory 531.
In the signal processing circuit 560, the distance to the object of interest and its relative velocity can be detected by using a spectrum which is obtained through a frequency analysis of beat signals, which are signals generated based on received reflected waves.
The matrix generation section 538 generates a spatial covariance matrix by using the respective beat signals for the channels Ch1 to ChM (lower graph in
When a plurality of signal intensity peaks corresponding to plural objects of interest have been detected, the reception intensity calculation section 532 numbers the peak values respectively in the ascent portion and in the descent portion, beginning from those with smaller frequencies first, and output them to the target output processing section 539. In the ascent and descent portions, peaks of any identical number correspond to the same object of interest. The identification numbers are to be regarded as the numbers assigned to the objects of interest. For simplicity of illustration, a leader line from the reception intensity calculation section 532 to the target output processing section 539 is conveniently omitted from
When the object of interest is a structure ahead, the target output processing section 539 outputs the identification number of that object of interest as indicating a target. When receiving results of determination concerning plural objects of interest, such that all of them are structures ahead, the target output processing section 539 outputs the identification number of an object of interest that is in the lane of the driver's vehicle as the object position information indicating where a target is. Moreover, When receiving results of determination concerning plural objects of interest, such that all of them are structures ahead and that two or more objects of interest are in the lane of the driver's vehicle, the target output processing section 539 outputs the identification number of an object of interest that is associated with the largest count of target being read from the link processes memory 531 as the object position information indicating where a target is.
Referring back to
The selection circuit 596 selectively feeds position information which is received from the signal processing circuit 560 or the image processing circuit 720 to the travel assistance electronic control apparatus 520. For example, the selection circuit 596 compares a first distance, i.e., the distance from the driver's vehicle to a detected object as contained in the object position information from the signal processing circuit 560, against a second distance, i.e., the distance from the driver's vehicle to the detected object as contained in the object position information from the image processing circuit 720, and determines which is closer to the driver's vehicle. For example, based on the result of determination, the selection circuit 596 may select the object position information which indicates a closer distance to the driver's vehicle, and output it to the travel assistance electronic control apparatus 520. If the result of determination indicates the first distance and the second distance to be of the same value, the selection circuit 596 may output either one, or both of them, to the travel assistance electronic control apparatus 520.
If information indicating that there is no prospective target is input from the reception intensity calculation section 532, the target output processing section 539 (
Based on predefined conditions, the travel assistance electronic control apparatus 520 having received the position information of a preceding object from the object detection apparatus 570 performs control to make the operation safer or easier for the driver who is driving the driver's vehicle, in accordance with the distance and size indicated by the object position information, the velocity of the driver's vehicle, road surface conditions such as rainfall, snowfall or clear weather, or other conditions. For example, if the object position information indicates that no object has been detected, the travel assistance electronic control apparatus 520 may send a control signal to an accelerator control circuit 526 to increase speed up to a predefined velocity, thereby controlling the accelerator control circuit 526 to make an operation that is equivalent to stepping on the accelerator pedal.
In the case where the object position information indicates that an object has been detected, if it is found to be at a predetermined distance from the driver's vehicle, the travel assistance electronic control apparatus 520 controls the brakes via a brake control circuit 524 through a brake-by-wire construction or the like. In other words, it makes an operation of decreasing the velocity to maintain a constant vehicular gap. Upon receiving the object position information, the travel assistance electronic control apparatus 520 sends a control signal to an alarm control circuit 522 so as to control lamp illumination or control audio through a loudspeaker which is provided within the vehicle, so that the driver is informed of the nearing of a preceding object. Upon receiving object position information including a spatial distribution of preceding vehicles, the travel assistance electronic control apparatus 520 may, if the traveling velocity is within a predefined range, automatically make the steering wheel easier to operate to the right or left, or control the hydraulic pressure on the steering wheel side so as to force a change in the direction of the wheels, thereby providing assistance in collision avoidance with respect to the preceding object.
The object detection apparatus 570 may be arranged so that, if a piece of object position information which was being continuously detected by the selection circuit 596 for a while in the previous detection cycle but which is not detected in the current detection cycle becomes associated with a piece of object position information from a camera-detected video indicating a preceding object, then continued tracking is chosen, and object position information from the signal processing circuit 560 is output with priority.
An exemplary specific construction and an exemplary operation for the selection circuit 596 to make a selection between the outputs from the signal processing circuit 560 and the image processing circuit 720 are disclosed in the specification of U.S. Pat. No. 8,446,312, the specification of U.S. Pat. No. 8,730,096, and the specification of U.S. Pat. No. 8,730,099. The entire disclosure thereof is incorporated herein by reference.
[First Variant]
In the radar system for onboard use of the above Application Example, the (sweep) condition for a single instance of FMCW (Frequency Modulated Continuous Wave) frequency modulation, i.e., a time span required for such a modulation (sweep time), is e.g. 1 millisecond, although the sweep time could be shortened to about 100 microseconds.
However, in order to realize such a rapid sweep condition, not only the constituent elements involved in the radiation of a transmission wave, but also the constituent elements involved in the reception under that sweep condition must also be able to rapidly operate. For example, an A/D converter 587 (
In the present variant, a relative velocity with respect to a target is calculated without utilizing any Doppler shift-based frequency component. In this variant, the sweep time is Tm=100 microseconds, which is very short. The lowest frequency of a detectable beat signal, which is 1/Tm, equals 10 kHz in this case. This would correspond to a Doppler shift of a reflected wave from a target which has a relative velocity of approximately 20 m/second. In other words, so long as one relies on a Doppler shift, it would be impossible to detect relative velocities that are equal to or smaller than this. Thus, a method of calculation which is different from a Doppler shift-based method of calculation is preferably adopted.
As an example, this variant illustrates a process that utilizes a signal (upbeat signal) representing a difference between a transmission wave and a reception wave which is obtained in an upbeat (ascent) portion where the transmission wave increases in frequency. A single sweep time of FMCW is 100 microseconds, and its waveform is a sawtooth shape which is composed only of an upbeat portion. In other words, in this variant, the signal wave which is generated by the triangular wave/CW wave generation circuit 581 has a sawtooth shape. The sweep width in frequency is 500 MHz. Since no peaks are to be utilized that are associated with Doppler shifts, the process is not one that generates an upbeat signal and a downbeat signal to utilize the peaks of both, but will rely on only one of such signals. Although a case of utilizing an upbeat signal will be illustrated herein, a similar process can also be performed by using a downbeat signal.
The A/D converter 587 (
In this variant, 128 upbeat signals are transmitted/received in series, for each of which some several hundred pieces of sampling data are obtained. The number of upbeat signals is not limited to 128. It may be 256, or 8. An arbitrary number may be selected depending on the purpose.
The resultant sampling data is stored to the memory 531. The reception intensity calculation section 532 applies a two-dimensional fast Fourier transform (FFT) to the sampling data. Specifically, first, for each of the sampling data pieces that have been obtained through a single sweep, a first FFT process (frequency analysis process) is performed to generate a power spectrum. Next, the velocity detection section 534 performs a second FFT process for the processing results that have been collected from all sweeps.
When the reflected waves are from the same target, peak components in the power spectrum to be detected in each sweep period will be of the same frequency. On the other hand, for different targets, the peak components will differ in frequency. Through the first FFT process, plural targets that are located at different distances can be separated.
In the case where a relative velocity with respect to a target is non-zero, the phase of the upbeat signal changes slightly from sweep to sweep. In other words, through the second FFT process, a power spectrum whose elements are the data of frequency components that are associated with such phase changes will be obtained for the respective results of the first FFT process.
The reception intensity calculation section 532 extracts peak values in the second power spectrum above, and sends them to the velocity detection section 534.
The velocity detection section 534 determines a relative velocity from the phase changes. For example, suppose that a series of obtained upbeat signals undergo phase changes by every phase θ [RXd]. Assuming that the transmission wave has an average wavelength λ, this means there is a λ/(4π/θ) change in distance every time an upbeat signal is obtained. Since this change has occurred over an interval of upbeat signal transmission Tm (=100 microseconds), the relative velocity is determined to be {λ/(4π/θ)}/Tm.
Through the above processes, a relative velocity with respect to a target as well as a distance from the target can be obtained.
[Second Variant]
The radar system 510 is able to detect a target by using a continuous wave(s) CW of one or plural frequencies. This method is especially useful in an environment where a multitude of reflected waves impinge on the radar system 510 from still objects in the surroundings, e.g., when the vehicle is in a tunnel.
The radar system 510 has an antenna array for reception purposes, including five channels of independent reception elements. In such a radar system, the azimuth-of-arrival estimation for incident reflected waves is only possible if there are four or fewer reflected waves that are simultaneously incident. In an FMCW-type radar, the number of reflected waves to be simultaneously subjected to an azimuth-of-arrival estimation can be reduced by exclusively selecting reflected waves from a specific distance. However, in an environment where a large number of still objects exist in the surroundings, e.g., in a tunnel, it is as if there were a continuum of objects to reflect radio waves; therefore, even if one narrows down on the reflected waves based on distance, the number of reflected waves may still not be equal to or smaller than four. However, any such still object in the surroundings will have an identical relative velocity with respect to the driver's vehicle, and the relative velocity will be greater than that associated with any other vehicle that is traveling ahead. On this basis, such still objects can be distinguished from any other vehicle based on the magnitudes of Doppler shifts.
Therefore, the radar system 510 performs a process of: radiating continuous waves CW of plural frequencies; and, while ignoring Doppler shift peaks that correspond to still objects in the reception signals, detecting a distance by using a Doppler shift peak(s) of any smaller shift amount(s). Unlike in the FMCW method, in the CW method, a frequency difference between a transmission wave and a reception wave is ascribable only to a Doppler shift. In other words, any peak frequency that appears in a beat signal is ascribable only to a Doppler shift.
In the description of this variant, too, a continuous wave to be used in the CW method will be referred to as a “continuous wave CW”. As described above, a continuous wave CW has a constant frequency; that is, it is unmodulated.
Suppose that the radar system 510 has radiated a continuous wave CW of a frequency fp, and detected a reflected wave of a frequency fq that has been reflected off a target. The difference between the transmission frequency fp and the reception frequency fq is called a Doppler frequency, which approximates to fp−fq=2·Vr·fp/c. Herein, Vr is a relative velocity between the radar system and the target, and c is the velocity of light. The transmission frequency fp, the Doppler frequency (fp−fq), and the velocity of light c are known. Therefore, from this equation, the relative velocity Vr=(fp−fq)·c/2fp can be determined. The distance to the target is calculated by utilizing phase information as will be described later.
In order to detect a distance to a target by using continuous waves CW, a 2 frequency CW method is adopted. In the 2 frequency CW method, continuous waves CW of two frequencies which are slightly apart are radiated each for a certain period, and their respective reflected waves are acquired. For example, in the case of using frequencies in the 76 GHz band, the difference between the two frequencies would be several hundred kHz. As will be described later, it is more preferable to determine the difference between the two frequencies while taking into account the minimum distance at which the radar used is able to detect a target.
Suppose that the radar system 510 has sequentially radiated continuous waves CW of frequencies fp1 and fp2 (fp1<fp2), and that the two continuous waves CW have been reflected off a single target, resulting in reflected waves of frequencies fq1 and fq2 being received by the radar system 510.
Based on the continuous wave CW of the frequency fp1 and the reflected wave (frequency fq1) thereof, a first Doppler frequency is obtained. Based on the continuous wave CW of the frequency fp2 and the reflected wave (frequency fq2) thereof, a second Doppler frequency is obtained. The two Doppler frequencies have substantially the same value. However, due to the difference between the frequencies fp1 and fp2, the complex signals of the respective reception waves differ in phase. By utilizing this phase information, a distance (range) to the target can be calculated.
Specifically, the radar system 510 is able to determine the distance R as R=c·Δφ/4π(fp2−fp1). Herein, λφ denotes the phase difference between two beat signals, i.e., beat signal 1 which is obtained as a difference between the continuous wave CW of the frequency fp1 and the reflected wave (frequency fq1) thereof and beat signal 2 which is obtained as a difference between the continuous wave CW of the frequency fp2 and the reflected wave (frequency fq2) thereof. The method of identifying the frequency fb1 of beat signal 1 and the frequency fb2 of beat signal 2 is identical to that in the aforementioned instance of a beat signal from a continuous wave CW of a single frequency.
Note that a relative velocity Vr under the 2 frequency CW method is determined as follows.
Vr=fb1·c/2·fp1 or Vr=fb2·c/2·fp2
Moreover, the range in which a distance to a target can be uniquely identified is limited to the range defined by Rmax<c/2(fp2−fp1). The reason is that beat signals resulting from a reflected wave from any farther target would produce a Δφ which is greater than 2π, such that they are indistinguishable from beat signals associated with targets at closer positions. Therefore, it is more preferable to adjust the difference between the frequencies of the two continuous waves CW so that Rmax becomes greater than the minimum detectable distance of the radar. In the case of a radar whose minimum detectable distance is 100 m, fp2−fp1 may be made e.g. 1.0 MHz. In this case, Rmax=150 m, so that a signal from any target from a position beyond Rmax is not detected. In the case of mounting a radar which is capable of detection up to 250 m, fp2−fp1 may be made e.g. 500 kHz. In this case, Rmax=300 m, so that a signal from any target from a position beyond Rmax is not detected, either. In the case where the radar has both of an operation mode in which the minimum detectable distance is 100 m and the horizontal viewing angle is 120 degrees and an operation mode in which the minimum detectable distance is 250 m and the horizontal viewing angle is 5 degrees, it is preferable to switch the fp2−fp1 value be 1.0 MHz and 500 kHz for operation in the respective operation modes.
A detection approach is known which, by transmitting continuous waves CW at N different frequencies (where N is an integer of 3 or more), and utilizing phase information of the respective reflected waves, detects a distance to each target. Under this detection approach, distance can be properly recognized up to N−1 targets. As the processing to enable this, a fast Fourier transform (FFT) is used, for example. Given N=64 or 128, an FFT is performed for sampling data of a beat signal as a difference between a transmission signal and a reception signal for each frequency, thus obtaining a frequency spectrum (relative velocity). Thereafter, at the frequency of the CW wave, a further FFT is performed for peaks of the same frequency, thus to derive distance information.
Hereinafter, this will be described more specifically.
For ease of explanation, first, an instance will be described where signals of three frequencies f1, f2 and f3 are transmitted while being switched over time. It is assumed that f1>f2>f3, and f1-f2=f2-f3=Δf. A transmission time Δt is assumed for the signal wave for each frequency.
Via the transmission antenna Tx, the triangular wave/CW wave generation circuit 581 (
Each mixer 584 mixes a transmission wave and a reception wave to generate a beat signal. The A/D converter 587 converts the beat signal, which is an analog signal, into several hundred pieces of digital data (sampling data), for example.
Using the sampling data, the reception intensity calculation section 532 performs FFT computation. Through the FFT computation, frequency spectrum information of reception signals is obtained for the respective transmission frequencies f1, f2 and f3.
Thereafter, the reception intensity calculation section 532 separates peak values from the frequency spectrum information of the reception signals. The frequency of any peak value which is predetermined or greater is in proportion to a relative velocity with respect to a target. Separating a peak value(s) from the frequency spectrum information of reception signals is synonymous with separating one or plural targets with different relative velocities.
Next, with respect to each of the transmission frequencies f1 to f3, the reception intensity calculation section 532 measures spectrum information of peak values of the same relative velocity or relative velocities within a predefined range.
Now, consider a scenario where two targets A and B exist which have about the same relative velocity but are at respectively different distances. A transmission signal of the frequency f1 will be reflected from both of targets A and B to result in reception signals being obtained. The reflected waves from targets A and B will result in substantially the same beat signal frequency. Therefore, the power spectra at the Doppler frequencies of the reception signals, corresponding to their relative velocities, are obtained as a synthetic spectrum F1 into which the power spectra of two targets A and B have been merged.
Similarly, for each of the frequencies f2 and f3, the power spectra at the Doppler frequencies of the reception signals, corresponding to their relative velocities, are obtained as a synthetic spectrum F1 into which the power spectra of two targets A and B have been merged.
Under a constant difference Δf between the transmission frequencies, the phase difference between the reception signals corresponding to the respective transmission signals of the frequencies f1 and f2 is in proportion to the distance to a target. Therefore, the phase difference between the vectors f1A and f2A and the phase difference between the vectors f2A and f3A are of the same value θA, this phase difference θA being in proportion to the distance to target A. Similarly, the phase difference between the vectors f1B and f2B and the phase difference between the vectors f2B and f3B are of the same value θB, this phase difference θB being in proportion to the distance to target B.
By using a well-known method, the respective distances to targets A and B can be determined from the synthetic spectra F1 to F3 and the difference Δf between the transmission frequencies. This technique is disclosed in U.S. Pat. No. 6,703,967, for example. The entire disclosure of this publication is incorporated herein by reference.
Similar processing is also applicable when the transmitted signals have four or more frequencies.
Note that, before transmitting continuous waves CW at N different frequencies, a process of determining the distance to and relative velocity of each target may be performed by the 2 frequency CW method. Then, under predetermined conditions, this process may be switched to a process of transmitting continuous waves CW at N different frequencies. For example, FFT computation may be performed by using the respective beat signals at the two frequencies, and if the power spectrum of each transmission frequency undergoes a change over time of 30% or more, the process may be switched. The amplitude of a reflected wave from each target undergoes a large change over time due to multipath influences and the like. When there exists a change of a predetermined magnitude or greater, it may be considered that plural targets may exist.
Moreover, the CW method is known to be unable to detect a target when the relative velocity between the radar system and the target is zero, i.e., when the Doppler frequency is zero. However, when a pseudo Doppler signal is determined by the following methods, for example, it is possible to detect a target by using that frequency.
(Method 1) A mixer that causes a certain frequency shift in the output of a receiving antenna is added. By using a transmission signal and a reception signal with a shifted frequency, a pseudo Doppler signal can be obtained.
(Method 2) A variable phase shifter to introduce phase changes continuously over time is inserted between the output of a receiving antenna and a mixer, thus adding a pseudo phase difference to the reception signal. By using a transmission signal and a reception signal with an added phase difference, a pseudo Doppler signal can be obtained.
An example of specific construction and operation of inserting a variable phase shifter to generate a pseudo Doppler signal under Method 2 is disclosed in Japanese Laid-Open Patent Publication No. 2004-257848. The entire disclosure of this publication is incorporated herein by reference.
When targets with zero or very little relative velocity need to be detected, the aforementioned processes of generating a pseudo Doppler signal may be adopted, or the process may be switched to a target detection process under the FMCW method.
Next, with reference to
The example below will illustrate a case where continuous waves CW are transmitted at two different frequencies fp1 and fp2 (fp1<fp2), and the phase information of each reflected wave is utilized to respectively detect a distance with respect to a target.
At step S41, the triangular wave/CW wave generation circuit 581 generates two continuous waves CW of frequencies which are slightly apart, i.e., frequencies fp1 and fp2.
At step S42, the transmission antenna Tx and the reception antennas Rx perform transmission/reception of the generated series of continuous waves CW. Note that the process of step S41 and the process of step S42 are to be performed in parallel fashion respectively by the triangular wave/CW wave generation circuit 581 and the transmission antenna Tx/reception antenna Rx, rather than step S42 following only after completion of step S41.
At step S43, each mixer 584 generates a difference signal by utilizing each transmission wave and each reception wave, whereby two difference signals are obtained. Each reception wave is inclusive of a reception wave emanating from a still object and a reception wave emanating from a target. Therefore, next, a process of identifying frequencies to be utilized as the beat signals is performed. Note that the process of step S41, the process of step S42, and the process of step S43 are to be performed in parallel fashion by the triangular wave/CW wave generation circuit 581, the transmission antenna Tx/reception antenna Rx, and the mixers 584, rather than step S42 following only after completion of step S41, or step S43 following only after completion of step S42.
At step S44, for each of the two difference signals, the object detection apparatus 570 identifies certain peak frequencies to be frequencies fb1 and fb2 of beat signals, such that these frequencies are equal to or smaller than a frequency which is predefined as a threshold value and yet they have amplitude values which are equal to or greater than a predetermined amplitude value, and that the difference between the two frequencies is equal to or smaller than a predetermined value.
At step S45, based on one of the two beat signal frequencies identified, the reception intensity calculation section 532 detects a relative velocity. The reception intensity calculation section 532 calculates the relative velocity according to Vr=fb1·c/2·fp1, for example. Note that a relative velocity may be calculated by utilizing each of the two beat signal frequencies, which will allow the reception intensity calculation section 532 to verify whether they match or not, thus enhancing the precision of relative velocity calculation.
At step S46, the reception intensity calculation section 532 determines a phase difference Δφ between two beat signals 1 and 2, and determines a distance R=c·Δφ/4π(fp2−fp1) to the target.
Through the above processes, the relative velocity and distance to a target can be detected.
Note that continuous waves CW may be transmitted at N different frequencies (where N is 3 or more), and by utilizing phase information of the respective reflected wave, distances to plural targets which are of the same relative velocity but at different positions may be detected.
In addition to the radar system 510, the vehicle 500 described above may further include another radar system. For example, the vehicle 500 may further include a radar system having a detection range toward the rear or the sides of the vehicle body. In the case of incorporating a radar system having a detection range toward the rear of the vehicle body, the radar system may monitor the rear, and if there is any danger of having another vehicle bump into the rear, make a response by issuing an alarm, for example. In the case of incorporating a radar system having a detection range toward the sides of the vehicle body, the radar system may monitor an adjacent lane when the driver's vehicle changes its lane, etc., and make a response by issuing an alarm or the like as necessary.
The applications of the above-described radar system 510 are not limited to onboard use only. Rather, the radar system 510 may be used as sensors for various purposes. For example, it may be used as a radar for monitoring the surroundings of a house or any other building. Alternatively, it may be used as a sensor for detecting the presence or absence of a person at a specific indoor place, or whether or not such a person is undergoing any motion, etc., without utilizing any optical images.
[Supplementary Details of Processing]
Other embodiments will be described in connection with the 2 frequency CW or FMCW techniques for array antennas as described above. As described earlier, in the example of
In order to solve this problem, a scalar signal may be generated as a beat signal. For each of a plurality of beat signals that have been generated, two complex Fourier transforms may be performed with respect to the spatial axis direction, which conforms to the antenna array, and to the time axis direction, which conforms to the lapse of time, thus to obtain results of frequency analysis. As a result, with only a small amount of computation, beam formation can eventually be achieved so that directions of arrival of reflected waves can be identified, whereby results of frequency analysis can be obtained for the respective beams. As a patent document related to the present disclosure, the entire disclosure of the specification of U.S. Pat. No. 6,339,395 is incorporated herein by reference.
[Optical Sensor, e.g., Camera, and Millimeter Wave Radar]
Next, a comparison between the above-described array antenna and conventional antennas, as well as an exemplary application in which both of the present array antenna and an optical sensor (e.g., a camera) are utilized, will be described. Note that LIDAR or the like may be employed as the optical sensor.
A millimeter wave radar is able to directly detect a distance (range) to a target and a relative velocity thereof. Another characteristic is that its detection performance is not much deteriorated in the nighttime (including dusk), or in bad weather, e.g., rainfall, fog, or snowfall. On the other hand, it is believed that it is not just as easy for a millimeter wave radar to take a two-dimensional grasp of a target as it is for a camera. On the other hand, it is relatively easy for a camera to take a two-dimensional grasp of a target and recognize its shape. However, a camera may not be able to image a target in nighttime or bad weather, which presents a considerable problem. This problem is particularly outstanding when droplets of water have adhered to the portion through which to ensure lighting, or the eyesight is narrowed by a fog. This problem similarly exists for LIDAR or the like, which also pertains to the realm of optical sensors.
In these years, in answer to increasing demand for safer vehicle operation, driver assist systems for preventing collisions or the like are being developed. A driver assist system acquires an image in the direction of vehicle travel with a sensor such as a camera or a millimeter wave radar, and when any obstacle is recognized that is predicted to hinder vehicle travel, brakes or the like are automatically applied to prevent collisions or the like. Such a function of collision avoidance is expected to operate normally, even in nighttime or bad weather.
Hence, driver assist systems of a so-called fusion construction are gaining prevalence, where, in addition to a conventional optical sensor such as a camera, a millimeter wave radar is mounted as a sensor, thus realizing a recognition process that takes advantage of both. Such a driver assist system will be discussed later.
On the other hand, higher and higher functions are being required of the millimeter wave radar itself. A millimeter wave radar for onboard use mainly uses electromagnetic waves of the 76 GHz band. The antenna power of its antenna is restricted to below a certain level under each country's law or the like. For example, it is restricted to 0.01 W or below in Japan. Under such restrictions, a millimeter wave radar for onboard use is expected to satisfy the required performance that, for example, its detection range is 200 m or more; the antenna size is 60 mm×60 mm or less; its horizontal detection angle is 90 degrees or more; its range resolution is 20 cm or less; it is capable of short-range detection within 10 m; and so on. Conventional millimeter wave radars have used microstrip lines as waveguides, and patch antennas as antennas (hereinafter, these will both be referred to as “patch antennas”). However, with a patch antenna, it has been difficult to attain the aforementioned performance.
By using a horn antenna array to which the technique of the present disclosure is applied, the inventors have successfully achieved the aforementioned performance. As a result, a millimeter wave radar has been realized which is smaller in size, more efficient, and higher-performance than are conventional patch antennas and the like. In addition, by combining this millimeter wave radar and an optical sensor such as a camera, a small-sized, highly efficient, and high-performance fusion apparatus has been realized which has existed never before. This will be described in detail below.
[Installment of Millimeter Wave Radar within Vehicle Room]
A conventional patch antenna-based millimeter wave radar 510′ is placed behind and inward of a grill 512 which is at the front nose of a vehicle. An electromagnetic wave that is radiated from an antenna goes through the apertures in the grill 512, and is radiated ahead of the vehicle 500. In this case, no dielectric layer, e.g., glass, exists that decays or reflects electromagnetic wave energy, in the region through which the electromagnetic wave passes. As a result, an electromagnetic wave that is radiated from the patch antenna-based millimeter wave radar 510′ reaches over a long range, e.g., to a target which is 150 m or farther away. By receiving with the antenna the electromagnetic wave reflected therefrom, the millimeter wave radar 510′ is able to detect a target. In this case, however, since the antenna is placed behind and inward of the grill 512 of the vehicle, the radar may be broken when the vehicle collides into an obstacle. Moreover, it may be soiled with mud or the like in rain, etc., and the soil that has adhered to the antenna may hinder radiation and reception of electromagnetic waves.
Similarly to the conventional manner, the millimeter wave radar 510 incorporating a horn antenna array according to an embodiment of the present disclosure may be placed behind the grill 512, which is located at the front nose of the vehicle (not shown). This allows the energy of the electromagnetic wave to be radiated from the antenna to be utilized by 100%, thus enabling long-range detection beyond the conventional level, e.g., detection of a target which is at a distance of 250 m or more.
Furthermore, the millimeter wave radar 510 according to an embodiment of the present disclosure can also be placed within the vehicle room, i.e., inside the vehicle. In that case, the millimeter wave radar 510 is placed inward of the windshield 511 of the vehicle, to fit in a space between the windshield 511 and a face of the rearview mirror (not shown) that is opposite to its specular surface. On the other hand, the conventional patch antenna-based millimeter wave radar 510′ cannot be placed inside the vehicle room mainly for the two following reasons. A first reason is its large size, which prevents itself from being accommodated within the space between the windshield 511 and the rearview mirror. A second reason is that an electromagnetic wave that is radiated ahead reflects off the windshield 511 and decays due to dielectric loss, thus becoming unable to travel the desired distance. As a result, if a conventional patch antenna-based millimeter wave radar is placed within the vehicle room, only targets which are 100 m ahead or less can be detected, for example. On the other hand, a millimeter wave radar according to an embodiment of the present disclosure is able to detect a target which is at a distance of 200 m or more, despite reflection or decay at the windshield 511. This performance is equivalent to, or even greater than, the case where a conventional patch antenna-based millimeter wave radar is placed outside the vehicle room.
[Fusion Construction Based on Millimeter Wave Radar and Camera, Etc., being Placed within Vehicle Room]
Currently, an optical imaging device such as a CCD camera is used as the main sensor in many a driver assist system (Driver Assist System). Usually, a camera or the like is placed within the vehicle room, inward of the windshield 511, in order to account for unfavorable influences of the external environment, etc. In this context, in order to minimize the optical effect of raindrops and the like, the camera or the like is placed in a region which is swept by the wipers (not shown) but is inward of the windshield 511.
In recent years, due to needs for improved performance of a vehicle in terms of e.g. automatic braking, there has been a desire for automatic braking or the like that is guaranteed to work regardless of whatever external environment may exist. In this case, if the only sensor in the driver assist system is an optical device such as a camera, a problem exists in that reliable operation is not guaranteed in nighttime or bad weather. This has led to the need for a driver assist system that incorporates not only an optical sensor (such as a camera) but also a millimeter wave radar, these being used for cooperative processing, so that reliable operation is achieved even in nighttime or bad weather.
As described earlier, a millimeter wave radar incorporating the present horn antenna array permits itself to be placed within the vehicle room, due to downsizing and remarkable enhancement in the efficiency of the radiated electromagnetic wave over that of a conventional patch antenna. By taking advantage of these properties, as shown in
(1) It is easier to install the driver assist system on the vehicle 500. The conventional patch antenna-based millimeter wave radar 510′ has required a space behind the grill 512, which is at the front nose, in order to accommodate the radar. Since this space may include some sites that affect the structural design of the vehicle, if the size of the radar device is changed, it may have been necessary to reconsider the structural design. This inconvenience is avoided by placing the millimeter wave radar within the vehicle room.
(2) Free from the influences of rain, nighttime, or other external environment factors to the vehicle, more reliable operation can be achieved. Especially, as shown in
(3) Reliability of the millimeter wave radar device is improved. As described above, since the conventional patch antenna-based millimeter wave radar 510′ is placed behind the grill 512, which is at the front nose, it is likely to gather soil, and may be broken even in a minor collision accident or the like. For these reasons, cleaning and functionality checks are always needed. Moreover, as will be described below, if the position or direction of attachment of the millimeter wave radar becomes shifted due to an accident or the like, it is necessary to reestablish alignment with respect to the camera. The chances of such occurrences are reduced by placing the millimeter wave radar within the vehicle room, whereby the aforementioned inconveniences are avoided.
In a driver assist system of such fusion construction, the optical sensor, e.g., a camera, and the millimeter wave radar 510 incorporating the present horn antenna array may have an integrated construction, i.e., being in fixed position with respect to each other. In that case, certain relative positioning should be kept between the optical axis of the optical sensor such as a camera and the directivity of the antenna of the millimeter wave radar, as will be described later. When this driver assist system having an integrated construction is fixed within the vehicle room of the vehicle 500, the optical axis of the camera, etc., should be adjusted so as to be oriented in a certain direction ahead of the vehicle. For these matters, see US Patent Application Publication No. 2015/0264230, US Patent Application Publication No. 2016/0264065, U.S. patent application Ser. No. 15/248,141, U.S. patent application Ser. No. 15/248,149, and U.S. patent application Ser. No. 15/248,156, which are incorporated herein by reference. Related techniques concerning the camera are described in the specification of U.S. Pat. No. 7,355,524, and the specification of U.S. Pat. No. 7,420,159, the entire disclosure of each which is incorporated herein by reference.
Regarding placement of an optical sensor such as a camera and a millimeter wave radar within the vehicle room, see, for example, the specification of U.S. Pat. No. 8,604,968, the specification of U.S. Pat. No. 8,614,640, and the specification of U.S. Pat. No. 7,978,122, the entire disclosure of each which is incorporated herein by reference. However, at the time when these patents were filed for, only conventional antennas with patch antennas were the known millimeter wave radars, and thus observation was not possible over sufficient distances. For example, the distance that is observable with a conventional millimeter wave radar is considered to be at most 100 m to 150 m. Moreover, when a millimeter wave radar is placed inward of the windshield, the large radar size inconveniently blocks the driver's field of view, thus hindering safe driving. On the other hand, a millimeter wave radar incorporating a horn antenna array according to an embodiment of the present disclosure is capable of being placed within the vehicle room because of its small size and remarkable enhancement in the efficiency of the radiated electromagnetic wave over that of a conventional patch antenna. This enables a long-range observation over 200 m, while not blocking the driver's field of view.
[Adjustment of Position of Attachment Between Millimeter Wave Radar and Camera, Etc.,]
In the processing under fusion construction (which hereinafter may be referred to as a “fusion process”), it is desired that an image which is obtained with a camera or the like and the radar information which is obtained with the millimeter wave radar map onto the same coordinate system because, if they differ as to position and target size, cooperative processing between both will be hindered.
This involves adjustment from the following three standpoints.
(1) The optical axis of the camera or the like and the antenna directivity of the millimeter wave radar must have a certain fixed relationship.
It is required that the optical axis of the camera or the like and the antenna directivity of the millimeter wave radar are matched. Alternatively, a millimeter wave radar may include two or more transmission antennas and two or more reception antennas, the directivities of these antennas being intentionally made different. Therefore, it is necessary to guarantee that at least a certain known relationship exists between the optical axis of the camera or the like and the directivities of these antennas.
In the case where the camera or the like and the millimeter wave radar have the aforementioned integrated construction, i.e., being in fixed position to each other, the relative positioning between the camera or the like and the millimeter wave radar stays fixed. Therefore, the aforementioned requirements are satisfied with respect to such an integrated construction. On the other hand, in a conventional patch antenna or the like, where the millimeter wave radar is placed behind the grill 512 of the vehicle 500, the relative positioning between them is usually to be adjusted according to (2) below.
(2) A certain fixed relationship exists between an image acquired with the camera or the like and radar information of the millimeter wave radar in an initial state (e.g., upon shipment) of having been attached to the vehicle.
The positions of attachment of the optical sensor such as a camera and the millimeter wave radar 510 or 510′ on the vehicle 500 will finally be determined in the following manner. At a predetermined position 800 ahead of the vehicle 500, a chart to serve as a reference or a target which is subject to observation by the radar (which will hereinafter be referred to as, respectively, a “reference chart” and a “reference target”, and collectively as the “benchmark”) is accurately positioned. This is observed with an optical sensor such as a camera or with the millimeter wave radar 510. The observation information regarding the observed benchmark is compared against previously-stored shape information or the like of the benchmark, and the current offset information is quantitated. Based on this offset information, by at least one of the following means, the positions of attachment of an optical sensor such as a camera and the millimeter wave radar 510 or 510′ are adjusted or corrected. Any other means may also be employed that can provide similar results.
(i) Adjust the positions of attachment of the camera and the millimeter wave radar so that the benchmark will come at a midpoint between the camera and the millimeter wave radar. This adjustment may be done by using a jig or tool, etc., which is separately provided.
(ii) Determine an offset amounts of the camera and the axis/directivity of the millimeter wave radar relative to the benchmark, and through image processing of the camera image and radar processing, correct for these offset amounts in the axis/directivity.
What is to be noted is that, in the case where the optical sensor such as a camera and the millimeter wave radar 510 incorporating a horn antenna array according to an embodiment of the present disclosure have an integrated construction, i.e., being in fixed position to each other, adjusting an offset of either the camera or the radar with respect to the benchmark will make the offset amount known for the other as well, thus making it unnecessary to check for the other's offset with respect to the benchmark.
Specifically, with respect to the onboard camera system 700, a reference chart may be placed at a predetermined position 750, and an image taken by the camera is compared against advance information indicating where in the field of view of the camera the reference chart image is supposed to be located, thereby detecting an offset amount. Based on this, the camera is adjusted by at least one of the above means (i) and (ii). Next, the offset amount which has been ascertained for the camera is translated into an offset amount of the millimeter wave radar. Thereafter, an offset amount adjustment is made with respect to the radar information, by at least one of the above means (i) and (ii).
Alternatively, this may be performed on the basis of the millimeter wave radar 510. In other words, with respect to the millimeter wave radar 510, a reference target may be placed at a predetermined position 800, and the radar information thereof is compared against advance information indicating where in the field of view of the millimeter wave radar 510 the reference target is supposed to be located, thereby detecting an offset amount. Based on this, the millimeter wave radar 510 is adjusted by at least one of the above means (i) and (ii). Next, the offset amount which has been ascertained for the millimeter wave radar is translated into an offset amount of the camera. Thereafter, an offset amount adjustment is made with respect to the image information obtained by the camera, by at least one of the above means (i) and (ii).
(3) Even after an initial state of the vehicle, a certain relationship is maintained between an image acquired with the camera or the like and radar information of the millimeter wave radar.
Usually, an image acquired with the camera or the like and radar information of the millimeter wave radar are supposed to be fixed in the initial state, and hardly vary unless in an accident of the vehicle or the like. However, if an offset in fact occurs between these, an adjustment is possible by the following means.
The camera is attached in such a manner that portions 513 and 514 (characteristic points) that are characteristic of the driver's vehicle fit within its field of view, for example. The positions at which these characteristic points are actually imaged by the camera are compared against the information of the positions to be assumed by these characteristic points when the camera is attached accurately in place, and an offset amount(s) is detected therebetween. Based on this detected offset amount(s), the position of any image that is taken thereafter may be corrected, whereby an offset of the physical position of attachment of the camera can be corrected for. If this correction sufficiently embodies the performance that is required of the vehicle, then the adjustment per the above (2) may not be needed. By regularly performing this adjustment during startup or operation of the vehicle 500, even if an offset of the camera or the like occurs anew, it is possible to correct for the offset amount, thus helping safe travel.
However, this means is generally considered to result in poorer accuracy of adjustment than with the above means (2). When making an adjustment based on an image which is obtained by imaging a benchmark with the camera, the azimuth of the benchmark can be determined with a high precision, whereby a high accuracy of adjustment can be easily achieved. However, since this means utilizes a part of the vehicle body for the adjustment instead of a benchmark, it is rather difficult to enhance the accuracy of azimuth determination. Thus, the resultant accuracy of adjustment will be somewhat inferior. However, it may still be effective as a means of correction when the position of attachment of the camera or the like is considerably altered for reasons such as an accident or a large external force being applied to the camera or the like within the vehicle room, etc.
[Mapping of Target as Detected by Millimeter Wave Radar and Camera or the Like: Matching Process]
In a fusion process, for a given target, it needs to be established that an image thereof which is acquired with a camera or the like and radar information which is acquired with the millimeter wave radar pertain to “the same target”. For example, suppose that two obstacles (first and second obstacles), e.g., two bicycles, have appeared ahead of the vehicle 500. These two obstacles will be captured as camera images, and detected as radar information of the millimeter wave radar. At this time, the camera image and the radar information with respect to the first obstacle need to be mapped to each other so that they are both directed to the same target. Similarly, the camera image and the radar information with respect to the second obstacle need to be mapped to each other so that they are both directed to the same target. If the camera image of the first obstacle and the radar information of the second obstacle are mistakenly recognized to pertain to an identical object, a considerable accident may occur. Hereinafter, in the present specification, such a process of determining whether a target in the camera image and a target in the radar image pertain to the same target may be referred to as a “matching process”.
This matching process may be implemented by various detection devices (or methods) described below. Hereinafter, these will be specifically described. Note that the each of the following detection devices is to be installed in the vehicle, and at least includes a millimeter wave radar detection section, an image detection section (e.g., a camera) which is oriented in a direction overlapping the direction of detection by the millimeter wave radar detection section, and a matching section. Herein, the millimeter wave radar detection section includes a horn antenna array according to any of the embodiments of the present disclosure, and at least acquires radar information in its own field of view. The image acquisition section at least acquires image information in its own field of view. The matching section includes a processing circuit which matches a result of detection by the millimeter wave radar detection section against a result of detection by the image detection section to determine whether or not the same target is being detected by the two detection sections. Herein, the image detection section may be composed of a selected one of, or selected two or more of, an optical camera, LIDAR, an infrared radar, and an ultrasonic radar. The following detection devices differ from one another in terms of the detection process at their respective matching section.
In a first detection device, the matching section performs two matches as follows. A first match involves, for a target of interest that has been detected by the millimeter wave radar detection section, obtaining distance information and lateral position information thereof, and also finding a target that is the closest to the target of interest among a target or two or more targets detected by the image detection section, and detecting a combination(s) thereof. A second match involves, for a target of interest that has been detected by the image detection section, obtaining distance information and lateral position information thereof, and also finding a target that is the closest to the target of interest among a target or two or more targets detected by the millimeter wave radar detection section, and detecting a combination(s) thereof. Furthermore, this matching section determines whether there is any matching combination between the combination(s) of such targets as detected by the millimeter wave radar detection section and the combination(s) of such targets as detected by the image detection section. Then, if there is any matching combination, it is determined that the same object is being detected by the two detection sections. In this manner, a match is attained between the respective targets that have been detected by the millimeter wave radar detection section and the image detection section.
A related technique is described in the specification of U.S. Pat. No. 7,358,889, the entire disclosure of which is incorporated herein by reference. In this publication, the image detection section is illustrated by way of a so-called stereo camera that includes two cameras. However, this technique is not limited thereto. In the case where the image detection section includes a single camera, detected targets may be subjected to an image recognition process or the like as appropriate, in order to obtain distance information and lateral position information of the targets. Similarly, a laser sensor such as a laser scanner may be used as the image detection section.
In a second detection device, the matching section matches a result of detection by the millimeter wave radar detection section and a result of detection by the image detection section every predetermined period of time. If the matching section determines that the same target was being detected by the two detection sections in the previous result of matching, it performs a match by using this previous result of matching. Specifically, the matching section matches a target which is currently detected by the millimeter wave radar detection section and a target which is currently detected by the image detection section, against the target which was determined in the previous result of matching to be being detected by the two detection sections. Then, based on the result of matching for the target which is currently detected by the millimeter wave radar detection section and the result of matching for the target which is currently detected by the image detection section, the matching section determines whether or not the same target is being detected by the two detection sections. Thus, rather than directly matching the results of detection by the two detection sections, this detection device performs a chronological match between the two results of detection and a previous result of matching. Therefore, the accuracy of detection is improved over the case of only performing a momentary match, whereby stable matching is realized. In particular, even if the accuracy of the detection section drops momentarily, matching is still possible because of utilizing past results of matching. Moreover, by utilizing the previous result of matching, this detection device is able to easily perform a match between the two detection sections.
In the current match which utilizes the previous result of matching, if the matching section of this detection device determines that the same object is being detected by the two detection sections, then the matching section of this detection device excludes this determined object in performing matching between objects which are currently detected by the millimeter wave radar detection section and objects which are currently detected by the image detection section. Then, this matching section determines whether there exists any identical object that is currently detected by the two detection sections. Thus, while taking into account the result of chronological matching, the detection device also makes a momentary match based on two results of detection that are obtained from moment to moment. As a result, the detection device is able to surely perform a match for any object that is detected during the current detection.
A related technique is described in the specification of U.S. Pat. No. 7,417,580, the entire disclosure of which is incorporated herein by reference. In this publication, the image detection section is illustrated by way of a so-called stereo camera that includes two cameras. However, this technique is not limited thereto. In the case where the image detection section includes a single camera, detected targets may be subjected to an image recognition process or the like as appropriate, in order to obtain distance information and lateral position information of the targets. Similarly, a laser sensor such as a laser scanner may be used as the image detection section.
In a third detection device, the two detection sections and matching section perform detection of targets and performs matches therebetween at predetermined time intervals, and the results of such detection and the results of such matching are chronologically stored to a storage medium, e.g., memory. Then, based on a rate of change in the size of a target in the image as detected by the image detection section, and on a distance to a target from the driver's vehicle and its rate of change (relative velocity with respect to the driver's vehicle) as detected by the millimeter wave radar detection section, the matching section determines whether the target which has been detected by the image detection section and the target which has been detected by the millimeter wave radar detection section are an identical object.
When determining that these targets are an identical object, based on the position of the target in the image as detected by the image detection section, and on the distance to the target from the driver's vehicle and/or its rate of change as detected by the millimeter wave radar detection section, the matching section predicts a possibility of collision with the vehicle.
A related technique is described in the specification of U.S. Pat. No. 6,903,677, the entire disclosure of which is incorporated herein by reference.
As described above, in a fusion process of a millimeter wave radar and an imaging device such as a camera, an image which is obtained with the camera or the like and radar information which is obtained with the millimeter wave radar are matched against each other. A millimeter wave radar incorporating the aforementioned array antenna according to an embodiment of the present disclosure can be constructed so as to have a small size and high performance. Therefore, high performance and downsizing, etc., can be achieved for the entire fusion process including the aforementioned matching process. This improves the accuracy of target recognition, and enables safer travel control for the vehicle.
[Other Fusion Processes]
In a fusion process, various functions are realized based on a matching process between an image which is obtained with a camera or the like and radar information which is obtained with the millimeter wave radar detection section. Examples of processing apparatuses that realize representative functions of a fusion process will be described below.
Each of the following processing apparatuses is to be installed in a vehicle, and at least includes: a millimeter wave radar detection section to transmit or receive electromagnetic waves in a predetermined direction; an image acquisition section, such as a monocular camera, that has a field of view overlapping the field of view of the millimeter wave radar detection section; and a processing section which obtains information therefrom to perform target detection and the like. The millimeter wave radar detection section acquires radar information in its own field of view. The image acquisition section acquires image information in its own field of view. A selected one, or selected two or more of, an optical camera, LIDAR, an infrared radar, and an ultrasonic radar may be used as the image acquisition section. The processing section can be implemented by a processing circuit which is connected to the millimeter wave radar detection section and the image acquisition section. The following processing apparatuses differ from one another with respect to the content of processing by this processing section.
In a first processing apparatus, the processing section extracts, from an image which is captured by the image acquisition section, a target which is recognized to be the same as the target which is detected by the millimeter wave radar detection section. In other words, a matching process according to the aforementioned detection device is performed. Then, it acquires information of a right edge and a left edge of the extracted target image, and derives locus approximation lines, which are straight lines or predetermined curved lines for approximating loci of the acquired right edge and the left edge, are derived for both edges. The edge which has a larger number of edges existing on the locus approximation line is selected as a true edge of the target. The lateral position of the target is derived on the basis of the position of the edge that has been selected as a true edge. This permits a further improvement on the accuracy of detection of a lateral position of the target.
A related technique is described in the specification of U.S. Pat. No. 8,610,620, the entire disclosure of which is incorporated herein by reference.
In a second processing apparatus, in determining the presence of a target, the processing section alters a determination threshold to be used in checking for a target presence in radar information, on the basis of image information. Thus, if a target image that may be an obstacle to vehicle travel has been confirmed with a camera or the like, or if the presence of a target has been estimated, etc., for example, the determination threshold for the target detection by the millimeter wave radar detection section can be optimized so that more accurate target information can be obtained. In other words, if the possibility of the presence of an obstacle is high, the determination threshold is altered so that this processing apparatus will surely be activated. On the other hand, if the possibility of the presence of an obstacle is low, the determination threshold is altered so that unwanted activation of this processing apparatus is prevented. This permits appropriate activation of the system.
Furthermore in this case, based on radar information, the processing section may designate a region of detection for the image information, and estimate a possibility of the presence of an obstacle on the basis of image information within this region. This makes for a more efficient detection process.
A related technique is described in the specification of U.S. Pat. No. 7,570,198, the entire disclosure of which is incorporated herein by reference.
In a third processing apparatus, the processing section performs combined displaying where images obtained from a plurality of different imaging devices and a millimeter wave radar detection section and an image signal based on radar information are displayed on at least one display device. In this displaying process, horizontal and vertical synchronizing signals are synchronized between the plurality of imaging devices and the millimeter wave radar detection section, and among the image signals from these devices, selective switching to a desired image signal is possible within one horizontal scanning period or one vertical scanning period. This allows, on the basis of the horizontal and vertical synchronizing signals, images of a plurality of selected image signals to be displayed side by side; and, from the display device, a control signal for setting a control operation in the desired imaging device and the millimeter wave radar detection section is sent.
When a plurality of different display devices display respective images or the like, it is difficult to compare the respective images against one another. Moreover, when display devices are provided separately from the third processing apparatus itself, there is poor operability for the device. The third processing apparatus would overcome such shortcomings.
A related technique is described in the specification of U.S. Pat. No. 6,628,299 and the specification of U.S. Pat. No. 7,161,561, the entire disclosure of each of which is incorporated herein by reference.
In a fourth processing apparatus, with respect to a target which is ahead of a vehicle, the processing section instructs an image acquisition section and a millimeter wave radar detection section to acquire an image and radar information containing that target. From within such image information, the processing section determines a region in which the target is contained. Furthermore, the processing section extracts radar information within this region, and detects a distance from the vehicle to the target and a relative velocity between the vehicle and the target. Based on such information, the processing section determines a possibility that the target will collide against the vehicle. This enables an early detection of a possible collision with a target.
A related technique is described in the specification of U.S. Pat. No. 8,068,134, the entire disclosure of which is incorporated herein by reference.
In a fifth processing apparatus, based on radar information or through a fusion process which is based on radar information and image information, the processing section recognizes a target or two or more targets ahead of the vehicle. The “target” encompasses any moving entity such as other vehicles or pedestrians, traveling lanes indicated by white lines on the road, road shoulders and any still objects (including gutters, obstacles, etc.), traffic lights, pedestrian crossings, and the like that may be there. The processing section may encompass a GPS (Global Positioning System) antenna. By using a GPS antenna, the position of the driver's vehicle may be detected, and based on this position, a storage device (referred to as a map information database device) that stores road map information may be searched in order to ascertain a current position on the map. This current position on the map may be compared against a target or two or more targets that have been recognized based on radar information or the like, whereby the traveling environment may be recognized. On this basis, the processing section may extract any target that is estimated to hinder vehicle travel, find safer traveling information, and display it on a display device, as necessary, to inform the driver.
A related technique is described in the specification of U.S. Pat. No. 6,191,704, the entire disclosure of which is incorporated herein by reference.
The fifth processing apparatus may further include a data communication device (having communication circuitry) that communicates with a map information database device which is external to the vehicle. The data communication device may access the map information database device, with a period of e.g. once a week or once a month, to download the latest map information therefrom. This allows the aforementioned processing to be performed with the latest map information.
Furthermore, the fifth processing apparatus may compare between the latest map information that was acquired during the aforementioned vehicle travel and information that is recognized of a target or two or more targets based on radar information, etc., in order to extract target information (hereinafter referred to as “map update information”) that is not included in the map information. Then, this map update information may be transmitted to the map information database device via the data communication device. The map information database device may store this map update information in association with the map information that is within the database, and update the current map information itself, if necessary. In performing the update, respective pieces of map update information that are obtained from a plurality of vehicles may be compared against one another to check certainty of the update.
Note that this map update information may contain more detailed information than the map information which is carried by any currently available map information database device. For example, schematic shapes of roads may be known from commonly-available map information, but it typically does not contain information such as the width of the road shoulder, the width of the gutter that may be there, any newly occurring bumps or dents, shapes of buildings, and so on. Neither does it contain heights of the roadway and the sidewalk, how a slope may connect to the sidewalk, etc. Based on conditions which are separately set, the map information database device may store such detailed information (hereinafter referred to as “map update details information”) in association with the map information. Such map update details information provides a vehicle (including the driver's vehicle) with information which is more detailed than the original map information, thereby rending itself available for not only the purpose of ensuring safe vehicle travel but also some other purposes. As used herein, a “vehicle (including the driver's vehicle)” may be e.g. an automobile, a motorcycle, a bicycle, or any autonomous vehicle to become available in the future, e.g., an electric wheelchair. The map update details information is to be used when any such vehicle may travel.
(Recognition Via Neural Network)
Each of the first to fifth processing apparatuses may further include a sophisticated apparatus of recognition. The sophisticated apparatus of recognition may be provided external to the vehicle. In that case, the vehicle may include a high-speed data communication device that communicates with the sophisticated apparatus of recognition. The sophisticated apparatus of recognition may be constructed from a neural network, which may encompass so-called deep learning and the like. This neural network may include a convolutional neural network (hereinafter referred to as “CNN”), for example. A CNN, a neural network that has proven successful in image recognition, is characterized by possessing one or more sets of two layers, namely, a convolutional layer and a pooling layer.
There exists at least three kinds of information as follows, any of which may be input to a convolutional layer in the processing apparatus:
Based on information of any of the above kinds, or information based on a combination thereof, product-sum operations corresponding to a convolutional layer are performed. The results are input to the subsequent pooling layer, where data is selected according to a predetermined rule. In the case of max pooling where a maximum value among pixel values is chosen, for example, the rule may dictate that a maximum value be chosen for each split region in the convolutional layer, this maximum value being regarded as the value of the corresponding position in the pooling layer.
A sophisticated apparatus of recognition that is composed of a CNN may include a single set of a convolutional layer and a pooling layer, or a plurality of such sets which are cascaded in series. This enables accurate recognition of a target, which is contained in the radar information and the image information, that may be around a vehicle.
Related techniques are described in the U.S. Pat. No. 8,861,842, the specification of U.S. Pat. No. 9,286,524, and the specification of US Patent Application Publication No. 2016/0140424, the entire disclosure of each of which is incorporated herein by reference.
In a sixth processing apparatus, the processing section performs processing that is related to headlamp control of a vehicle. When a vehicle travels in nighttime, the driver may check whether another vehicle or a pedestrian exists ahead of the driver's vehicle, and control a beam(s) from the headlamp(s) of the driver's vehicle to prevent the driver of the other vehicle or the pedestrian from being dazzled by the headlamp(s) of the driver's vehicle. This sixth processing apparatus automatically controls the headlamp(s) of the driver's vehicle by using radar information, or a combination of radar information and an image taken by a camera or the like.
Based on radar information, or through a fusion process based on radar information and image information, the processing section detects a target that corresponds to a vehicle or pedestrian ahead of the vehicle. In this case, a vehicle ahead of a vehicle may encompass a preceding vehicle that is ahead, a vehicle or a motorcycle in the oncoming lane, and so on. When detecting any such target, the processing section issues a command to lower the beam(s) of the headlamp(s). Upon receiving this command, the control section (control circuit) which is internal to the vehicle may control the headlamp(s) to lower the beam(s) therefrom.
Related techniques are described in the specification of U.S. Pat. No. 6,403,942, the specification of U.S. Pat. No. 6,611,610, the specification of U.S. Pat. No. 8,543,277, the specification of U.S. Pat. No. 8,593,521, and the specification of U.S. Pat. No. 8,636,393, the entire disclosure of each of which is incorporated herein by reference.
According to the above-described processing by the millimeter wave radar detection section, and the above-described fusion process by the millimeter wave radar detection section and an imaging device such as a camera, the millimeter wave radar can be constructed so as to have a small size and high performance, whereby high performance and downsizing, etc., can be achieved for the radar processing or the entire fusion process. This improves the accuracy of target recognition, and enables safer travel control for the vehicle.
A millimeter wave radar (radar system) incorporating an array antenna according to an embodiment of the present disclosure also has a wide range of applications in the fields of monitoring, which may encompass natural elements, weather, buildings, security, nursing care, and the like. In a monitoring system in this context, a monitoring apparatus that includes the millimeter wave radar may be installed e.g. at a fixed position, in order to perpetually monitor a subject(s) of monitoring. Regarding the given subject(s) of monitoring, the millimeter wave radar has its resolution of detection adjusted and set to an optimum value.
A millimeter wave radar incorporating an array antenna according to an embodiment of the present disclosure is capable of detection with a radio frequency electromagnetic wave exceeding e.g. 100 GHz. As for the modulation band in those schemes which are used in radar recognition, e.g., the FMCW method, the millimeter wave radar currently achieves a wide band exceeding 4 GHz, which supports the aforementioned Ultra Wide Band (UWB). Note that the modulation band is related to the range resolution. In a conventional patch antenna, the modulation band was up to about 600 MHz, thus resulting in a range resolution of 25 cm. On the other hand, a millimeter wave radar associated with the present array antenna has a range resolution of 3.75 cm, indicative of a performance which rivals the range resolution of conventional LIDAR. Whereas an optical sensor such as LIDAR is unable to detect a target in nighttime or bad weather as mentioned above, a millimeter wave radar is always capable of detection, regardless of daytime or nighttime and irrespective of weather. As a result, a millimeter wave radar associated with the present array antenna is available for a variety of applications which were not possible with a millimeter wave radar incorporating any conventional patch antenna.
Hereinafter, examples of monitoring systems embodying these applications will be specifically described.
[Natural Element Monitoring System]
A first monitoring system is a system that monitors natural elements (hereinafter referred to as a “natural element monitoring system”). With reference to
The natural element monitoring system 1500 is able to monitor a plurality of sensor sections 1010, 1020, etc., with the single main section 1100. When the plurality of sensor sections are distributed over a certain area, the water levels of rivers in that area can be grasped simultaneously. This allows to make an assessment as to how the rainfall in this area may affect the water levels of the rivers, possibly leading to disasters such as floods. Information concerning this can be conveyed to the distinct system 1200 (e.g., a weather observation monitoring system) via the telecommunication lines 1300. Thus, the distinct system 1200 (e.g., a weather observation monitoring system) is able to utilize the conveyed information for weather observation or disaster prediction in a wider area.
The natural element monitoring system 1500 is also similarly applicable to any natural element other than a river. For example, the subject of monitoring of a monitoring system that monitors tsunamis or storm surges is the sea surface level. It is also possible to automatically open or close the water gate of a seawall in response to a rise in the sea surface level. Alternatively, the subject of monitoring of a monitoring system that monitors landslides to be caused by rainfall, earthquakes, or the like may be the ground surface of a mountainous area, etc.
[Traffic Monitoring System]
A second monitoring system is a system that monitors traffic (hereinafter referred to as a “traffic monitoring system”). The subject of monitoring of this traffic monitoring system may be, for example, a railroad crossing, a specific railroad, an airport runway, a road intersection, a specific road, a parking lot, etc.
For example, when the subject of monitoring is a railroad crossing, the sensor section 1010 is placed at a position where the inside of the crossing can be monitored. In this case, in addition to the millimeter wave radar, the sensor section 1010 may also include an optical sensor such as a camera, which will allow a target (subject of monitoring) to be detected from more perspectives, through a fusion process based on radar information and image information. The target information which is obtained with the sensor section 1010 is sent to the main section 1100 via the telecommunication lines 1300. The main section 1100 collects other information (e.g., train schedule information) that may be needed in a more sophisticated recognition process or control, and issues necessary control instructions or the like based thereon. As used herein, a necessary control instruction may be, for example, an instruction to stop a train when a person, a vehicle, etc. is found inside the crossing when it is closed.
If the subject of monitoring is a runway at an airport, for example, a plurality of sensor sections 1010, 1020, etc., may be placed along the runway so as to set the runway to a predetermined resolution, e.g., a resolution that allows any foreign object on the runway that is 5 cm by 5 cm or larger to be detected. The monitoring system 1500 perpetually monitors the runway, regardless of daytime or nighttime and irrespective of weather. This function is enabled by the very ability of the millimeter wave radar according to an embodiment of the present disclosure to support UWB. Moreover, since the present millimeter wave radar device can be embodied with a small size, a high resolution, and a low cost, it provides a realistic solution for covering the entire runway surface from end to end. In this case, the main section 1100 keeps the plurality of sensor sections 1010, 1020, etc., under integrated management. If a foreign object is found on the runway, the main section 1100 transmits information concerning the position and size of the foreign object to an air-traffic control system (not shown). Upon receiving this, the air-traffic control system temporarily prohibits takeoff and landing on that runway. In the meantime, the main section 1100 transmits information concerning the position and size of the foreign object to a separately-provided vehicle, which automatically cleans the runway surface, etc., for example. Upon receive this, the cleaning vehicle may autonomously move to the position where the foreign object exists, and automatically remove the foreign object. Once removal of the foreign object is completed, the cleaning vehicle transmits information of the completion to the main section 1100. Then, the main section 1100 again confirms that the sensor section 1010 or the like which has detected the foreign object now reports that “no foreign object exists” and that it is safe now, and informs the air-traffic control system of this. Upon receiving this, the air-traffic control system may lift the prohibition of takeoff and landing from the runway.
Furthermore, in the case where the subject of monitoring is a parking lot, for example, it may be possible to automatically recognize which position in the parking lot is currently vacant. A related technique is described in the specification of U.S. Pat. No. 6,943,726, the entire disclosure of which is incorporated herein by reference.
[Security Monitoring System]
A third monitoring system is a system that monitors a trespasser into a piece of private land or a house (hereinafter referred to as a “security monitoring system”). The subject of monitoring of this security monitoring system may be, for example, a specific region within a piece of private land or a house, etc.
For example, if the subject of monitoring is a piece of private land, the sensor section(s) 1010 may be placed at one position, or two or more positions where the sensor section(s) 1010 is able to monitor it. In this case, in addition to the millimeter wave radar, the sensor section(s) 1010 may also include an optical sensor such as a camera, which will allow a target (subject of monitoring) to be detected from more perspectives, through a fusion process based on radar information and image information. The target information which was obtained by the sensor section 1010(s) is sent to the main section 1100 via the telecommunication lines 1300. The main section 1100 collects other information (e.g., reference data or the like needed to accurately recognize whether the trespasser is a person or an animal such as a dog or a bird) that may be needed in a more sophisticated recognition process or control, and issues necessary control instructions or the like based thereon. As used herein, a necessary control instruction may be, for example, an instruction to sound an alarm or activate lighting that is installed in the premises, and also an instruction to directly report to a person in charge of the premises via mobile telecommunication lines or the like, etc. The processing section 1101 in the main section 1100 may allow an internalized, sophisticated apparatus of recognition (that adopts deep learning or a like technique) to recognize the detected target. Alternatively, such a sophisticated apparatus of recognition may be provided externally, in which case the sophisticated apparatus of recognition may be connected via the telecommunication lines 1300.
A related technique is described in the specification of U.S. Pat. No. 7,425,983, the entire disclosure of which is incorporated herein by reference.
Another embodiment of such a security monitoring system may be a human monitoring system to be installed at a boarding gate at an airport, a station wicket, an entrance of a building, or the like. The subject of monitoring of such a human monitoring system may be, for example, a boarding gate at an airport, a station wicket, an entrance of a building, or the like.
If the subject of monitoring is a boarding gate at an airport, the sensor section(s) 1010 may be installed in a machine for checking personal belongings at the boarding gate, for example. In this case, there may be two checking methods as follows. In a first method, the millimeter wave radar transmits an electromagnetic wave, and receives the electromagnetic wave as it reflects off a passenger (which is the subject of monitoring), thereby checking personal belongings or the like of the passenger. In a second method, a weak millimeter wave which is radiated from the passenger's own body is received by the antenna, thus checking for any foreign object that the passenger may be hiding. In the latter method, the millimeter wave radar preferably has a function of scanning the received millimeter wave. This scanning function may be implemented by using digital beam forming, or through a mechanical scanning operation. Note that the processing by the main section 1100 may utilize a communication process and a recognition process similar to those in the above-described examples.
[Building Inspection System (Non-Destructive Inspection)]
A fourth monitoring system is a system that monitors or checks the concrete material of a road, a railroad overpass, a building, etc., or the interior of a road or the ground, etc., (hereinafter referred to as a “building inspection system”). The subject of monitoring of this building inspection system may be, for example, the interior of the concrete material of an overpass or a building, etc., or the interior of a road or the ground, etc.
For example, if the subject of monitoring is the interior of a concrete building, the sensor section 1010 is structured so that the antenna 1011 can make scan motions along the surface of a concrete building. As used herein, “scan motions” may be implemented manually, or a stationary rail for the scan motion may be separately provided, upon which to cause the movement by using driving power from an electric motor or the like. In the case where the subject of monitoring is a road or the ground, the antenna 1011 may be installed face-down on a vehicle or the like, and the vehicle may be allowed to travel at a constant velocity, thus creating a “scan motion”. The electromagnetic wave to be used by the sensor section 1010 may be a millimeter wave in e.g. the so-called terahertz region, exceeding 100 GHz. As described earlier, even with an electromagnetic wave over e.g. 100 GHz, an array antenna according to an embodiment of the present disclosure can be adapted to have smaller losses than do conventional patch antennas or the like. An electromagnetic wave of a higher frequency is able to permeate deeper into the subject of checking, such as concrete, thereby realizing a more accurate non-destructive inspection. Note that the processing by the main section 1100 may also utilize a communication process and a recognition process similar to those in the other monitoring systems described above.
A related technique is described in the specification of Ser. U.S. Pat. No. 6,661,367, the entire disclosure of which is incorporated herein by reference.
[Human Monitoring System]
A fifth monitoring system is a system that watches over a person who is subject to nursing care (hereinafter referred to as a “human watch system”). The subject of monitoring of this human watch system may be, for example, a person under nursing care or a patient in a hospital, etc.
For example, if the subject of monitoring is a person under nursing care within a room of a nursing care facility, the sensor section(s) 1010 is placed at one position, or two or more positions inside the room where the sensor section(s) 1010 is able to monitor the entirety of the inside of the room. In this case, in addition to the millimeter wave radar, the sensor section 1010 may also include an optical sensor such as a camera. In this case, the subject of monitoring can be monitored from more perspectives, through a fusion process based on radar information and image information. On the other hand, when the subject of monitoring is a person, from the standpoint of privacy protection, monitoring with a camera or the like may not be appropriate. Therefore, sensor selections must be made while taking this aspect into consideration. Note that target detection by the millimeter wave radar will allow a person, who is the subject of monitoring, to be captured not by his or her image, but by a signal (which is, as it were, a shadow of the person). Therefore, the millimeter wave radar may be considered as a desirable sensor from the standpoint of privacy protection.
Information of the person under nursing care which has been obtained by the sensor section(s) 1010 is sent to the main section 1100 via the telecommunication lines 1300. The main section 1100 collects other information (e.g., reference data or the like needed to accurately recognize target information of the person under nursing care) that may be needed in a more sophisticated recognition process or control, and issues necessary control instructions or the like based thereon. As used herein, a necessary control instruction may be, for example, an instruction to directly report a person in charge based on the result of detection, etc. The processing section 1101 in the main section 1100 may allow an internalized, sophisticated apparatus of recognition (that adopts deep learning or a like technique) to recognize the detected target. Alternatively, such a sophisticated apparatus of recognition may be provided externally, in which case the sophisticated apparatus of recognition may be connected via the telecommunication lines 1300.
In the case where a person is the subject of monitoring of the millimeter wave radar, at least the two following functions may be added.
A first function is a function of monitoring the heart rate and/or the respiratory rate. In the case of a millimeter wave radar, an electromagnetic wave is able to see through the clothes to detect the position and motions of the skin surface of a person's body. First, the processing section 1101 detects a person who is the subject of monitoring and an outer shape thereof. Next, in the case of detecting a heart rate, for example, a position on the body surface where the heartbeat motions are easy to detect may be identified, and the motions there may be chronologically detected. This allows a heart rate per minute to be detected, for example. The same is also true when detecting a respiratory rate. By using this function, the health status of a person under nursing care can be perpetually checked, thus enabling a higher-quality watch over a person under nursing care.
A second function is a function of fall detection. A person under nursing care such as an elderly person may fall from time to time, due to weakened legs and feet. When a person falls, the velocity or acceleration of a specific site of the person's body, e.g., the head, will reach a certain level or greater. When the subject of monitoring of the millimeter wave radar is a person, the relative velocity or acceleration of the target of interest can be perpetually detected. Therefore, by identifying the head as the subject of monitoring, for example, and chronologically detecting its relative velocity or acceleration, a fall can be recognized when a velocity of a certain value or greater is detected. When recognizing a fall, the processing section 1101 can issue an instruction or the like corresponding to pertinent nursing care assistance, for example.
Note that the sensor section(s) 1010 is secured to a fixed position(s) in the above-described monitoring system or the like. However, the sensor section(s) 1010 can also be installed on a moving entity, e.g., a robot, a vehicle, a flying object such as a drone. As used herein, the vehicle or the like may encompass not only an automobile, but also a smaller sized moving entity such as an electric wheelchair, for example. In this case, this moving entity may include an internal GPS unit which allows its own current position to be always confirmed. In addition, this moving entity may also have a function of further improving the accuracy of its own current position by using map information and the map update information which has been described with respect to the aforementioned fifth processing apparatus.
Furthermore, in any device or system that is similar to the above-described first to third detection devices, first to sixth processing apparatuses, first to fifth monitoring systems, etc., a like construction may be adopted to utilize an array antenna or a millimeter wave radar according to an embodiment of the present disclosure.
[First Example of Communication System]
The waveguide device and antenna device (array antenna) according to the present disclosure can be used for the transmitter and/or receiver with which a communication system (telecommunication system) is constructed. The waveguide device and antenna device according to the present disclosure are composed of layered conductive members, and therefore are able to keep the transmitter and/or receiver size smaller than in the case of using a hollow waveguide. Moreover, there is no need for dielectric, and thus the dielectric loss of electromagnetic waves can be kept smaller than in the case of using a microstrip line. Therefore, a communication system including a small and highly efficient transmitter and/or receiver can be constructed.
Such a communication system may be an analog type communication system which transmits or receives an analog signal that is directly modulated. However, a digital communication system may be adopted in order to construct a more flexible and higher-performance communication system.
Hereinafter, with reference to
With the analog to digital (A/D) converter 812, the transmitter 810A converts an analog signal which is received from the signal source 811 to a digital signal. Next, the digital signal is encoded by the encoder 813. As used herein, “encoding” means altering the digital signal to be transmitted into a format which is suitable for communication. Examples of such encoding include CDM (Code-Division Multiplexing) and the like. Moreover, any conversion for effecting TDM (Time-Division Multiplexing) or FDM (Frequency Division Multiplexing), or OFDM (Orthogonal Frequency Division Multiplexing) is also an example of encoding. The encoded signal is converted by the modulator 814 into a radio frequency signal, so as to be transmitted from the transmission antenna 815.
In the field of communications, a wave representing a signal to be superposed on a carrier wave may be referred to as a “signal wave”; however, the term “signal wave” as used in the present specification does not carry that definition. A “signal wave” as referred to in the present specification is broadly meant to be any electromagnetic wave to propagate in a waveguide, or any electromagnetic wave for transmission/reception via an antenna element.
The receiver 820A restores the radio frequency signal that has been received by the reception antenna 825 to a low-frequency signal at the demodulator 824, and to a digital signal at the decoder 823. The decoded digital signal is restored to an analog signal by the digital to analog (D/A) converter 822, and is sent to a data sink (data receiver) 821. Through the above processes, a sequence of transmission and reception processes is completed.
When the communicating agent is a digital appliance such as a computer, analog to digital conversion of the transmission signal and digital to analog conversion of the reception signal are not needed in the aforementioned processes. Thus, the analog to digital converter 812 and the digital to analog converter 822 in
In a digital communication system, in order to ensure signal intensity or expand channel capacity, various methods may be adopted. Many such methods are also effective in a communication system which utilizes radio waves of the millimeter wave band or the terahertz band.
Radio waves in the millimeter wave band or the terahertz band have higher straightness than do radio waves of lower frequencies, and undergoes less diffraction, i.e., bending around into the shadow side of an obstacle. Therefore, it is not uncommon for a receiver to fail to directly receive a radio wave that has been transmitted from a transmitter. Even in such situations, reflected waves may often be received, but a reflected wave of a radio wave signal is often poorer in quality than is the direct wave, thus making stable reception more difficult. Furthermore, a plurality of reflected waves may arrive through different paths. In that case, the reception waves with different path lengths might differ in phase from one another, thus causing multi-path fading.
As a technique for improving such situations, a so-called antenna diversity technique may be used. In this technique, at least one of the transmitter and the receiver includes a plurality of antennas. If the plurality of antennas are parted by distances which differ from one another by at least about the wavelength, the resulting states of the reception waves will be different. Accordingly, the antenna that is capable of transmission/reception with the highest quality among all is selectively used, thereby enhancing the reliability of communication. Alternatively, signals which are obtained from more than one antenna may be merged for an improved signal quality.
In the communication system 800A shown in
[Second Example of Communication System]
The azimuth of the main lobe 817 may be altered by allowing the respective phase shifters 816 to impart varying phase differences. This method may be referred to as beam steering. By finding phase differences that are conducive to the best transmission/reception state, the reliability of communication can be enhanced. Although the example here illustrates a case where the phase difference to be imparted by the phase shifters 816 is constant between any adjacent antenna elements 8151, this is not limiting. Moreover, phase differences may be imparted so that the radio wave will be radiated in an azimuth which allows not only the direct wave but also reflected waves to reach the receiver.
A method called null steering can also be used in the transmitter 810B. This is a method where phase differences are adjusted to create a state where the radio wave is radiated in no specific direction. By performing null steering, it becomes possible to restrain radio waves from being radiated toward any other receiver to which transmission of the radio wave is not intended. This can avoid interference. Although a very broad frequency band is available to digital communication utilizing millimeter waves or terahertz waves, it is nonetheless preferable to make as efficient a use of the bandwidth as possible. By using null steering, plural instances of transmission/reception can be performed within the same band, whereby efficiency of utility of the bandwidth can be enhanced. A method which enhances the efficiency of utility of the bandwidth by using techniques such as beam forming, beam steering, and null steering may sometimes be referred to as SDMA (Spatial Division Multiple Access).
[Third Example of Communication System]
In order to increase the channel capacity in a specific frequency band, a method called MIMO (Multiple-Input and Multiple-Output) may be adopted. Under MIMO, a plurality of transmission antennas and a plurality of reception antennas are used. A radio wave is radiated from each of the plurality of transmission antennas. In one example, respectively different signals may be superposed on the radio waves to be radiated. Each of the plurality of reception antennas receives all of the transmitted plurality of radio waves. However, since different reception antennas will receive radio waves that arrive through different paths, differences will occur among the phases of the received radio waves. By utilizing these differences, it is possible to, at the receiver side, separate the plurality of signals which were contained in the plurality of radio waves.
The waveguide device and antenna device according to the present disclosure can also be used in a communication system which utilizes MIMO. Hereinafter, an example such a communication system will be described.
Having received a signal from the data signal source 831, the transmitter 830 encodes the signal at the encoder 832 so that the signal is ready for transmission. The encoded signal is distributed by the TX-MIMO processor 833 between the two transmission antennas 8351 and 8352.
In a processing method according to one example of the MIMO method, the TX-MIMO processor 833 splits a sequence of encoded signals into two, i.e., as many as there are transmission antennas 8352, and sends them in parallel to the transmission antennas 8351 and 8352. The transmission antennas 8351 and 8352 respectively radiate radio waves containing information of the split signal sequences. When there are N transmission antennas, the signal sequence is split into N. The radiated radio waves are simultaneously received by the two reception antennas 8451 and 8452. In other words, in the radio waves which are received by each of the reception antennas 8451 and 8452, the two signals which were split at the time of transmission are mixedly contained. Separation between these mixed signals is achieved by the RX-MIMO processor 843.
The two mixed signals can be separated by paying attention to the phase differences between the radio waves, for example. A phase difference between two radio waves of the case where the radio waves which have arrived from the transmission antenna 8351 are received by the reception antennas 8451 and 8452 is different from a phase difference between two radio waves of the case where the radio waves which have arrived from the transmission antenna 8352 are received by the reception antennas 8451 and 8452. That is, the phase difference between reception antennas differs depending on the path of transmission/reception. Moreover, unless the spatial relationship between a transmission antenna and a reception antenna is changed, the phase difference therebetween remains unchanged. Therefore, based on correlation between reception signals received by the two reception antennas, as shifted by a phase difference which is determined by the path of transmission/reception, it is possible to extract any signal that is received through that path of transmission/reception. The RX-MIMO processor 843 may separate the two signal sequences from the reception signal e.g. by this method, thus restoring the signal sequence before the split. The restored signal sequence still remains encoded, and therefore is sent to the decoder 842 so as to be restored to the original signal there. The restored signal is sent to the data sink 841.
Although the MIMO communication system 800C in this example transmits or receives a digital signal, an MIMO communication system which transmits or receives an analog signal can also be realized. In that case, in addition to the construction of
Note that it is not an essential requirement that the plurality of transmission antennas radiate transmission waves containing respectively independent signals. So long as separation is possible at the reception antenna side, each transmission antenna may radiate a radio wave containing a plurality of signals. Moreover, beam forming may be performed at the transmission antenna side, while a transmission wave containing a single signal, as a synthetic wave of the radio waves from the respective transmission antennas, may be formed at the reception antenna. In this case, too, each transmission antenna is adapted so as to radiate a radio wave containing a plurality of signals.
In this third example, too, as in the first and second examples, various methods such as CDM, FDM, TDM, and OFDM may be used as a method of signal encoding.
In a communication system, a circuit board that implements an integrated circuit (referred to as a signal processing circuit or a communication circuit) for processing signals may be stacked as a layer on the waveguide device and antenna device according to an embodiment of the present disclosure. Since the waveguide device and antenna device according to an embodiment of the present disclosure is structured so that plate-like conductive members are layered therein, it is easy to further stack a circuit board thereupon. By adopting such an arrangement, a transmitter and a receiver which are smaller in volume than in the case where a hollow waveguide or the like is employed can be realized.
In the first to third examples of the communication system as described above, each element of a transmitter or a receiver, e.g., an analog to digital converter, a digital to analog converter, an encoder, a decoder, a modulator, a demodulator, a TX-MIMO processor, or an RX-MIMO processor, is illustrated as one independent element in
Thus, the present disclosure encompasses antenna arrays as recited in the following Items.
[Item 1]
An antenna array comprising:
an electrically conductive member having an electrically conductive surface in which a plurality of slots are open, the plurality of slots being arranged along at least one direction, a central portion of each slot extending along a first direction that extends in a manner of following along the electrically conductive surface; and
a plurality of electrically-conductive ridge pairs on the electrically conductive surface, each pair protruding from opposite edges of the central portion of a corresponding one of the plurality of slots, wherein,
the plurality of slots include a first slot and a second slot that are adjacent to each other;
the plurality of ridge pairs include a first ridge pair protruding from opposite edges of the central portion of the first slot and a second ridge pair protruding from opposite edges of the central portion of the second slot;
a first gap between the first ridge pair enlarges from a root toward an apex of the first ridge pair;
a second gap between the second ridge pair enlarges from a root toward an apex of the second ridge pair;
a width of the root of the first ridge pair along the first direction is smaller than a dimension of the first slot along the first direction;
a width of the root of the second ridge pair along the first direction is smaller than a dimension of the second slot along the first direction; and
as viewed along the first direction,
at least a portion of the first gap and at least a portion of the second gap overlap each other, with no other intervening electrically-conductive member therebetween, or
at least a portion of the first ridge pair and at least a portion of the second ridge pair overlap each other, with no other intervening electrically-conductive member therebetween.
[Item 2]
The antenna array of Item 1, wherein,
the plurality of slots includes a third slot;
the first to third slots are arranged so as to be adjacent to one another along one direction;
the plurality of ridge pairs include a third ridge pair protruding from opposite edges of the central portion of the third slot;
a third gap between the third ridge pair enlarges from a root toward an apex of the third ridge pair;
a width of the root of the third ridge pair along the first direction is smaller than a dimension of the third slot along the first direction; and
as viewed along the first direction,
at least a portion of the first gap, at least a portion of the second gap, and at least a portion of the third gap overlap one another, with no other intervening electrically-conductive member therebetween, or
at least a portion of the first ridge pair, at least a portion of the second ridge pair, and at least a portion of the third ridge pair overlap one another, with no other intervening electrically-conductive member therebetween.
[Item 3]
The antenna array of Item 1 or 2, wherein,
the plurality of slots includes a fourth slot;
the first and fourth slots are arranged along a direction which intersects the first direction;
the plurality of ridge pairs include a fourth ridge pair protruding from opposite edges of the central portion of the fourth slot;
a fourth gap between the fourth ridge pair enlarges from a root toward an apex of the fourth ridge pair; and
a width of the root of the fourth ridge pair along the first direction is smaller than a dimension of the fourth slot along the first direction.
[Item 4]
The antenna array of Item 3, wherein an end of one of the first ridge pair that is farther away from the first slot is opposed to an end of one of the fourth ridge pair that is farther away from the fourth slot.
[Item 5]
The antenna array of claim 3, wherein
an end of one of the first ridge pair that is farther away from the first slot is opposed to an end of one of the fourth ridge pair that is farther away from the fourth slot; and
the one of the first ridge pair and the one of the fourth ridge pair are continuous at a root thereof.
[Item 6]
The antenna array of Item 3, wherein an end of one of the first ridge pair that is farther away from the first slot is continuous with an end of one of the fourth ridge pair that is farther away from the fourth slot.
[Item 7]
The antenna array of any of Items 3 to 6, wherein,
between the first slot and the fourth slot, the electrically conductive member has an electrically-conductive pillar or an electrically-conductive wall extending along the first direction; and
one of the first ridge pair and one of the fourth ridge pair are connected to the pillar or the wall.
[Item 8]
The antenna array of any of Items 1 to 7, wherein between the first ridge pair and the second ridge pair, the electrically conductive member has an electrically-conductive pillar or an electrically-conductive wall extending along a direction which intersects the first direction.
[Item 9]
The antenna array of any of Items 1 to 8, wherein,
the electrically conductive member has a block shape containing inside a plurality of hollow waveguides extending along a direction which intersects the electrically conductive surface; and
the plurality of slots define respective ends of the plurality of hollow waveguides.
[Item 10]
The antenna array of any of Items 1 to 8, wherein,
the electrically conductive member has a second electrically conductive surface on an opposite side from the electrically conductive surface; and
the plurality of slots extend through the electrically conductive member, the antenna array comprising:
a second electrically conductive member having a third electrically conductive surface opposing the second electrically conductive surface;
a ridge-like waveguide member protruding from the third electrically conductive surface, the waveguide member having a waveguide face extending in opposition to the second electrically conductive surface and the first slot; and an artificial magnetic conductor extending on both sides of the waveguide member in between the electrically conductive member and the second electrically conductive member.
[Item 11]
The antenna array of any of Items 1 to 8, further comprising:
a second electrically conductive member;
a waveguide member disposed between the electrically conductive member and the second electrically conductive member, the waveguide member having a stripe-shaped waveguide face; and
an artificial magnetic conductor on both sides of the waveguide member, wherein,
the waveguide face is opposed to one of the electrically conductive member and the second electrically conductive member so that a waveguiding gap is created between the waveguide face and the one of the electrically conductive member and the second electrically conductive member; and
the plurality of slots are coupled to the waveguiding gap.
[Item 12]
An antenna array comprising:
a plate-shaped first electrically conductive member having a first electrically conductive surface;
a plate-shaped second electrically conductive member having a second electrically conductive surface opposing the first electrically conductive surface;
a ridge-like first waveguide member protruding from the second electrically conductive surface, the first waveguide member having an electrically-conductive waveguide face extending in opposition to the first electrically conductive surface, and one end of the first waveguide member reaching an edge of the second electrically conductive member;
a ridge-like second waveguide member protruding from the second electrically conductive surface, the second waveguide member extending in parallel to the first waveguide member and having an electrically-conductive waveguide face which extends in opposition to the first electrically conductive surface, and one end of the second waveguide member reaching the edge of the second electrically conductive member;
an artificial magnetic conductor extending around the first and second waveguide members in between the first and second electrically conductive members;
an electrically-conductive first ridge pair, one of the first ridge pair protruding from the one end of the first waveguide member, and another of the first ridge pair protruding from a first portion of an edge of the first electrically conductive member that is opposed to the one end of the first waveguide member; and
an electrically-conductive second ridge pair, one of the second ridge pair protruding from the one end of the second waveguide member, and another of the second ridge pair protruding from a second portion of the edge of the first electrically conductive member that is opposed to the one end of the second waveguide member, wherein,
a first gap between the first ridge pair enlarges from a root toward an apex of the first ridge pair;
a second gap between the second ridge pair enlarges from a root toward an apex of the second ridge pair; and,
as viewed along the edge of the first electrically conductive member,
at least a portion of the first gap and at least a portion of the second gap overlap each other, with no other intervening electrically-conductive member therebetween, or
at least a portion of the first ridge pair and at least a portion of the second ridge pair overlap each other, with no other intervening electrically-conductive member therebetween.
[Item 13]
An antenna array comprising:
a plate-shaped first electrically conductive member having a first electrically conductive surface;
a plate-shaped second electrically conductive member having a second electrically conductive surface opposing the first electrically conductive surface and a third electrically conductive surface on an opposite side from the second electrically conductive surface, the second electrically conductive member having a first slit at an end thereof;
a plate-shaped third electrically conductive member having a fourth electrically conductive surface opposing the third electrically conductive surface, the third electrically conductive member having a second slit at an end thereof;
the first artificial magnetic conductor extending around the first slit in between the first and second electrically conductive members; and
a second artificial magnetic conductor extending around the second slit in between the second and third electrically conductive members, wherein,
an edge of the second electrically conductive member has a shape defining an electrically-conductive first ridge pair connected to the first slit;
an edge of the third electrically conductive member has a shape defining an electrically-conductive second ridge pair connected to the second slit;
a first gap between the first ridge pair enlarges from a root toward an apex of the first ridge pair;
a second gap between the second ridge pair enlarges from a root toward an apex of the second ridge pair; and,
as viewed along a direction perpendicular to the first electrically conductive surface,
at least a portion of the first gap and at least a portion of the second gap overlap each other, with no other intervening electrically-conductive member therebetween, or
at least a portion of the first ridge pair and at least a portion of the second ridge pair overlap each other, with no other intervening electrically-conductive member therebetween.
[Item 14]
A radar device comprising:
the antenna array of any of items 1 to 13; and
a microwave integrated circuit connected to the antenna array.
[Item 15]
A radar system comprising:
the radar device of item 14; and
a signal processing circuit connected to the microwave integrated circuit of the radar device.
[Item 16]
A wireless communication system comprising:
the antenna array of any of items 1 to 13; and
a communication circuit connected to the antenna array.
An antenna array according to the present disclosure is usable in any technological field that makes use of an antenna. For example, they are available to various applications where transmission/reception of electromagnetic waves of the gigahertz band or the terahertz band is performed. In particular, they may be used in onboard radar systems, various types of monitoring systems, indoor positioning systems, wireless communication systems, Massive MIMOs, etc., where downsizing is desired.
This application is based on Japanese Patent Applications No. 2017-158146 filed on Aug. 18, 2017 and No. 2018-016697 filed on Feb. 1, 2018, the entire contents of which are hereby incorporated by reference.
Number | Date | Country | Kind |
---|---|---|---|
2017-158146 | Aug 2017 | JP | national |
2018-016697 | Feb 2018 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
3274601 | Blass | Sep 1966 | A |
5359339 | Agrawal et al. | Oct 1994 | A |
6191704 | Takenaga et al. | Feb 2001 | B1 |
6317094 | Wu et al. | Nov 2001 | B1 |
6339395 | Hazumi et al. | Jan 2002 | B1 |
6403942 | Stam | Jun 2002 | B1 |
6563398 | Wu | May 2003 | B1 |
6611610 | Stam et al. | Aug 2003 | B1 |
6628299 | Kitayama | Sep 2003 | B2 |
6661367 | Sugiyama et al. | Dec 2003 | B2 |
6703967 | Kuroda et al. | Mar 2004 | B1 |
6903677 | Takashima et al. | Jun 2005 | B2 |
6943726 | Schneider | Sep 2005 | B2 |
7161561 | Kitayama | Jan 2007 | B2 |
7355524 | Schofield | Apr 2008 | B2 |
7358889 | Abe et al. | Apr 2008 | B2 |
7417580 | Abe et al. | Aug 2008 | B2 |
7420159 | Heslin et al. | Sep 2008 | B2 |
7425983 | Izumi et al. | Sep 2008 | B2 |
7570198 | Tokoro | Aug 2009 | B2 |
7978122 | Schmidlin | Jul 2011 | B2 |
8068134 | Yoshizawa | Nov 2011 | B2 |
8446312 | Kanamoto et al. | May 2013 | B2 |
8543277 | Higgins-Luthman | Sep 2013 | B2 |
8593521 | Schofield et al. | Nov 2013 | B2 |
8604968 | Alland et al. | Dec 2013 | B2 |
8610620 | Katoh | Dec 2013 | B2 |
8614640 | Lynam | Dec 2013 | B2 |
8636393 | Schofield | Jan 2014 | B2 |
8730096 | Kanamoto et al. | May 2014 | B2 |
8730099 | Kanamoto et al. | May 2014 | B2 |
8779995 | Kirino et al. | Jul 2014 | B2 |
8803638 | Kildal | Aug 2014 | B2 |
8861842 | Jung et al. | Oct 2014 | B2 |
9286524 | Mei et al. | Mar 2016 | B1 |
9318811 | Fluhler | Apr 2016 | B1 |
9786995 | Kirino et al. | Oct 2017 | B2 |
20050088353 | Irion, III et al. | Apr 2005 | A1 |
20110057852 | Holland | Mar 2011 | A1 |
20110187614 | Kirino et al. | Aug 2011 | A1 |
20120092224 | Sauleau et al. | Apr 2012 | A1 |
20130033404 | Abe | Feb 2013 | A1 |
20150264230 | Takeda | Sep 2015 | A1 |
20160140424 | Wang et al. | May 2016 | A1 |
20160264065 | Takeda | Sep 2016 | A1 |
20170317427 | Kirino et al. | Nov 2017 | A1 |
20180040963 | Kirino et al. | Feb 2018 | A1 |
Number | Date | Country |
---|---|---|
1 331 688 | Jul 2003 | EP |
05-095222 | Apr 1993 | JP |
2001-267838 | Sep 2001 | JP |
2004-257848 | Sep 2004 | JP |
2007-259047 | Oct 2007 | JP |
2010-021828 | Jan 2010 | JP |
2012-004700 | Jan 2012 | JP |
2012-523149 | Sep 2012 | JP |
2013-032979 | Feb 2013 | JP |
0167540 | Sep 2001 | WO |
2008081807 | Jul 2008 | WO |
2010050122 | May 2010 | WO |
2013126356 | Aug 2013 | WO |
2015172948 | Nov 2015 | WO |
2016163932 | Oct 2016 | WO |
Entry |
---|
Kirino et al., “Slot Array Antenna, and Radar, Radar System, and Wireless Communication System Including the Slot Array Antenna”, U.S. Appl. No. 15/387,891, filed Dec. 22, 2016. |
Kirino et al., “Waveguide Device and Antenna Device Including the Waveguide Device,” U.S. Appl. No. 15/292,431, filed Oct. 13, 2016. |
Kirino et al., “A 76 GHz Multi-Layered Phased Array Antenna Using a Non-Metal Contact Metamaterial Waveguide”, IEEE Transactions on Antennas and Propagation, vol. 60, No. 2, Feb. 2012, pp. 840-853. |
Zaman et al., “Ku Band Linear Slot-Array in Ridge Gapwaveguide Technolgy”, 7th European Conference on Antennas and Propagation (EUCAP 2013)—Convened Sessions, 2013, pp. 2968-2971. |
Kildal et al., “Local Metamaterial-Based Waveguides in Gaps Between Parallel Metal Plates”, IEEE Antennas and Wireless Propagation Letters, vol. 8, 2009, pp. 84-87. |
Pucci et al., “Design of a Dual-Mode Horn Element for Microstrip Gap Waveguide Fed Array”, 7th European Conference on Antennas and Propagation (EUCAP 2013)—Convened Sessions, 2013, pp. 2976-2979. |
Kildal, “Metasurting Since 1987—A Personal Story Involving Soft and Hard Surfaces, EBG Surfaces, Cloaking, Gap Waveguides and Mass Production”, 2014 IEEE Antennas and Propagation Society International Symposium, 2014, pp. 529-530. |
Sehm et al., “A High-Gain 58-GHz Box-Horn Array Antenna with Suppressed Grating Lobes”, IEEE Transactions on Antennas and Propagation, vol. 47, No. 7, Jul. 1999, pp. 1125-1130. |
Zaman et al., “Slot Antenna in Ridge Gap Waveguide Technology”, 6th European Conference on Antennas and Propagation, Mar. 2012, pp. 3243 & 3244. |
Zarifi et al., “Design and Fabrication of a High-Gain 60-GHz Corrugated Slot Antenna Array With Ridge Gap Waveguide Distribution Layer”, IEEE Transactions on Antennas and Propagation, vol. 64, No. 7, Jul. 2016, pp. 2905-2913. |
Mustafa, “Hybrid Analog-Digital Beam-Steered Slot Antenna Array for mm-Wave Applications in Gap Waveguide Technology”, Department of Electronics and Telecommunications Master of Science in Telecommunications Engineering Master's Thesis, Oct. 2015, 67 pages. |
Kirino et al., “Simplified Wavelength Calculations for Fast and Slow Wave Metamaterial Ridged Waveguides and their Application to Array Antenna Design”, Proceedings of the International Symposium on Antennas & Propagation, Oct. 25, 2013, 4 pages. |
Ahmadi et al., “Direct Coupled Resonator Filters Realized by Gap Waveguide Technology”, IEEE Transactions on Microwave Theory and Techniques, vol. 63, No. 10, Oct. 2015, pp. 3445-3452. |
Djerafi et al., “Substrate Integrated Waveguide Antennas”, Handbook of Antenna Technologies, DOI 10.1007/978-981-4560-75-7_57-1, Jan. 2015, 61 pages. |
Number | Date | Country | |
---|---|---|---|
20190058260 A1 | Feb 2019 | US |