This application is based upon and claims priority to Chinese Patent Application Serial No. 201510965362.9, filed on Dec. 21, 2015, the entire contents of which are incorporated herein by reference.
The present disclosure relates to an antenna field, and more particularly to an antenna assembly and an electronic device.
CA (Carrier Aggregation) technology is a technology aggregating a plurality of carriers into a wider frequency spectrum, which is advantageous for improving an uplink and downlink transmission rate of a mobile terminal.
Typically, to apply the CA technology to the mobile terminal, two antennas are provided in the mobile terminal and are configured to work in low and middle frequency bands and in high frequency band respectively, thus realizing CA in the whole frequency band. However, a great space is needed to provide two antennas in the mobile terminal, which affects disposing other electronic components in the mobile terminal.
The present disclosure provides an antenna assembly and an electronic device.
According to a first aspect of embodiments of the present disclosure, an antenna assembly is provided. The antenna assembly includes: an antenna body having a feed point, a first grounding point, a second grounding point, and a third grounding point; a feed circuit connected with the antenna body via the feed point; a first grounding circuit configured to provide at least two low frequency states and connected with the antenna body via the first grounding point; a second grounding circuit connected with the antenna body via the second grounding point; and a third grounding circuit connected with the antenna body via the third grounding point.
According to a second aspect of embodiments of the present disclosure, an electronic device is provided. The electronic device includes an antenna assembly, and the antenna assembly includes: an antenna body having a feed point, a first grounding point, a second grounding point, and a third grounding point; a feed circuit connected with the antenna body via the feed point; a first grounding circuit configured to provide at least two low frequency states and connected with the antenna body via the first grounding point; a second grounding circuit connected with the antenna body via the second grounding point; and a third grounding circuit connected with the antenna body via the third grounding point.
It is to be understood that both the foregoing general description and the following detailed description are exemplary only and explanatory and are not restrictive of the present disclosure.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments consistent with the invention and, together with the description, serve to explain the principles of the invention.
Exemplary embodiments will be described in detail herein, and examples thereof are illustrated in accompanying drawings. Throughout figures referred by the following description, the same reference number in different figures indicates the same or similar elements unless otherwise stated. Implementations described in the following exemplary embodiments do not represent all the implementations consistent with the present disclosure. Instead, they are only examples of the device and method consistent with some aspects of the present disclosure detailed in the appended claims.
Referring to
The feed circuit 120 is connected with the antenna body 110 via a feed point 111, and the feed circuit 120 further includes a matching circuit 121 for matching with the antenna impedance. When the antenna assembly 100 works, the feed circuit 120 is configured to transport feed current to the antenna body 110 via the feed point 111.
In
The first grounding circuit 130 is configured to provide at least two low frequency states, and the at least two low frequency states are configured to cover the full low frequency band (700 MHz to 960 MHz). As a possible implementation, as shown in
With the antenna assembly provided by embodiments of the present disclosure, by disposing one grounding circuit for providing different low frequency states in the antenna assembly, and by switching the low frequency states of the antenna assembly through the grounding circuits, the full frequency band can be covered by a single antenna. Thus, there is no need to provide a great space to dispose two antennas in the mobile terminal and it is not difficult to dispose other electronic components in the mobile terminal. Further, the full frequency coverage and CA are realized with the single antenna structure, thus reducing space occupied by disposing the antenna in the mobile terminal, and facilitating disposing other electronic components in the mobile terminal.
Based on the antenna assembly 100 shown in
Referring to
The feed circuit 220 is connected with the antenna body 210 via a feed point 211. As a possible implementation, when the antenna assembly 200 is used for an electronic device, one end of the feed circuit 220 is connected with a feed end of a Printed Circuit Board (PCB) in the electronic device, and the other end of the feed circuit 220 is connected with the feed point 211 of the antenna body 210 via a feed line. When the antenna assembly 200 works, the feed circuit 220 receives feed current from the feed end of the PCB, and transports the feed current to the antenna body 210 via the feed line. It should be noted that, the feed circuit 220 also needs to include a matching circuit 221 for matching with the antenna impedance.
There are three grounding points disposed on the antenna body 210, i.e., the first grounding point 212, the second grounding point 213 and the third grounding point 214. The first grounding circuit 230 is connected with the antenna body 210 via the first grounding point 212, the second grounding circuit 240 is connected with the antenna body 210 via the second grounding point 213, and the third grounding circuit 250 is connected with the antenna body 210 via the third grounding point 214.
Among the three grounding circuits of the antenna assembly 200, the first grounding circuit 230 is configured to provide at least two low frequency states. In order to enable the first grounding circuit 230 to switch the at least two low frequency states, the first grounding circuit 230 further includes a capacitor 231 and a switch circuit 232, as shown in
A first capacitor end 231a of the capacitor 231 is connected with a first circuit end 232a of the switch circuit 232, and a second capacitor end 231b of the capacitor 231 is grounded.
Accordingly, the first circuit end 232a of the switch circuit 232 is connected with the first capacitor end 231a of the capacitor 231, and a second circuit end 232b of the switch circuit 232 is connected with the first grounding point 212.
When the antenna assembly 200 shown in
For example, the capacitor 231 in the first grounding circuit 230 provides two capacitance values, which are the first capacitance value and the second capacitance value respectively. When the switch circuit 232 adjusts the capacitor 231 to have the first capacitance value, that is, when the first grounding circuit 230 is grounded by loading the capacitor 231 having the first capacitance value, the whole antenna assembly 200 works in the first low frequency state, in which the frequency corresponding to the first low frequency state is 700 MHz. When the switch circuit 232 adjusts the capacitor 231 to have the second capacitance value, that is, when the first grounding circuit 230 is grounded by loading the capacitor 231 having the second capacitance value, the whole antenna assembly 200 works in the second low frequency state, in which the frequency corresponding to the second low frequency state is 900 MHz.
When the antenna assembly 200 works in the first low frequency state (700 MHz state), the radiation efficiency and radiation performance at 700 MHz are both better than the radiation efficiency and radiation performance at 700 MHz when the antenna assembly 200 works in the second low frequency state (900 MHz state). Similarly, when the antenna assembly 200 works in the second low frequency state, the radiation efficiency and radiation performance at 900 MHz are both better than the radiation efficiency and radiation performance at 900 MHz when the antenna assembly 200 works in the first low frequency state. Therefore, when the antenna assembly 200 needs to work at 700 MHz, the switch circuit 232 chooses the first capacitance value, such that the antenna assembly 200 works in the first low frequency state, thus ensuring the efficient radiation of the antenna assembly 200 at 700 MHz. When the antenna assembly 200 needs to work at 900 MHz, the switch circuit 232 chooses the second capacitance value, such that the antenna assembly 200 works in the second low frequency state, thus ensuring the efficient radiation of the antenna assembly 200 at 900 MHz.
It should be noted that, the frequency corresponding to the low frequency state is inversely proportional to the capacitance value of the capacitor 231. That is, the greater the capacitance value of the capacitor 232 loaded in the first grounding circuit 230 is, the less the frequency corresponding to the low frequency state provided by the first grounding circuit 230 is; the less the capacitance value of the capacitor 232 loaded in the first grounding circuit 230 is, the greater the frequency corresponding to the low frequency state provided by the first grounding circuit 230 is.
Each of the second grounding circuit 240 and the third grounding circuit 250 is short-circuited with ground. As a possible implementation, when the antenna assembly 200 is used for an electronic device, both the second grounding circuit 240 and the third grounding circuit 250 can be connected with the grounding end of the PCB in the electronic device, or can be short-circuited with the metal housing of the electronic device, which is not limited in embodiments of the present disclosure.
With the above antenna assembly 200, the full low frequency band can be covered with a smaller number of low frequency states (in this embodiment, two low frequency states), and the middle frequency state and the high frequency state corresponding to different low frequency states remain about the same, thus realizing covering the full frequency band by the single antenna. Moreover, since the bandwidth corresponding to each low frequency state is relatively great, it is advantageous to perform various carrier aggregation combinations (low frequency band+middle frequency band, low frequency band+high frequency band, middle frequency band+high frequency band, low frequency band+middle frequency band+high frequency band).
Thus, with the antenna assembly provided by embodiments of the present disclosure, by disposing one grounding circuit for providing different low frequency states in the antenna assembly, and by switching the low frequency states of the antenna assembly through the grounding circuits, the full frequency band can be covered by a single antenna is realized. Thus, there is no need to provide a great space to dispose two antennas in the mobile terminal and it is not difficult to dispose other electronic components in the mobile terminal. Further, the full frequency coverage and CA are realized with the single antenna structure, thus reducing space occupied by disposing the antenna in the mobile terminal, and facilitating disposing other electronic components in the mobile terminal.
In this embodiment, by loading one variable capacitor (or variable inductor) in the first grounding circuit, and by adjusting the capacitance value (or inductance value) of the variable capacitor (or variable inductor) to obtain different low frequency states, the full low frequency band can be covered by a smaller number of states, and the bandwidth corresponding to each state is relatively wide, which is advantageous for carrier aggregation of the wide band.
As shown in
In the antenna assembly 200 shown in
As a possible implementation, as shown in
When there is metal across the seam above the antenna body 210, the second grounding circuit 240 and the third grounding circuit 250 cooperate with the first grounding circuit 230 to eliminate interference to the antenna body 210 from the metal across the seam, thus ensuring the radiation performance of the antenna assembly 200. Moreover, since the third grounding point 214 is located at the edge of the antenna body 210, a part of the antenna body 210 anticipating in signal radiation is as long as possible, thus further improving the radiation performance of the antenna assembly 200.
As shown in
In the above embodiments, by adding additional grounding points in the antenna assembly, and by the cooperation of the grounding circuits corresponding to respective grounding points, the influence to the antenna body from the metal covering the antenna body is eliminated, thus further improving the radiation performance and radiation efficiency of the antenna assembly.
Based on
A first inductor end 233a of the inductor 233 is connected with a first circuit end 232a of the switch circuit 232, and a second inductor end 233b of the inductor 233 is grounded.
A second circuit end 232b of the switch circuit 232 is connected with the first grounding point 212. When the antenna assembly 200 works, the switch circuit 232 switches different low frequency states by adjusting the inductance value of the inductor 233.
The frequency corresponding to the low frequency state is inversely proportional to the inductance value. That is, the greater the inductance value of the inductor 233 loaded by the first grounding circuit 230 is, the less the frequency corresponding to the low frequency state provided by the first grounding circuit 230 is; the less the inductance value of the inductor 233 loaded by the first grounding circuit 230 is, the greater the frequency corresponding to the low frequency state provided by the first grounding circuit 230 is.
It should be noted that, the capacitor 231 in
Obviously, the antenna assembly 200 can cover the full low frequency band (700 MHz to 960 MHz) with a small number of low frequency states (in this embodiment, two low frequency states), and the bandwidth corresponding to each low frequency state is relatively great, which is advantageous to perform various carrier aggregation combinations (low frequency band+middle frequency band, low frequency band+high frequency band, middle frequency band+high frequency band, low frequency band+middle frequency band+high frequency band).
As shown in
Moreover, the antenna assembly 200 has a simple structure, and has no need to perform tuning and matching, which is low in cost and is easy to implement.
As shown in
The feed point 421 is connected with the feed end of the PCB in the electronic device via the feed line, and when the antenna assembly works, it receives the feed current transported from the feed end, and transports the feed current to the bottom metal backplate 420 via the feed point 421.
The first grounding circuit corresponding to the first grounding point 422, the second grounding circuit corresponding to the second grounding point 423 and the third grounding circuit corresponding to the third grounding point 424 can be connected with the grounding end of the PCB in the electronic device, and can also be connected with the upper metal backplate 410 (i.e., grounded), which is not limited herein. When there is metal across the seam between the upper metal backplate 410 and the bottom metal backplate 420, the first grounding circuit, the second grounding circuit and the third grounding circuit can cooperate with each other to reduce or even eliminate influence of the metal across the seam to the radiation performance of the bottom metal backplate 420.
Other embodiments of the present disclosure will be apparent to those skilled in the art from consideration of the specification and practice of the disclosure disclosed here. This application is intended to cover any variations, uses, or adaptations of the disclosure following the general principles thereof and including such departures from the present disclosure as come within known or customary practice in the art. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the disclosure being indicated by the following claims.
It will be appreciated that the present disclosure is not limited to the exact construction that has been described above and illustrated in the accompanying drawings, and that various modifications and changes can be made without departing from the scope thereof. It is intended that the scope of the disclosure only be limited by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
201510965362.9 | Dec 2015 | CN | national |