This application is related to co-pending applications Ser. No. 10,315,788, filed Dec. 10, 2002, entitled, “M
The present invention relates generally to the field of transmission of digital data; more specifically, to satellite communication systems and networks for distributing video data and for providing interactive services to geographically dispersed clients.
Satellite communications systems have been widely deployed over the past several decades. By way of example, Direct Broadcast Satellite (DBS) services have increasingly expanded to provide a variety of video program services directly to people's homes, apartments, and offices. In a conventional direct-to-home (DTH) satellite communication system, one or more telecommunications satellites in geosynchronous orbit receive media content from a broadcast “uplink” center. The satellite then radiates microwave signal beams to send the media content across a geographical region of the planet. For example, in the case of satellite service providers like DirectTV® video programs are broadcast across a wide region of the continental United States from several satellites in geosynchronous orbit above the Earth's equator.
Subscriber homes in the U.S. typically utilize an outdoor antenna dish mounted to their roof or an exterior wall to receive the satellite-transmitted signals. A satellite receiver or set-top box within the home is connected to the antenna for acquiring the satellite carrier signal and displaying the video program content received from the satellite transmission. As is well known, the satellite receiver may include decompression, decryption, decoder, demodulation and other circuitry for converting the received signals into a format (e.g., high definition television (HDTV), standard definition television (SDTV), etc.) suitable for viewing on a display device by the subscriber. For example, for direct-to-home digital satellite carriers which conform to Digital Video Broadcast (DVB) standards, the satellite receiver is configured to receive a set of parameters that may include the polarization, symbol rate, forward error correcting (FEC) rate and frequency to acquire the satellite digital carrier. U.S. Pat. Nos. 6,473,858, 6,430,233, 6,412,112, 6,323,909, 6,205,185, and 5,742,680 describe various conventional satellite communication systems that operate in this manner.
Satellite transmissions are often grouped in channel sets, wherein each channel set spans a certain transmit band. The channel sets are typically isolated by different electromagnetic polarizations. For instance, channel sets may be transmitted with linear polarization (i.e., horizontal or vertical) or circular polarization (i.e., left-hand or right-hand). These channel sets are detected on a polarization-sensitive antenna assembly through a low-noise block converter (LNB) mounted opposite a parabolic antenna dish. The LNB may be configured, for example, to detect the horizontal or vertical polarized signals reflected from the antenna dish. The LNB connects to the satellite receiver unit or set-top box located inside the subscriber's home via a coaxial cable.
In some receiving systems two LNBs are provided to receive both channel sets so that multiple television sets within a home may view different program channels simultaneously. Examples of different satellite data receiving systems are found in U.S. Pat. Nos. 6,424,817 and 5,959,592.
One of the problems with satellite communication systems is that they generally require an unobstructed line-of-sight between the orbiting satellite and the receiving antenna dish. In the United States, for instance, satellites typically orbit above the equator and are therefore “seen” by the antenna above the southern horizon. A home in a densely populated metropolitan region, however, may have its view of the southern sky obstructed by a tall building. In other cases, apartment dwellers living in units on the north side of a building may be precluded from mounting an antenna anywhere to receive satellite transmissions from a satellite orbiting above the southern horizon.
In other cases, landlords who own apartment buildings containing multiple units may be reluctant to permit tenants to mount multiple antenna dishes on their structure or route cable wires through the exterior and interior of the building. Routing of wires is also a problem in homes, particularly when multiple televisions are to receive programming services. The line-of-sight requirement and the problem of multi-dwelling units (MDUs) have therefore limited the number of homes that can receive digital services from satellite vendors.
An additional problem that satellite vendors generally face is the difficulty of providing interactive data services to their customers. Some specialized satellite service providers offer two-way data services, but these systems require the subscriber to purchase a fairly large antenna dish (e.g., 3-5 feet wide) with increased power demands for uplink transmission to the satellite. Another drawback is the inherent latency associated with signal transmission from Earth to the orbiting satellite, and then back down to Earth. This latency can produce sluggish system performance as compared to terrestrial cable systems, for example, when the user wants to access a web page containing large amounts of content and data.
Thus, there is a pressing need for new apparatus and methods for distributing satellite services and video content to the general population on an expanded basis. There is also a need for a communication network that provides additional services, such as interactive data services, to subscribers at a competitive cost and at a high performance level.
The present invention will be understood more fully from the detailed description that follows and from the accompanying drawings, which however, should not be taken to limit the invention to the specific embodiments shown, but are for explanation and understanding only.
The present invention is a pioneering advancement in the field of multimedia communication systems. By integrating a wireless transceiver into a satellite antenna assembly, the present invention provides, for the first time, a wireless local area network (WLAN) which both distributes a wide range of video services (digitally-encoded broadcast services, pay-per-view television, and on-demand video services, etc.) and provides two-way (i.e., interactive) data services to individuals located across a wireless coverage region.
In the following description numerous specific details are set forth, such as frequencies, circuits, configurations, etc., in order to provide a thorough understanding of the present invention. However, persons having ordinary skill in the satellite and communication arts will appreciate that these specific details may not be needed to practice the present invention. It should also be understood that the basic architecture and concepts disclosed can be extended to a variety of different implementations and applications. Therefore, the following description should not be considered as limiting the scope of the invention.
With reference to
For example,
With reference to
In this example, LNBs 72 & 73 may be configured to receive horizontally and vertically polarized satellite transmission signals. Cable 20 connects with the LNBs and transceiver 71. (It should be understood that within the context of this disclosure, the term “cable” is used to refer to one or more wires, and that such wires may comprise coaxial wires of a type known as RG-6, or a similar type.)
It is appreciated that in other embodiments unit 18 may comprise a single LNB and a wireless transceiver. In still other embodiments, unit 18 may include four or more LNBs and one or more wireless transceivers mounted together.
According to one embodiment of the present invention, wireless transceiver 71 operates in compliance with IEEE specification 802.11a, 802.11b, 802.11g, etc., to provide high-speed networking and communication capability to computers, televisions, and other devices compatibly equipped to receive such wireless signals. Other embodiments may operate in compliance with variant specifications that are compatible with IEEE specification 802.11a, 802.11b, or 802.11g, and which provide for wireless transmissions at high-bandwidth video data rates (e.g., about 2 Mbps or greater). For the purposes of the present application, IEEE specification 802.11a, 802.11b, 802.11g, and Industrial, Scientific, and Medical (ISM) band networking protocols are denoted as “802.11x”. Other non-ISM bands wireless network protocols could be utilized as well. Transceiver 71 facilitates network connectivity to users located within a surrounding range, allowing them to receive satellite broadcast programs, pay-per-view services, on-demand video, Internet access, and other interactive data services, thus obviating the need for a wired connection to individual users.
In the example of
In another embodiment, transceiver 71 operates in compliance with IEEE specification 802.11g over the license-free 2.46 GHz band.
As shown in
In the example of
It is appreciated that wireless transceiver 71 need not be physically located on or inside of signal unit 18. In
It should be further understood that according to the present invention, the individual satellite antenna assemblies need not be located on homes or other buildings; instead, they may be positioned on existing telephone poles, or mounted on other structures with dedicated, stand-alone hardware. Additionally, a plurality of stand-alone wireless transceivers that function solely as signal repeaters may be distributed in a geographic region or throughout a large building wherever power is available to provide network connectivity that extends throughout the region or area.
For example,
Additionally, wireless transceiver/repeater 60e may be connected to receive video content from some media source, e.g., a Digital Versatile Disk (“DVD”) player, or cable television programming. In the later case, for instance, wireless transceiver/repeater 60e may include a cable modem equipped with an 802.11x transmitter. These alternative or additional services may then be distributed in a similar manner described above.
With continued reference to the example of
Alternatively, network interface unit 23 may be connected to a cable broadcast service provider (e.g., cable television) through an Ethernet or Universal Serial Bus (USB), or similar connection, thereby enabling wireless access of those cable services to subscribers within the range of the wireless network. This means that a subscriber may watch their favorite television program or a pay-per-view movie from a laptop computer or television while outdoors, in a cafe, or in some other building, within the wireless coverage region without the need for a direct-wired cable connection. Distribution of cable services may be implemented with a cable modem device that includes an 802.11x transmitter. It is appreciated that additional circuitry for encrypting the video and data information may also be included to thwart pirates and interlopers.
Network interface unit 23 provides power to and communicates with transceiver 71 of unit 18 via cable 20. Although the embodiment of
It should also be understood that although
Repository unit 64 may communicate via wireless transmission utilizing wireless transceiver 66 connected to a wireless antenna 68 mounted on top of unit 64. Alternatively, unit 64 may be coupled with signal unit 58 via a wire connection 69 (e.g., CAT-5) to utilize the transceiver in signal unit 58 for wireless communications.
In an alternative embodiment, repository unit 64 may be attached to the satellite antenna assembly to directly utilize the wireless transceiver installed in signal unit 58.
The purpose of RAID 65 is to store recorded media content (e.g., pay-per-view movies, videos, DVDs, special event programs, etc.). This content can be accumulated over time in a “trickle feed” manner from wireless transceiver 66, which may receive content from various sources such as satellite transmissions, media players, cable television, Internet, etc. Over time, repository unit 64 may store such large volumes of video programming. Anyone having the capability to access the wireless network can pay a fee to receive a particular show, movie, or viewable program stored in repository unit 64 on an on-demand basis.
Additionally, because of the interactive capabilities of the wireless network, the subscriber or user may communicate with unit 64 to provide commands such as “pause”, “fast forward”, “rewind”, etc. Indeed, because of the large storage space available, live broadcast programs available through the WLAN described previously may be manipulated using such commands, thereby providing enhanced viewing flexibility to the user. Hard disk drive failures, which often plague in-home digital video recorders (DVRs), are not a problem because of the redundancy protection built into the RAID. Should a particular hard disk drive fail during operation, the remaining disk drive units simply take over until the repository unit can be serviced, at which time the failed drive can be replaced.
Repository unit 64 may also function as an archive storage apparatus for individuals within a local area to utilize as a storage facility for back-ups of personal data. For example, personal data such as photographs, important documents, books, articles, etc. may be transferred into a reserved space in the RAID. Various well-known security features may be built into repository unit 64 to maintain personal security of the backed-up data for each user.
Repository unit 64 may communicate via wireless transmission utilizing wireless transceiver 66 connected to a wireless antenna 68 mounted on top of unit 64. Alternatively, unit 64 may be coupled with signal unit 58 via a wire connection 69 (e.g., CAT-5) to utilize the transceiver in signal unit 58 for wireless communications.
It is also appreciated that repository unit 64 may be physically located somewhere other than on the rooftop of a building of MDUs. For instance, instead of being attached to or nearby a rooftop antenna assembly, repository unit may be located in a top floor space, in a basement, or in a ground level facility.
Embodiments of the present invention include various steps, which have been described above. The steps may be embodied in machine-executable instructions which may be used to cause a general-purpose or special-purpose processor to perform the steps. Alternatively, these steps may be performed by specific hardware components that contain hardwired logic for performing the steps, or by any combination of programmed computer components and custom hardware components.
Elements of the present invention may also be provided as a computer program product which may include a machine-readable medium having stored thereon instructions which may be used to program a computer (or other electronic device) to perform a process. The machine-readable medium may include, but is not limited to, floppy diskettes, optical disks, CD-ROMs, and magneto-optical disks, ROMs, RAMs, EPROMs, EEPROMs, magnet or optical cards, propagation media or other type of media/machine-readable medium suitable for storing electronic instructions. For example, the present invention may be downloaded as a computer program product, wherein the program may be transferred from a remote computer (e.g., a server) to a requesting computer (e.g., a client) by way of data signals embodied in a carrier wave or other propagation medium via a communication link (e.g., a modem or network connection).
It should be understood that although the present invention has been described in conjunction with specific embodiments, numerous modifications and alterations are well within the scope of the present invention. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.
Number | Name | Date | Kind |
---|---|---|---|
4539706 | Mears et al. | Sep 1985 | A |
5058199 | Grube | Oct 1991 | A |
5129096 | Burns | Jul 1992 | A |
5222246 | Wolkstein | Jun 1993 | A |
5408679 | Masuda | Apr 1995 | A |
5509028 | Marque-Pucheu | Apr 1996 | A |
5574979 | West | Nov 1996 | A |
5608412 | Welles et al. | Mar 1997 | A |
5640386 | Wiedeman | Jun 1997 | A |
5654747 | Ottesen et al. | Aug 1997 | A |
5732076 | Ketseoglou et al. | Mar 1998 | A |
5742680 | Wilson | Apr 1998 | A |
5815146 | Youden et al. | Sep 1998 | A |
5870428 | Barrett et al. | Feb 1999 | A |
5870665 | Uchikawa | Feb 1999 | A |
5890055 | Chu et al. | Mar 1999 | A |
5915020 | Tilford et al. | Jun 1999 | A |
5959592 | Petruzzelli | Sep 1999 | A |
6009060 | Kim | Dec 1999 | A |
6092117 | Gladwin et al. | Jul 2000 | A |
6132306 | Trompower | Oct 2000 | A |
6148142 | Anderson | Nov 2000 | A |
6160993 | Wilson | Dec 2000 | A |
6166703 | Muterspaugh | Dec 2000 | A |
6188571 | Roganti et al. | Feb 2001 | B1 |
6205185 | Kajiwara | Mar 2001 | B1 |
6263503 | Margulis | Jul 2001 | B1 |
6323909 | Michener et al. | Nov 2001 | B1 |
6334045 | Green et al. | Dec 2001 | B1 |
6347216 | Marko | Feb 2002 | B1 |
6397038 | Green et al. | May 2002 | B1 |
6404775 | Leslie et al. | Jun 2002 | B1 |
6412112 | Barrett et al. | Jun 2002 | B1 |
6424817 | Hadden et al. | Jul 2002 | B1 |
6430233 | Dillon et al. | Aug 2002 | B1 |
6473858 | Shimomura et al. | Oct 2002 | B1 |
6584080 | Ganz et al. | Jun 2003 | B1 |
6597891 | Tantawy et al. | Jul 2003 | B2 |
6600730 | Davis et al. | Jul 2003 | B1 |
6614768 | Mahany et al. | Sep 2003 | B1 |
6650869 | Kelly et al. | Nov 2003 | B2 |
6671186 | Kopf | Dec 2003 | B2 |
6684058 | Karacaoglu et al. | Jan 2004 | B1 |
6690657 | Lau et al. | Feb 2004 | B1 |
6690926 | Tawil et al. | Feb 2004 | B2 |
6728541 | Ohkura et al. | Apr 2004 | B2 |
6741841 | Mitchell | May 2004 | B1 |
6745050 | Forsythe et al. | Jun 2004 | B1 |
6757913 | Knox | Jun 2004 | B2 |
6788882 | Geer et al. | Sep 2004 | B1 |
6811113 | Silansky et al. | Nov 2004 | B1 |
6832071 | Nakamura et al. | Dec 2004 | B1 |
6836658 | Sharon et al. | Dec 2004 | B1 |
6842617 | Williams | Jan 2005 | B2 |
6845090 | Takabatake et al. | Jan 2005 | B1 |
6847625 | Heinonen et al. | Jan 2005 | B2 |
6850285 | Eaton et al. | Feb 2005 | B2 |
6853197 | McFarland et al. | Feb 2005 | B1 |
6856786 | Belostotsky et al. | Feb 2005 | B2 |
6886029 | Pecus et al. | Apr 2005 | B1 |
6925285 | Kim | Aug 2005 | B2 |
6968153 | Heinonen et al. | Nov 2005 | B1 |
7072627 | Coffin, III | Jul 2006 | B2 |
7215660 | Perlman | May 2007 | B2 |
7239698 | Phillips et al. | Jul 2007 | B2 |
7289478 | Kim et al. | Oct 2007 | B1 |
20020028655 | Rosener et al. | Mar 2002 | A1 |
20020038459 | Talmola et al. | Mar 2002 | A1 |
20020046285 | Yasushi et al. | Apr 2002 | A1 |
20020059614 | Lipsanen et al. | May 2002 | A1 |
20020061743 | Hutcheson et al. | May 2002 | A1 |
20020068592 | Hutcheson et al. | Jun 2002 | A1 |
20020071658 | Marko et al. | Jun 2002 | A1 |
20020072329 | Bandeira et al. | Jun 2002 | A1 |
20020106119 | Foran et al. | Aug 2002 | A1 |
20020115409 | Khayarallah | Aug 2002 | A1 |
20020152303 | Dispensa | Oct 2002 | A1 |
20020154055 | Davis | Oct 2002 | A1 |
20020181189 | Yang et al. | Dec 2002 | A1 |
20020188955 | Thompson et al. | Dec 2002 | A1 |
20030054827 | Schmidl et al. | Mar 2003 | A1 |
20030079016 | Tsao et al. | Apr 2003 | A1 |
20030124977 | Smith et al. | Jul 2003 | A1 |
20030139150 | Rodriguez et al. | Jul 2003 | A1 |
20030181162 | Matula | Sep 2003 | A1 |
20030181229 | Forster et al. | Sep 2003 | A1 |
20030199247 | Striemer | Oct 2003 | A1 |
20030207684 | Wesel | Nov 2003 | A1 |
20030216144 | Roese et al. | Nov 2003 | A1 |
20030220072 | Coffin, IIII | Nov 2003 | A1 |
20030231774 | Schildbach et al. | Dec 2003 | A1 |
20030234804 | Parker et al. | Dec 2003 | A1 |
20040034865 | Barrett et al. | Feb 2004 | A1 |
20040094194 | Aldoretta et al. | May 2004 | A1 |
20040110469 | Judd et al. | Jun 2004 | A1 |
20040121648 | Voros | Jun 2004 | A1 |
20040125820 | Rios | Jul 2004 | A1 |
20040203694 | Wong et al. | Oct 2004 | A1 |
20040204102 | Kuehnel et al. | Oct 2004 | A1 |
20050286448 | Proctor | Dec 2005 | A1 |
20060098592 | Proctor, Jr. et al. | May 2006 | A1 |
20060183421 | Proctor et al. | Aug 2006 | A1 |
Number | Date | Country |
---|---|---|
1 094 642 | Apr 2001 | EP |
1202472 | May 2002 | EP |
2001111575 | Apr 2001 | JP |
2001244864 | Sep 2001 | JP |
0004840 | Aug 2000 | WO |
WO 02078369 | Oct 2002 | WO |
WO 30032666 | Apr 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20040110463 A1 | Jun 2004 | US |