Antenna assembly for subsurface meter pits

Information

  • Patent Grant
  • 6300907
  • Patent Number
    6,300,907
  • Date Filed
    Tuesday, January 25, 2000
    24 years ago
  • Date Issued
    Tuesday, October 9, 2001
    23 years ago
Abstract
An antenna assembly (10) for subsurface utility metering equipment includes a disk-shaped radiating element (50) which is connected through a wire (51) having a self-inductance to a capacitor C and then to a ground plane (41) and a connector (31) for a coaxial cable (30) to provide an LC circuit for impedance matching of the antenna assembly (10) to a transmitter.
Description




TECHNICAL FIELD




The invention relates to utility meter transmitter assemblies located in subsurface pit enclosures.




DESCRIPTION OF THE BACKGROUND ART




In moderate climate zones, utility meters are located in subsurface enclosures in areas adjacent to residences or other dwellings. Such enclosures are commonly referred to as “pits.” An example of such an enclosure is illustrated in Cerny et al., U.S. Pat. No. 5,298,894.




As further disclosed in Cerny et al., a radio frequency (RF) transmitter may be situated in an assembly which is mounted or otherwise disposed in the pit enclosure. Such a radio frequency transmitter transmits signals representing meter consumption data to a mobile collection unit which may be carried in a vehicle or which may be carried by a person. Radio frequency transmitters may also be used to transmit signals from such a pit enclosure in a network with stationary collection units at predetermined locations. In this type of system, it has become necessary to provide transmitters and antennae with greater power and greater range than in prior art equipment.




Examples of prior art transmitters and antennae are disclosed in Cerny et al., U.S. Pat. No. 5,298,894, and Bloss et al., U.S. Pat. No. 5,877,703. Cerny et al. discloses that the antenna assembly can be separate from, or integrated with, the transmitter assembly.




It is also desirable to make the assemblies which are located in meter pits compact in size, low in cost of manufacture, durable and easy to install and service.




SUMMARY OF THE INVENTION




The invention relates to an antenna assembly for subsurface utility metering equipment. The assembly has a wire which acts as an inductor and which is connected in cascade with a thin, disk-shaped capacitor to provide an LC circuit of controllable impedance.




The antenna assembly more particularly includes a first planar conductor forming a ground plane and having an aperture therein; a dielectric material disposed over said first planar conductor; and a second planar conductor disposed over said dielectric material and having an area which defines a capacitor that includes the second planar member, a portion of dielectric material lying below said second planar conductor and a portion of the ground plane lying below said second planar conductor. A radiating antenna element is disposed in a plane above and generally parallel to the capacitor and separated from the capacitor by a space. The assembly further includes a connector having a ground portion electrically connected to the ground plane conductor, and a substantially rigid wire conductor extending from a signal portion of the electrical connector, through the aperture in the ground plane, for electrical connection to the second planar conductor, and then extending further and through the space to electrically connect to the antenna element.




The substantially rigid conductor is selected to provide an inductance, and the capacitor is selected to provide a capacitance which when cascaded with the inductance provides an impedance for adjustment to an output impedance of the transmitter.




The invention is provided in at least two embodiments having different levels of integration. The capacitive element is advantageously comprised of a circuit board material having two copper or copper alloy conductors and layer of dielectric material in between the two conductors.




In a preferred embodiment of the invention, a diameter of the antenna element is sized such that the antenna operates in the resonant mode. The ground plane, like the antenna element, is also a radial transmission line and has a diameter such that the ground plane operates in an antiresonant mode, in which a voltage minimum occurs at its periphery.




The assembly is enclosed in a housing of plastic insulating material having a cover and a base portion of a construction to be more particularly described below.




Other objects and advantages of the invention, besides those discussed above, will be apparent to those of ordinary skill in the art from the description of the preferred embodiments which follow. In the description, reference is made to the accompanying drawings, which form a part hereof, and which illustrate examples of the invention. Such examples, however, are not exhaustive of the various embodiments of the invention, and therefore, reference is made to the claims which follow the description for determining the scope of the invention.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is top plan view of an antenna assembly of the present invention;





FIG. 2

is a sectional view in elevation taken in the plane indicated by line


2





2


in

FIG. 1

;





FIG. 3

is a detail sectional view of an alternative embodiment of the invention taken in the region indicated by line


3





3


in

FIG. 2

;





FIG. 4

is detail sectional view of a preferred embodiment of the invention taken in same region as

FIG. 3

; and





FIG. 5

is an electrical schematic view of the antenna of the assembly of

FIGS. 1-4

.











DETAILED DESCRIPTION OF THE PREFERRED AND ALTERNATIVE EMBODIMENTS





FIGS. 1-2

illustrate parts common to the embodiments of the invention disclosed herein. An antenna assembly


10


of the present invention is provided for RF communication of signals representing utility meter data. The signals are received through a coaxial cable


30


seen in FIG.


2


and radiation from antenna conductor


50


, also seen in FIG.


2


.




The antenna assembly


10


is enclosed in a housing having a cover portion


11


which is attached to a base


12


which further comprises a disk-shaped cover support portion


13


and a stem portion


14


. Elements


11


,


12


,


13


and


14


are preferably made of a thermoplastic insulating material. The base portion


12


has a cover support portion


13


for supporting the cover


11


, and a stem portion


14


of generally circular cross section extending downward therefrom. In use, the antenna assembly


10


has its stem portion


14


inserted in a hole in a pit lid (not shown). The cover


11


and cover support portion


13


would rest on the pit lid (not shown). The generally circular cross section is modified by two projections


15


,


16


on opposite sides of the stem with holes at the bottom for receiving a bracket for supporting a transmitter below the antenna assembly.




The cover


11


has a centrally disposed, flat, disk-shaped portion


17


. Surrounding the center portion


17


is a beveled portion


18


and at the periphery of the beveled portion is an overhanging rim


19


. Underneath the top surface


17


,


18


, a plurality of radially extending ribs


20


extend from a central cavity


21


to the rim


19


. An annular spacer


22


is disposed in the central cavity and has a groove


23


around an upper rim for receiving and forming a support surface for antenna element


50


.




The cover support portion


13


has a rim


24


around its periphery on which a portion next to the rim


21


rests. The cover


11


is fastened to the cover support portion


13


at this location by one of several methods including epoxy adhesive, hot plate or ultrasonic welding.




The stem


14


is formed with a funnel-shaped web


25


having a hole


26


through which the coaxial cable


30


extends.




Inside the enclosure, a ground plane is formed as shown in more detail in

FIGS. 3 and 4

. A disk


40


of FR


4


circuit board material, or a similar material, has a planar copper conductor


41


disposed underneath a layer of dielectric, such as a material


42


available from General Electric under the trade designation G-Tek. Other materials which may be used as the dielectric layer include TFE-based (tetrafluoroethylene-based) materials, including Teflon-based materials, and epoxy materials. This material would also have an upper copper conductor (not shown) disposed over the dielectric layer


42


, but in the illustrated embodiments, the upper conductor is not present or has been removed, or in the embodiment of

FIG. 4

, is only partially removed, leaving a disk-shaped conductor


43


of smaller diameter than the ground plane conductor


41


.




In

FIG. 3

, a disk


44


of double-sided FR


4


circuit board material, or a similar material, of smaller diameter than the ground plane is disposed over epoxy layer


41


. This disk


44


has upper and lower disk-shaped planar conductive members


45


,


47


separated by a second portion of dielectric material


46


having, in this example, the same composition as described for material


42


. In

FIG. 3

, the second disk


44


forms a capacitive element. In

FIG. 4

, the disk-shaped planar conductor


43


forms a capacitive element together with a portion of dielectric material


42


lying below the planar conductor


43


, and a portion of the ground plane


41


lying below the planar conductor


43


.




A radiating antenna element


50


lies in a plane above and generally parallel to the capacitor and separated from said capacitor by a space


49


provided by spacer


21


.




A coaxial cable connector


31


has a ground portion electrically connected to the ground plane


41


, the connector having a substantially rigid wire conductor


51


extending through an aperture


48


in the ground plane


41


for electrical connection to the conductor


45


in FIG.


3


and to the conductor


43


in FIG.


4


. The wire conductor


51


then extends further through the space


49


to electrically connect to a center of the antenna element


50


.




The conductor


51


is selected to provide an inductance, and the capacitor is selected to provide a capacitance which when cascaded with the inductance substantially matches an output impedance of the transmitter for maximum power transfer to the antenna


50


. The transmitter (not shown) is connected to the other end of the coaxial cable


30


.




The coaxial connector


31


in

FIGS. 3 and 4

is a female connector having a threaded sleeve


34


filled with an insulating spacer


52


(

FIG. 1

) having a hole


53


for receiving the signal conductor


36


of the coaxial cable


30


. An SMA-type connector with a0.05-inch center conductor can be used. Soldering connections are indicated in several places: 1) where the connector


31


connects to the ground plane through lower planar conductor


41


, 2) where wire conductor


51


connects to capacitor conductor


45


in FIG.


3


and to capacitor conductor


43


in

FIG. 4

; and 3) where wire conductor


51


connects to antenna element


50


. Prior to soldering, the surfaces of the copper alloy conductors are tinned for better electrical connection.




In assembling the unit, the male connector, including a hex-sided collar


37


is threadingly connected to the female connector


31


before assembling the two parts of the antenna housing


11


,


12


. A tapered sleeve


32


is slipped over the connection and an encapsulating material


33


is filled into a hollow interior of the tapered sleeve


32


and allowed to solidify to seal around the connection.




Referring to

FIG. 5

, antenna element


50


is represented schematically, along with an inductive element provided by the wire conductor


51


, and along with a capacitive element C provided by elements


45


,


46


,


47


,


42


,


41


in FIG.


3


and by elements


43


,


42


,


41


in FIG.


4


. The coaxial connector


31


is also represented schematically in

FIG. 5

, as the first ground, which then connects to signal ground through the coaxial cable ground shield


38


. From the schematic in

FIG. 5

, it can be seen that a circuit is formed with an inductance


51


in series with the radiating antenna element


50


and a capacitance C in parallel with the connector


31


and the coaxial cable. The components can be determined by size and material to provide a matching impedance of fifty ohms to match the output impedance of the transfer and maximize power transfer to the antenna element


50


.




The antenna


50


is designed for a transmitter operating frequency in the range of 902-928 Mhz approved by the FCC for this type of equipment. It should be apparent that, as a technical matter, operating frequencies outside this range can be employed including frequencies in the microwave or in UHF range of frequencies.




The diameter of the antenna element is sized such that the antenna operates in the resonant mode. The ground plane, like the antenna element, is also a radial transmission line and has a diameter such that the ground plane operates in an anti-resonant mode, in which a voltage minimum occurs at its periphery.




The driving impedance of the antenna element


50


at resonance is very low typically in the range of about 1 ohm to about 3 ohms. In the LC circuit formed by the antenna assembly, the inductance for impedance matching is provided by the self-inductance of element


51


. The capacitance is provided by the capacitance element C described above.




The resulting assembly has very low electrical losses and superior mechanical ruggedness.




This has been a description of the preferred embodiments of the method and apparatus of the present invention. Those of ordinary skill in this art will recognize that modifications might be made while still coming within the spirit and scope of the invention and, therefore, to define the embodiments of the invention, the following claims are made.



Claims
  • 1. An antenna assembly for RF communication of signals representing utility meter data, the antenna assembly comprising:A) a capacitive element comprising: i) a first planar conductor forming a ground plane conductor with an aperture therein; ii) a dielectric material disposed over said first planar conductor; and iii) a second planar conductor disposed over said dielectric material and having an area which defines the capacitive element, which includes a portion of dielectric material being positioned below said second planar conductor and a portion of the ground plane being positioned below said second planar conductor; and B) an antenna element positioned in a plane above and generally parallel to the capacitive element and separated from said capacitor by a space; C) a connector having a ground portion electrically connected to the ground plane conductor; and D) an inductive element including a first, substantially rigid portion of a wire conductor that connects the capacitive element to the antenna element, said wire conductor also having a second portion extending through the aperture in the ground plane for electrical connection to the capacitive element; and wherein said capacitive element is selected to provide a capacitance in cascade with the inductance of the inductive element to provide a selected L-C circuit impedance in relation to the antenna element.
  • 2. The antenna assembly of claim 1, wherein the first planar conductor, the dielectric material and the second planar conductor are formed by a piece of circuit board material.
  • 3. The antenna assembly of claim 2, wherein the first planar conductor and second planar conductor are formed of copper or a copper alloy, and wherein the dielectric material is provided in the form of a tetrafluoroethylene-based material.
  • 4. The antenna assembly of claim 2, wherein said circuit board material has a smaller diameter than a diameter of the ground plane.
  • 5. The antenna assembly of claim 1, further comprising a third planar conductor which together with said dielectric material and said second planar conductor are formed by a piece of circuit board material.
  • 6. The antenna assembly of claim 5, wherein the first planar conductor and second planar conductor are formed of copper or a copper alloy, and wherein the dielectric material is provided in the form a tetrafluoroethylene-based material.
  • 7. The antenna assembly of claim 5, wherein said circuit board material has a smaller diameter than a diameter of the ground plane.
  • 8. The antenna assembly of claim 1, further comprising a housing of plastic material enclosing said antenna, said first planar conductor, said second planar conductor, said dielectric and said connector.
  • 9. The antenna assembly of claim 8, wherein said housing comprises a cover portion and a base portion having a cover support portion and a hollow stem.
  • 10. The antenna assembly of claim 9, wherein said stem has lateral extensions for attachment of related equipment.
  • 11. The antenna assembly of claim 9, wherein the cover portion is fastened to said base portion by ultrasonic welding.
  • 12. The antenna assembly of claim 1, whereinthe antenna element has a diameter that is sized such that the antenna operates in the resonant mode; and wherein the ground plane has a diameter such that the ground plane operates in an anti-resonant mode.
US Referenced Citations (13)
Number Name Date Kind
4070676 Sanford Jan 1978
4401988 Kaloi Aug 1983
4835540 Haruyama et al. May 1989
5270704 Quintana et al. Dec 1993
5298894 Cerny et al. Mar 1994
5416475 Tolbert et al. May 1995
5519387 Besier et al. May 1996
5583492 Nakanishi et al. Dec 1996
5621419 Meek et al. Apr 1997
5703601 Nalbandian et al. Dec 1997
5825303 Bloss, Jr. et al. Oct 1998
5877703 Bloss, Jr. et al. Mar 1999
6166692 Nalbandian et al. Dec 2000