This application claims the benefit of U.S. Provisional Patent Application No. 62/990,706, filed Mar. 17, 2020, and Swedish Patent Application No. 2050341-3, filed Mar. 27, 2020, the disclosures of which are incorporated herein by reference in their entireties.
The technology of the present disclosure relates generally to antenna assemblies used primarily in data communication links and, more particularly, to an antenna assembly having antenna elements that are arranged in a helical pattern, which may be used to support the generation of a radiated signal with orbital angular momentum (OAM) without a phase tuner in the feeding network.
Various approaches have been proposed to achieve robust communication links with large data handling capacity between wireless devices. One approach is the use of multiple-input, multiple-output (MIMO) antenna arrangements. In an even more specific approach, MIMO may be implemented with radiated signals having orbital angular momentum (OAM). An advantage of OAM over some other MIMO approaches is a relaxation in signal processing.
But there are limitations and challenges with currently available techniques for generating radiated signals with OAM properties. For example, multi-mode OAM transmissions requires the transmit and receive antennas to be a short distance from one another (e.g., within each other's near-field). The reason is that higher modes tend to be more dispersive in the spatial domain. Also, the transmitting and receiving antennas need to be aligned toward each other.
In
Different modes may be implemented by feeding RF signals to the antenna elements 2 with different phase offsets. For instance, referring to
To achieve the phase offsets for one or more modes, the feeding network for the antenna elements 2 must be relatively complex and include phase shifters. Since the bandwidth of phase shifters is limited, the operational bandwidth of the OAM antenna array may be limited as well.
Disclosed are antenna systems that are arranged to reduce the complexity of a feeding network that feeds an RF signal to antenna elements used for the generation of a radio frequency (RF) signal with a rotational wave front, such as a helical wave, a twisted wave, or a wave having OAM. In one embodiment, the antenna elements are arranged in a helix pattern with elevation differences between the antenna elements. In this manner, even if the same RF signal is fed to each antenna element without any phase offsets among the antenna elements, the structural arrangement of the antenna elements will result in the emission of RF signals from the antenna elements that have respective phase differences relative to a phase reference plane that is perpendicular to an axis of the helix pattern. In one embodiment, a phase shifter in the feeding network may be avoided, thereby increasing the bandwidth of the antenna system and reducing insertion loss in the feeding network. As a receive antenna for an RF signal with a rotational wave front, each antenna element of the antenna system will output a received RF signal with a phase offset corresponding to the elevation differences relative to the axis of the helix pattern.
According to an aspect of the disclosure, an antenna assembly includes a substrate and an array of antenna elements. Each antenna element is supported by the substrate at respective locations so that the antenna elements are arranged in space in a helix pattern. The helix pattern has a pitch along an axis about which the helix pattern turns. An arc length spacing of the antenna elements along the helix pattern and the pitch are arranged so that, in a transmit mode, a radio frequency (RF) signal fed to each of the antenna elements results in emission of a radiated signal with a rotational wave front from the antenna assembly at a first frequency and a first mode.
Embodiments will now be described with reference to the drawings, wherein like reference numerals are used to refer to like elements throughout. It will be understood that the figures are not necessarily to scale. Features that are described and/or illustrated with respect to one embodiment may be used in the same way or in a similar way in one or more other embodiments and/or in combination with or instead of the features of the other embodiments.
With reference to
In one embodiment, the radio communications device 14 includes a non-transitory computer readable medium, such as a memory 16 that stores data, information sets and software, and a processor 18 for executing the software. The processor 18 and the memory 16 may be coupled using a local interface 20. The local interface 20 may be, for example, a data bus with accompanying control bus, a network, or other subsystem. The radio communications device 14 may have other components, which are not illustrated. For example, the radio communications device 14 may have various input/output (I/O) interfaces for operatively connecting to various peripheral devices, may have a display, may have one or more user input devices (e.g., buttons, keypads, touch screens, etc.), may have one or more sensors or data collection devices, and/or may have one or more communications interfaces other than the radio frequency transceiver 12.
The radio frequency transceiver 12 may include for example, a modem or other signal processing device that is operatively coupled to the antenna assembly 10 by way of a feeding network 22. In a transmit mode, the feeding network 22 feeds an RF signal to each of plural antenna elements (discussed below) of the antenna assembly 10. In one embodiment, the feeding network 22 does not include phase shifters to adjust the relative phase of the RF signal fed to the antenna elements. In a receive mode, the feeding network 22 couples signals output by each antenna element to the modem or other signal processing device.
With additional reference to
The antenna elements 26 are supported by the substrate 24 so that they are arranged in space in a helix pattern 28 (depicted with a broken line). For reference, x, y and z axes of a Cartesian reference system are also illustrated in
In the illustrated embodiment, there are eight antenna elements 26, labeled 26a through 26h. There may be more than or less than eight antenna elements 26. For instance, there may be four antenna elements 26 to sixteen (or more) antenna elements 26.
In the illustrated embodiment, the substrate 24 also is in the shape of a helix. The substrate 24 has an upper surface 30 that supports the antenna elements 26 and an opposing lower surface 32. The substrate 24 has an inner radius RI measured from the axis of the helix pattern 28 and an outer radius RO measured from the axis of the helix pattern 28. The radius RH of the helix pattern 28 lies between the inner radius RI and the outer radius RO. In one embodiment, at every elevation, the radius RH, the inner radius RI, and the outer radius RO are substantially coplanar and substantially normal to the axis of the helix pattern 28. As used herein, there term “substantially” means with ten percent or less variation.
In the embodiment of
In one embodiment, a spacing between each adjacent pair of antenna elements 26 may be determined in advance of wireless communications (e.g., the spacing may be “predetermined”). As will be described, the spacing may be fixed or may be variable to support multiple frequencies and/or multiple modes. In the latter case, more than one predetermined spacing may be determined. In one embodiment, the spacing is measured by an arc length (represented in
The spacing of the antenna elements 26 along the helix pattern 28 and the pitch may be predetermined so that, in a transmit mode, the same RF signal fed to each of the antenna elements 26 with the same phase results in emission of a radio frequency radiated signal with a rotational wave front from the antenna assembly 10 at a frequency and a mode corresponding to the RF signal and the physical arrangement of the helix pattern 28. With the proper selection of the RF signal and the physical arrangement of the helix pattern 28, the rotational radiated wave front may be a helical or twisted (e.g., spiral) wave front. Further, the radiated signal with rotational wave front emitted by the antenna assembly may have orbital angular momentum (OAM), even though no phase offsets are introduced to the RF signal that is fed to the antenna elements 26. Rather, the rotational radiated wave front results from the physical arc length and elevation spacing differences between the antenna elements 26 of the antenna assembly 10. Specifically, these differences result in each antenna element 26 emitting a component of the radiated signal of the antenna assembly 10 that has a difference in phase relative to a phase reference plane perpendicular to the axis of the helix pattern 28.
In this manner, a phase shifter in the feeding network 22 may not be present. That is, the feeding network 22 may be without a phase shifter. Thus, the OAM radiated signal is emitted without feeding the RF signal to the antenna elements 26 with phase offset (e.g., by not passing the RF signal through a phase shifter to adjust phase of the RF signal). Additionally, no signal processing to introduce a phase shift to the RF signal for each antenna element 26 is needed.
In another embodiment, a phase shifter is present to work in conjunction with the physical arrangement of the helix pattern 28. For example, two or more operational modes may be supported using the phase shifter and the physical arrangement of the helix pattern 28. To support one mode (e.g., mode one), the phase shifter does not introduce any phase offset to the RF signal fed to the antenna elements 26, but a rotational radiated wave front is emitted from the antenna assembly 10 as described. To support another mode (e.g., mode two or higher), the phase shifter introduces phase offset to the RF signal fed to the antenna elements 26. These phase offsets combine with the physical arrangement of the helix pattern 28 to emit a rotational radiated wave front from the antenna assembly 10 at the other mode.
Omitting a phase shifter from the feeding network 22 may have significant reductions in insertion loss compared to a feeding network 22 with a phase shifter. For instance, without a phase shifter, a single PA/LNA (i.e., power amplifier for transmission and low noise amplifier for reception) may be used to feed all antenna elements via a splitter, which may result in smaller insertion loss. Moreover, if each antenna element has an associated phase-shifter (each having an associated insertion loss), then it would be desirable to have a PA/LNA located after the phase-shifters, and hence, the PA/LNAs would be distributed to each antenna element. As a result, a reduction in hardware component count may be realized when a phase shifter is omitted.
With additional reference to
With additional reference to
To facilitate emission of a radiated signal from the antenna assembly 10 with a rotational wave front, each antenna element 26 may emit a wave front having substantially the same polarization (e.g., each antenna element 26 may be “co-polarized”). In one embodiment, each antenna element 26 is constructed relative to a main axis of the antenna element to achieve desired polarization characteristics. Therefore, orientation of each antenna element 26 relative to the other antenna elements 26 along the helix pattern 28 may be considered. In one embodiment, the main axes of the antenna elements 26 are oriented parallel to one another so that each antenna element 26 respectively emits a signal corresponding to the RF signal fed to the antenna elements with substantially the same polarization. In one embodiment, the radiated wave from each antenna element 26 has substantially the same phase pattern, substantially the same polarization, and substantially the same gain pattern. The RF signal may be fed to the antenna elements 26 to produce emissions with a “positively rising” phase offset relative to the helix pattern 28 or a “negatively rising” (e.g., sinking) phase offset relative to the helix pattern 28. In this manner, the antenna assembly 10 is capable of generating both positive and negative OAM modes.
In one embodiment, each antenna element supports emission of two signals with different polarizations to increase transmission capacity of the antenna assembly 10. In this case, each antenna element 26 may be connected to two feed lines (not shown) from the feeding network 22. For instance, the different polarizations may be horizontally polarized and vertically polarized. Other polarizations, either alone or in combination with another polarization are possible. Exemplary polarizations include, horizontal polarization, vertical polarization, 45 degree slant polarization, left-hand circular polarization, and right-hand circular polarization.
With additional reference to
As indicated, the first end 34 of the substrate 24 may be directly or indirectly connected to a lower end 42 of the support structure 38 and the second end 36 of the substrate 24 may be directly or indirectly connected to an upper end 42 of the support structure 38. To vary the pitch P of the helix pattern 28, support structure 38 may have an axial length with respect to the axis of the helix pattern 28 that is changeable. Changing the axial length of the support structure 38 correspondingly flexes the substrate 24 and expands or contracts the pitch P of the helix pattern 28. In one embodiment, the axial length of the support structure 28 may be varied to have a first axial length corresponding to a first pitch P of the helix pattern 28 and a second axial length corresponding to second pitch P′ of the helix pattern 28. In another embodiment, the axial length of the support structure 28 may have multiple lengths between the first and second axial lengths so that more than two pitches of the helix pattern 28 may be achieved.
Thus, the pitch of the helix pattern 28 is variable by physical manipulation of the substrate 24. Changing the pitch of the helix pattern 28 will also result in a corresponding change in axial elevation ΔE (
The support member 38 may be or may include any suitable mechanical manipulator, electromechanical manipulator or micro electro-mechanical system (MEMS) device to alter the axial length of the support member 38. A control circuit for controlling the axial length of the support member 38 may be present and may be part of the radio frequency transceiver 12, for example. An exemplary mechanical manipulator is a threaded member, such as a screw, that acts against a counterpart threaded opening at either the first end 34 or the second end 36 of the substrate 24. In one embodiment, the threaded member may be manually turned by a screwdriver or other tool. An exemplary electromechanical manipulator is a stepper motor that turns a threaded member or turns a cam that acts upon the substrate 24. Another exemplary electromechanical manipulator is memory wire. An exemplary MEMS device is a MEMS spring.
The implementation of a mechanically adjustable antenna for OAM communication enables more than one data stream between devices, but simplifies the feeding circuitry so that all antenna elements may be fed with the same signal. In principle, the elevation of the antenna elements is predetermined and/or mechanically adjusted to achieve the desired emission phase offset between antenna elements relative to the phase reference plane, which would other have to be obtained from a phase-shifting feeding network or from signal processing in case the where the antenna elements are fed with individual signals.
To increase the number of frequencies and modes supported by the antenna assembly 10, the antenna assembly 10 may include a second array of antenna elements 46 arranged in a second helix pattern 48. Additional arrays of antenna elements arranged in additional helix patterns 28 and 48 may form part of the antenna assembly 10.
With additional reference to
Similar to the antenna elements 26 of the first array, the arc length spacing of the antenna elements 46 of the second array along the second helix pattern 48 and the pitch of the second helix pattern 48 may be determined in advance of wireless communications so that, in a transmit mode, a second RF signal fed to each of the antenna elements 46 in the second array of antenna elements 46 results in emission of a second RF signal with a rotational radiated wave front (e.g., a helical or twisted wave front or having OAM properties). The frequency and mode of the second RF signal may have a frequency and/or mode that are different than the RF signal emitted by the antenna elements 26. In one embodiment, the second array of antenna elements 46 supports a different mode than the first array of antenna elements 26 since each array has a different spacing between adjacent pairs of antenna elements 26, 46. For instance, the phase offset introduced between adjacent pairs of antenna elements 26 may be 45 degrees, where the phase offset introduced between adjacent pairs of antenna elements 46 may be 90 degrees.
In one embodiment, the radio frequency transceiver 12 is manufactured with an antenna assembly 10 having one array. If a need arises to change the wireless communication capabilities of the radio communication device 14, then the second array may be added. For instance, the second substrate and antenna element array may be mounted radially inward or radially outward from the existing substrate and antenna element array. In one embodiment, no changes to the feeding network 22 are needed since a phase-shift feeding system that coordinates with the added antenna element array is not needed.
The antenna assembly 10 may be used in a receive mode to receive radiated signals, including a radiated signal with a rotational radiated wave front (e.g., a helical or twisted wave front or having OAM properties). A radiated signal received by the antenna elements 26 of the antenna assembly 10 will result in each antenna element 26 outputting a corresponding received RF signal. Due to the elevation differences in the antenna elements 26, each antenna element 26 will introduce a different amount of phase offset to the radiated signal received at the antenna assembly 10 in the case where the radiated signal is received along the axis of the helix pattern 28. In other words, for a radiated signal received along the axis of the helix pattern 28, the received RF signals have phase offsets with respect to a phase reference plane that is normal to the axis of the helix pattern 28 that corresponds to the spacing of the antenna elements 26. Therefore, if the RF signal received at the antenna assembly 10 coordinates with the structure of the antenna assembly 10, it is possible that the RF signals output by the antenna elements 26 will be in-phase and/or will be coherently combinable (e.g., may be combined without being phase-shifted). Thus, the antenna assembly 10 may be matched to the emissions of a device that transmits radiated signals with a rotational wave front to the radio communications device 14 so that the radio communications device 14 optimally receives the radiated signals.
The following are various exemplary aspects of the disclosed antenna assembly 10.
Although certain embodiments have been shown and described, it is understood that equivalents and modifications falling within the scope of the appended claims will occur to others who are skilled in the art upon the reading and understanding of this specification.
Number | Date | Country | Kind |
---|---|---|---|
2050341-3 | Mar 2020 | SE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2021/018694 | 2/19/2021 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2021/188251 | 9/23/2021 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20040008153 | Lamensdorf | Jan 2004 | A1 |
20110037679 | Shlager | Feb 2011 | A1 |
20120092230 | Hung | Apr 2012 | A1 |
20130235744 | Chen | Sep 2013 | A1 |
20160028163 | Li | Jan 2016 | A1 |
20160043794 | Ashrafi | Feb 2016 | A1 |
20160261036 | Sato | Sep 2016 | A1 |
Number | Date | Country |
---|---|---|
105071034 | Nov 2015 | CN |
106329108 | Jan 2017 | CN |
108199135 | Jun 2018 | CN |
102016010738 | Mar 2018 | DE |
2551715 | Jan 2013 | EP |
2015027042 | Feb 2015 | JP |
WO-2014199451 | Dec 2014 | WO |
2019237249 | Dec 2019 | WO |
Entry |
---|
Fei Shen et al., “Generation of Continuously Variable-Mode Vortex Electromagnetic Waves With Three-Dimensional Helical Antenna”, IEEE Antennas and Wireless Propagation letters, vol. 18, No. 6, Jun. 2019, 5 pages. |
Zheyuan Zheng et al., “Mode-tunable Orbital Angular Momentum Beam Realized by Multi-arm Conical Helical Antenna”, IEEE International Conference on Computational Electomagnetics (ICCEM), Mar. 20, 2019, 3 pages. |
Jiangnan Mu et al., “Generation of Multi-mode Vortex Electromagnetic Waves Based on Helical Antenna”, IEEE The 10th International Conference on Communications, Circuits and Systems, Dec. 22, 2018, 4 pages. |
International Search Report from corresponding International Application No. PCT/EP2021/018694, mailed on May 17, 2021, 12 pages. |
Office Action and Search Report from corresponding Swedish Application No. 2050341-3, mailed on Nov. 26, 2020, 6 pages. |
F. Tamburini et al., “Experimental demonstration of free-space information transfer using phase modulated orbital angular momentum radio”, Feb. 14, 2013, 7 pages. |
Rui Chen et al., “Orbital Angular Momentum Waves: Generation, Detection and Emerging Applications”, IEEE Communications Surveys & Tutorials, Nov. 2019, 31 pages. |
Seng Fatt Liew et al., “Localized photonic band edge modes and orbital angular momenta of light in a golden-angle spiral”, Optics Express Nov. 7, 2011, vol. 1 9, No. 24, p. 23631, DOI: 10. 1364/0E.19.023631. |
Number | Date | Country | |
---|---|---|---|
20230095720 A1 | Mar 2023 | US |