The present invention relates to wireless communication systems and, more particularly, to electrical connections for internal antenna assemblies.
Wireless devices use various styles of antennas. The styles can be classified in two generic categories: external and internal. External antennas are generally more efficient than internal antennas. But internal antennas are less prone to damage and usually more aesthetically pleasing.
Internal antennas can be made using a number of different methodologies. One method of making internal antenna is a stamped metal or embossing technique. The stamped metal technique uses thin metal that is stamped and formed into the size and shape needed to form the needed radiator design. This piece of metal is then connected to a non-conductive carriage to form the antenna assembly. Another technique used to manufacture antennas is the flexible film approach. This technique uses a thin layer of conductive material such as copper attached to a thin non-conductive substrate such as Capton or Mylar. The substrate has a thin layer of adhesive on the back surface. To form the radiator geometry, the copper that is not needed is removed by using conventional printed circuit board manufacturing methods. This flexible film is then attached to a rigid structure such as the antenna carriage or the handset housing wall. Yet another method of manufacturing antennas is the multi-shot injection molded, selectively plated technique. The multi-shot technique usually has an injection molded base of non platable plastic with a platable plastic injection molded onto selective portions of the base. The platable plastic is then metalized using one of many various techniques, one of which is electroplating.
Based on the foregoing, it would be desirous to have an improved internal antenna assembly.
To attain the advantages of and in accordance with the purpose of the present invention, internal antenna assemblies for wireless devices are provided. The internal antenna assemblies include molded connectors integral to the antenna. The molded connector antenna has a core, a plated surface on the core. The molded connector provides electrical connections to a printed circuit board.
The above and other objects and advantages of the present invention will be apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings, in which like reference characters refer to like parts throughout, and in which:
The present invention will be described with reference to
PIFA antennas must be electrically connected to the feed and ground ports on printed circuit boards. This can be accomplished in many ways. For metal stamped antennas, the connectors are usually made as part of the actual radiating element. They are thin, stamped metal cantilever beams that are preloaded against a metalized surface on the printed circuit board. Preloading the connectors provides the required contact force through the dimensional “tolerance stack up” range. Often, but not always, the connector is made of the same material as the antenna.
For injection molded antennas, often a stamped metal contact is pressed fit into a molded slot in the plastic structure. The inside of this slot is metalized in such a way as to create an electrical path from the contact to the surface of the antenna. The press fit contact typically has a cantilever beam that contacts the respective ground or feed ports on the printed circuit board.
Instead of the press fit contact and cantilever beam arrangement, the stamped contact could be supported by non plated plastic and a cantilever extending in two directions. One cantilever would contact a plated area on the antenna and the second cantilever would contact the appropriate plated area on the printed circuit board.
In each instance, a separate connector is added to the assembly to connect the antenna and the printed circuit board. The added connector being separate from both the antenna and the printed circuit board increase part count for the assembly and decrease reliability.
Molded connectors are integral to the antenna such that a separate connector does not need to be inserted. While it is contemplated that the molded connectors would be formed in conjunction with making the antenna, be it part of the metal stamp or injection mold, for example. Instead of molded connectors attached to the antenna, it would also be possible to form contacts on the printed circuit board. However, it is believed larger manufacturing gains would result from having the connectors attached to the antenna.
Generally, a layer of conductive material 509, such as, for example, copper, is coupled to a non-conductive substrate 510, such as, for example, Capton or Mylar. An adhesive 507 is coated on non-conductive substrate 510. Thus, non-conductive substrate 510 separates conductive material 509 and adhesive 507. A slot 508 is formed in the construct to quasi partition antenna 502 in a conventional manner. Flexible film 503 is coupled to antenna carriage 504, or some other surface capable of holding film, such as, for example, the handset housing wall (not shown). Legs 505 of flexible film 503 make electrical connection to the printed circuit board by wrapping around and attaching to molded beams 506 of carriage 504. Legs 505 are captured between the surface of the printed circuit board and the molded beam 506. The molded beams are designed in such a way as to provide a structure that, when bent will provide adequate force onto the printed circuit board. While the invention has been particularly shown and described with reference to an thereof, it will be understood by those skilled in the art that various other changes in the form and details may be made without departing from the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
5539417 | Terry et al. | Jul 1996 | A |
6271794 | Geeraert | Aug 2001 | B1 |
6473045 | Duquerroy et al. | Oct 2002 | B1 |
6512491 | Kanayama et al. | Jan 2003 | B2 |
6664930 | Wen et al. | Dec 2003 | B2 |
6683577 | Yang et al. | Jan 2004 | B1 |
Number | Date | Country | |
---|---|---|---|
20040125028 A1 | Jul 2004 | US |