The present application is a non-provisional of prior U.S. Provisional Patent Application No. 62/334,548 filed May 11, 2016. The content of the foregoing prior application is hereby incorporated herein its entirety for any and all purposes.
Not Applicable.
The present disclosure relates to antennas for satellite communication, and more particularly to antenna assemblies including an array of antenna elements configured to operate as a phased array.
One conventional approach to antenna assemblies for satellite communication has been to provide paraboloid shapes, i.e., a dish shape, and point it towards a satellite. This is an efficient and cost effective solution for ground based installations, especially for communication with geostationary satellites. It has also been satisfactory for some vehicle applications, such as in the maritime industry where vessels travel at relatively low speeds in which a low profile antenna assembly is not critical for drag reduction. Further, greater weight and power requirements are more easily tolerated for marine surface vessels.
Some attempts have been made to provide paraboloid types of antennas on aircraft. However, the applications have been limited to areas where the antenna can be enclosed behind a radome to reduce drag. This has constrained the size of the antenna assembly, and hence performance. In addition, aircraft move at a much greater rate of speed relative to marine vessels and difficulties are frequently encountered in maintaining proper orientation of the assembly relative to a satellite, i.e., keeping the assembly pointed towards the satellite. While satisfactory for some military and business applications, other solutions have been attempted for aircraft used for commercial passenger transport, such as planar arrays of antennas configured to cooperatively act together in a phased array.
Instead of a large paraboloid structure for concentrating and directing a signal, a planar antenna array employs a group of smaller antenna elements. In particular, the signals from each element of the array are combined to produce a beam having a predefined shape and direction. Beam direction is changed as needed via a control system that adjusts the phase and gain of signals transmitted and received to and from the elements of the array to combine individual signals to shape and direct the beam.
The advantage of planar phased arrays for use on vehicles, especially aircraft, is the low profile of the array. Namely, the arrays can be formed to have a substantially planar surface. However, there are drawbacks, of which a major one is the limited range of angles through which the beam may be directed or steered. In the past, the range has been limited to directions deflecting the beam from about 45 degrees to 60 degrees from perpendicular to the plane of the array. While steering the beam to angles beyond this range is possible, reception and transmission performance tends to degrade rapidly. Attempts have been made to expand the effective deflection range by making the planar array rotatable about one or more axes. While making the array rotatable does expand the range of angles over which nominal reception and transmission performance may be maintained, it requires the addition of mounting structure providing rotatable axes that adds significant weight. Moreover, the mounting structure requires space for the mounting structure itself and permitting rotations of the array, which increases the profile height of the resulting antenna assembly. Further, repeatedly rotating the planar array tends to reduce the mean time between failures (MTBF).
Finally, it requires power to operate the phased array, which results in significant waste heat that must be dissipated. This can be difficult because the radome enclosing the antenna assembly traps heat, and excessive temperatures degrades performance of the array. Moreover, the power required by the phased array results in increased fuel consumption. Accordingly, better solutions are desired.
In one aspect, an antenna assembly is disclosed. The antenna assembly includes a support and antenna tiles disposed in the support. The antenna tiles form an external surface corresponding substantially in shape to lateral faces of a frustum. The frustum includes a central axis with the antenna tiles disposed around the central axis of the frustum and sloping away therefrom. Each antenna tile includes opposite ends, with one end narrower than the other end.
A planar array of antenna elements is disposed on each antenna tile in which the antenna elements of each array are configured to operate as a phased array. A control system connects to the planar arrays of antenna elements in which the control system is configured to selectively activate and deactivate each of the planar arrays.
In another aspect, an antenna assembly for mounting on a vehicle for supporting communication with a satellite is disclosed. The antenna assembly includes a support and an outer group of antenna tiles disposed in the support in which the antenna tiles form an external surface corresponding substantially in shape to lateral faces of a frustum. The frustum includes an apex with the antenna tiles of the outer group extending around the apex of the frustum, and the outer group of antenna tiles including an inner periphery. An inner group of antenna tiles extends around the inner periphery of the outer group of antenna tiles, with the inner group of antenna tiles disposed between the support and the apex of the frustum. A planar array of antenna elements is disposed on each antenna tile of the inner and outer groups of antenna tiles in which the antenna elements of each array are configured to operate as a phased array. The antenna assembly includes a control system connected to the planar arrays of antenna elements in which the control system is configured to selectively activate and deactivate each planar array.
In still another aspect, disclosed is an antenna assembly for mounting on a vehicle for supporting communication with a satellite. The antenna assembly includes antenna tiles arranged in an annular configuration around a central axis with the antenna tiles sloping away from the central axis towards the vehicle. Each antenna tile in the foregoing annular configuration is substantially identical to one another.
The assembly includes a planar array of antenna elements disposed on each antenna tile in which the antenna elements of each array are configured to operate as a phased array. The assembly also includes a control system connected to the planar arrays of antenna elements in which the control system is configured to selectively activate and deactivate each of the planar arrays.
In yet another aspect, the foregoing antenna assembly, further includes an inner annular arrangement of antenna tiles disposed around the central axis, in which the inner configuration is disposed between the central axis and the other annular configuration.
The antenna elements of each array are configured to operate as a phased array. Each antenna element may be implemented by using bipolar radiators (vertical and horizontal). Each tile can align itself to the line of site vector, comprising azimuth, elevation and polarization values. This may be done in two different ways. One, each element is aligned to the proper polarization, and then the entire tile aligned to the proper azimuth and elevation values. Two, all the radiators, for horizontal and vertical orientation, are first aligned to the proper azimuth and elevation vectors and then polarization alignment is performed. The net effect is the same, as the tile will be properly aligned to azimuth, elevation, and polarization. Each method has its own advantages and drawbacks.
The control system connected to the planar arrays of antenna elements is configured to activate each of the antenna tiles by supplying signals to the planar array of antenna elements disposed on the tile, in which the control system dynamically activates a subset of the tiles to support communication as the vehicle moves. The control system also aligns the phase of selected tiles and antenna elements to generate a variable beam. At the same time, the control system aligns the phase and amplitude between the vertical and horizontal selected antenna elements to generate a variable linear or circular polarization.
Other aspects and advantages will become apparent from the following description, taken in conjunction with the accompanying drawings.
The various features of the present disclosure will now be described with reference to the drawings of the various aspects disclosed herein. In the drawings, the same components may have the same reference numerals. Note that the drawings are not intended to be to scale or show actual quantities of components or relative sizes. The illustrated aspects are intended to illustrate, but not to limit the present disclosure. The drawings include the following Figures:
As a preliminary note, the terms “component”, “module”, “system,” and the like as used herein are intended to refer to a computer-related and/or information processing entity, either software-executing general or special purpose processor, hardware, firmware and/or a combination thereof. For example, a component may be, but is not limited to being, a process running on a hardware processor, a hardware processor, an object, an executable, a thread of execution, a program, and/or a computer. For example, a controller or control system may be implemented in software, hardware, and/or a combination thereof, and may include a group of two or more control systems working cooperatively.
By way of illustration, both an application running on a server and the server can be a component. One or more components may reside within a process and/or thread of execution, and a component may be localized on one computer and/or distributed between two or more computers. Also, these components can execute from various computer readable media having various data structures stored thereon. The components may communicate via local and/or remote processes such as in accordance with a signal having one or more data packets (e.g., data from one component interacting with another component in a local system, distributed system, and/or across a network such as the Internet with other systems via the signal).
Computer executable components can be stored, for example, at non-transitory, computer readable media including, but not limited to, an ASIC (application specific integrated circuit), CD (compact disc), DVD (digital video disk), ROM (read only memory), floppy disk, hard disk, EEPROM (electrically erasable programmable read only memory), solid state memory device or any other storage device, in accordance with the claimed subject matter.
In one aspect, the following disclosure describes an antenna assembly intended for use on vehicles.
One antenna assembly 100 is for transmission of signals to a satellite, while the other antenna assembly 102 is for receiving signals from a satellite. A single antenna assembly may be provided that performs both reception and transmission for applications where space is limited. However where space is available, separate antenna assemblies 100 and 102 provide an advantage in that signal losses are reduced relative to a single antenna configuration. In addition, the distance or gap between the antenna assemblies 100 and 102 reduces cross-talk between reception and transmission signals and further reduces losses. As an alternative, two antennas may be provided as shown, in which each antenna may be used for both transmission and reception concurrently, with the output from each antenna in reception combined in digital form to enhance received signal SNR (signal to noise ratio). Notwithstanding, separate antenna assemblies 100 and 102, with one for reception and the other for transmission, have an advantage with respect to reduced complexity.
Each antenna assembly 100 and 102 includes a plurality of antenna tiles 106. For reduced manufacturing and replacement cost, the antenna tiles 106 are preferably substantially identical to one another in shape. Each tile 102 corresponds substantially in shape to a polygon, preferably to a parallelogram, more preferably to a rectangle, and even more preferably to a square or hexagon. Other shapes may be used as well, such as circles, triangles, rectangles, etc. In general, shapes are preferred that can be placed together without overlapping or leaving gaps between tiles, i.e., shapes in which tessellation is possible.
The antenna tiles 106 of its respective antenna assembly 100 or 102, are preferably substantially the same size for further reduced manufacturing and replacement costs, i.e., each tile 106 has substantially the same dimensions. For an antenna assembly 100 or 102 intended for a wide-body aircraft, and using square tiles 106, a tile range from 50 mm×50 mm to 200 mm×200 m are suitable, and preferably falling between that range, and more preferably around 100 mm×100 mm, and more preferably about 90% of the value for tiles 106 used for reception and 80% for tiles used for transmission. The thickness of each tile 106 is preferably not more than 30 mm in thickness, and more preferably between 15 mm to 20 mm in thickness. Thinner tiles 106 are preferred for lighter weight and lower profiles of the antenna assemblies 100 and 102 for reduced drag.
The antenna assemblies 100 and 102 includes a plate or skirt 108 on which the tiles 106 are disposed and supported above the aircraft fuselage 104. More particularly, each antenna assembly 100 and 102 is mounted on the skirt 108, and the tiles 106 of its respective antenna assembly disposed in a support 110 of each antenna assembly. When the tiles 106 of each antenna assembly are mounted in the support 110 thereof, each antenna assembly 100 and 102 forms an external surface conforming substantially in shape to a frustum, indicated generally by reference numeral 112. In particular, the shape corresponds substantially to a frustum of a right circular cone. Other frustums are possible as well, for example in applications where high aerodynamic efficiency is essential, the shape may a frustum of a non-right or non-circular cone to provide a swept or oval geometry when viewed from above.
The tiles 106 of each assembly 100 and 102 include a group of tiles forming together with the support 110, a planar top of each frustum 112. The planar top is substantially circular and includes an outer boundary 114. As the outer boundary 114 is substantially circular or ring shaped, the polygonal tiles 106 do not evenly meet the boundary 114 and some gaps are left. For applications where higher gain is desired, additional tiles 106 may be added and/or specially shaped for more complete coverage on the planar top of each frustum 112. In another configuration as shown in
Another group of tiles 106 together with the support 110 form a substantially curved side surface 116 of each frustum 112. In this regard, the tiles 106 with the support 110 form the curved side surface 116 within the resolution of the dimensions of the tiles 106 on the support 110. In this regard, see
The substantially curved side surface 116 extends around the outer boundary of the planar top of each frustum 112, and slopes downwardly away therefrom to the skirt 108 supporting the antenna assemblies 100 and 102 on the vehicle fuselage 104. The tiles 106 do not completely cover the side surface 116 and wedge shaped gaps are left between rows of tiles 106. In other applications, where higher gain is desired, the tiles 106 for the sides 116 may be specially shaped for better coverage, e.g., wedge or trapezoidal shaped tiles.
The antenna assemblies 100 and 102 are sized and shaped to fit within the space specified by the ARINC 791 standard, at least for wide-body aircraft. An example of the antenna assemblies 100 and 102 installed with the size and space specified by the ARINC 791 standard is schematically illustrated in
As schematically illustrated in
Each antenna assembly 100 and 102 includes an antenna controller or control system 124 (see
The main controller 126 is provided as part of baseplate equipment 127, which includes a DC power distribution network based on an AC/DC power supply from the vehicle (typically 48 VDC for aircraft) 121, an on-board modem 125, and an antenna positioning system 123, which can provide full data (GPS location and vehicle positioning) for satellite tracking. The main controller 126 is responsible for overall control of each antenna assembly 100 and 102, line of sight calculations, built-in testing and test equipment (BIT/BITE) management, and communication with external controllers 128, such as a broadband controller including a modem, in the vehicle and specific antenna controllers. The broadband controller provides the transmission antenna assembly 100 with L-band signals for transmission. Conversely, the receiving antenna assembly 102 provides the broadband controller with received signals in the L-band.
The main controller 126 is also in communication with an ARINC 429 bus from the vehicle via the broadband controller for using vehicle navigation data to compute antenna pointing values. The master controller 126 communicates with the external controllers 128 via Ethernet lines 130 (100Base-T or faster) using simple network management protocol (SNMP) and/or proprietary protocol(s) to other types of controllers, such as maintenance controllers.
The on-board modem 125 is preferably based on the DVB-S2 standard (or later version) and provides each antenna control system 124 with information about pointing accuracy, such as received SNR and signal strength. The on-board modem 125 may also be used as a main or master modem replacing the modem of the broadband controller. In this case, physical layer processing is performed on the on-board modem 125 while data framing is performed on the broadband controller. In either situation, the modem 125 can provide the control system 124 for the transmitting antenna assembly 100, information about TDMA timing, so that the antenna control system 100 can switch transmission on and off and reducing total average power consumption.
The control system 124 of each antenna assembly 100 and 102 receives the computed line-of-sight values, i.e., elevation, azimuth, and polarity, and other information from the main controller 126 over a high speed bus lines 132. The information is computed and provided by the main controller 126 at last frequently as every 20 milliseconds, more preferably at least every 10 milliseconds, and even more preferably at least every 5 milliseconds.
Each antenna controller 124 uses this information to determine the tile 106 configuration for achieving the line-of-sight values and communicates the configuration to a tile controller 136 on each tile 106 over a high speed tile bus 138. For convenient illustration, only four tile controllers 136 are illustrated in each antenna assembly 100 and 102. The remaining tile controllers 136 are presented by the solid black double headed arrows 140 and 142, indicating rows and columns of tiles 106 with each having a tile controller. The high speed tile base is implemented as a high speed USB or Ethernet connection.
The control system 124 for each antenna identifies a tile 106 by its location or position in the antenna assembly 100 or 102, and provides an initial phase. Each tile controller 136 controls the array 120 of its tile 106 based on instructions from its respective antenna control system 124. Steering or pointing is performed by two processes running in parallel: (i) coarse pointing performed by the antenna control system 124 based on tile mapping and phase distribution; and (ii) fine pointing performed by each tile controller 136 based the phase and amplitude distribution of the antenna elements of its corresponding array 120. Each tile controller 136 performs phase and amplitude adjustments for its array 120 as required by the azimuth, elevation, and polarity values communicated to it from its respective antenna control system 124. Each tile controller 136 may be implemented as a control software or as a separate component.
It is envisioned that the parallel processing will dramatically reduce the antenna pointing mechanism time constants, as coarse tuning or steering will provide relatively accurate pointing on all three axes and can be performed relatively fast, due to being at the tile level. Following the coarse tuning, each tile 106 is aligning itself in parallel to all other tiles. The net effect is reduction in antenna pointing time constant by a factor which is more or less equal to the number of antenna elements 122 per tile 106.
To avoid unnecessary power consumption and to eliminate wide scanning range in azimuth, the control system 124 for each antenna assembly 100 and 102 determines which tiles should be active, i.e., and which tiles should be operated with minimal power consumption, i.e., deactivated or in standby mode). This procedure shall be exercised for the group of tiles on the planar top of each frustum 112, and the group of tiles forming the substantially curved side surface 116 of each frustum 112. Examples of adaptive tile mapping are shown in
Each receiving tile 106 includes a pilot generator 146, pilot detector 148, and at least one radio frequency integrated circuit (RFIC) 150 for each antenna element 122 of the array 120 (for convenient illustration, the RFICs are shown as a single component in
Operation is permitted as a single beam or two beams as described above for each receiving tile 106. Alternatively, a tile 106 could be partially activated or deactivated by using only one of the subarrays 120a and 120b. Use of two beams permits the receiving antenna assembly 102 to be used to receive a signal from two different satellites concurrently. That is, one beam may be use to receive a signal from one satellites, while the other beam is used to receive a signal from another satellite. This enable seamless handover between satellites in which the control system 124 dynamically activates a subset or subarray 120a and 120b as the vehicle moves from coverage by one satellite to another to simultaneously receive signals from both satellites until the transition is complete. Note however, that the foregoing arrangement for dual beam output by a single tile 106 is limited to where the beams are separated in azimuth by 100 degrees or less. For higher degrees of separation dual beam generation is managed by the control system 124 from different tiles 106, rather than subarrays 120a and 120b on each tile. Alternatively, both beams of the receiving antenna assembly 102 could be used to receive signals from the same satellite for increased bandwidth. In addition, the tiles 106 and subarrays 120a and 120b may have different polarizations from one another. By way of illustrative, non-limiting example, subarray 120a may be controlled to have horizontal polarization, subarray 120b controlled to have vertical polarization, while subarrays 120a and 120b of another tile 106 have circular polarization.
Using the azimuth and elevation values, the control systems 124 for each antenna assembly 100 and 102 determine the tile mapping (which tile should be turned ON and will be active) and the tile's phase and amplitude values (referenced to a given, known antenna element 122). Using a broadcast message, each control system 124 delivers a tile broadcast message. The broadcast message is configured for each receiving beam to specifying each of azimuth, elevation, frequency, and polarity. The message further specifies the tile address, and whether the tile is active or inactive, and also its subarrays 120a and 120b.
For communication with geostationary satellites in the Ku and/or Ka band and providing a satisfactory communication experience for passengers on wide-body aircraft and smaller, a G/T of at least 9 db/K is provided. Preferably, the G/T is at least 10 db/K, even for circular polarizations at lower elevations scans, e.g., from 10 up to 30 degrees, and more preferably at least 10.5 db/K. For higher elevations scans, e.g., from at least 30 degrees to 90 degrees, G/T is preferably at least 11 db/K, more preferably at least 11.5 db/K, and even more preferably at least 12.5 db/K.
The size of the antenna assemblies 100 and 102 is limited by the size available for mounting. As described earlier, the assemblies 100 and 102 are sized and shaped to fit with the size specified by the ARINC 791 standard, which provides for a maximum width of 1121.2 mm (see
For higher elevations, e.g., from at least 30 degrees to 90 degrees, substantially only tiles 106 and 118 on the planar top of a frustum 112 would be active. For lower elevations, e.g., less than 30 degrees, substantially only tiles 106 and 118 on side surface 116 would be active. For medium elevations, a combination of tiles 106 and 118 on the top and sides would be active.
As described above, the antenna assemblies 100 and 102 have been sized to fit within the space constraints as specified by ARINC 729, which is suitable for at least wide-body aircraft.
The effective reception or transmission area for the antenna assembly 200 is thereby larger when azimuth is directed to the left or right side (azimuth=±90°±60°) of the aircraft. This can be more clearly seen in
With each of the antenna assemblies 100, 102, and 200, the quantity of tiles 106 or 118 forming the substantially curved side surface 116 is greater than the quantity of tiles forming the planar top of a frustum 112 (see
Returning to
As can be seen in
With respect power usage, the antenna assemblies 100 and 102 will require at maximum no more than 500 watts, and preferably no more than 450 watts. Average power consumption will be less than 400 watts, and preferably less than 300 watts. Most of the power will be required for transmission, nominally around 60 to 65% of the power consumed.
Returning to
The antenna assembly 400 further includes a top or cap 410 covering the apex of frustum, and the antenna tiles 406 extend around the apex of the frustum. There are sufficient tiles 406 provided to approximate a curved surface, i.e., preferably between 25 and 50 tiles, more preferably between 30 and 40. In
Additionally illustrated in
The inner group of antenna tiles 414 slope upwardly away from the central of axis of the frustum, at an acute angle relative to a horizontal plane passing perpendicularly through the central axis of the frustum shape. The angle is preferably no more than 40 degrees, more preferably no more than 30 degrees, and yet more preferably the angle is around 20 degrees. The inner group of antenna tiles 414 are intended for transmitting a signal to a satellite in geostationary orbit. For a vehicle 402 traveling in mid-latitudes along the earth, foregoing described angle typically results in maximum ERIP (effective/equivalently isotropically radiated power). The upper edge of the outer group of tiles 406 lie proximate the upper edge of the inner group of tiles 414.
The quantity of tiles 406 in the outer group and the quantity of tiles 414 in the inner group may be the same or different. However, a sufficient quantity of tiles 406 and 414 is preferably provided to approximate a curved surface. By way of illustrative, non-limiting example, the drawing figures show the outer group of tiles 406 being equal in quantity to that of the inner group of tiles 414. Since the inner group of tiles 414 form an annular configuration within the annular configuration of the outer group of tiles 404, each tile 414 of the inner group has a smaller base dimension relative to a tile 404 of the outer group.
The previously described antenna assemblies 100 and 102 are sized and shaped to mount the assembly 400 to mounts provided an aircraft generally in accordance with the ARINC 791 standard. As previously described, the ARINC 790 standard provides for a maximum width of 1121.2 mm (see
In an assembly 400 comprised of 36 tiles 406 in the outer group, the wider end 424 of each tile 406 combine to form a 36 sided regular polygon, viewed from above as in
Another substrate 448 electrically insulates the lower patch 46 from a ground patch 450. The ground patch 450 electrically connects to ground through vias 452, and is supported on a substrate layer 454. The substrate layer 454 has formed therein a space or cavity 456 in which an RFIC (radio frequency integrated circuit) 458 is mounted. An RFIC 458 is provided for each antenna element 420, in which the RFIC provides the horizontal and vertical signals to the vias 444 and 446.
The substrates 438, 448, and 454 are preferably formed of antenna grade laminates and materials suitable for multilayer high frequency use. Suitable material are available from the Rogers Corporation of Chandler, Ariz., USA, in particular, materials sold under the trademarks RO4700 series, RO4350B, and RO4450B. The bottommost layer 460 of each tile 406 and 414 is a heatsink and formed of a metal, such as aluminum for conducting heat away from the RFIC 458.
Returning to
The antenna elements 420 on each tile 406 and 414 are divided into first and second arrays 426 and 427 as schematically illustrated in
As shown in
The center the support 404 provides a central annular opening 474 for mounting of electronics 476 (see
Tiles 414 used for transmission in the Ku band, must transmit signals in a frequency range from 14 GHz to 14.5 GHz. The wavelengths are therefore shorter, and so are the spacings 430 and 432 in
Various changes and modifications can be made to the described embodiments without departing from the scope of the invention as will be recognized by those of ordinary skill in the art. For example, while antenna assemblies have been described respectively for transmission and reception, a single assembly could be provided for providing both transmission and reception as the transmission and reception frequencies are different. The antenna assemblies 100 and 102 could be provided of the same size, the aft and forward positions reversed, or the transmission antenna assembly made larger than the antenna assembly for reception. In the assembly 400, different quantities of tiles for reception and transmission could be provided, rather than equal quantities of each. Alternatively, in the assembly 400 with equal quantities of tiles 406 and 414, each tile 406 and 414 could be could combined into a single tile joined along one edge, instead of separately to enable easier assembly of the tiles onto the support. Antenna tiles may be designed to operate in bands other than Ku and Ka, such as the C band for example. Different tile shapes could be provided, or a mixture of tile shapes provided, with different quantities of antenna elements.
As changes can be made as described, the present examples and described configurations are to be considered as illustrative and not restrictive and the invention is not to be limited to the details given herein, but may be modified within the scope and equivalence of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
5463656 | Polivka et al. | Oct 1995 | A |
6512487 | Taylor et al. | Jan 2003 | B1 |
6621470 | Boeringer et al. | Sep 2003 | B1 |
6774848 | Wright | Aug 2004 | B2 |
6958729 | Metz | Oct 2005 | B1 |
7522095 | Wasiewicz et al. | Apr 2009 | B1 |
7714797 | Couchman et al. | May 2010 | B2 |
7750863 | Wesel | Jul 2010 | B2 |
7940228 | Buckley | May 2011 | B1 |
8334809 | Nichols et al. | Dec 2012 | B2 |
8654017 | Voss | Feb 2014 | B1 |
9564682 | Rhoads et al. | Feb 2017 | B2 |
20020050946 | Chang et al. | May 2002 | A1 |
20030020666 | Wright | Jan 2003 | A1 |
20060176843 | Gat et al. | Aug 2006 | A1 |
20110291889 | Mayo | Dec 2011 | A1 |
20130194134 | Beeker et al. | Aug 2013 | A1 |
20130273858 | Sover et al. | Oct 2013 | A1 |
20130297301 | Alberth, Jr. | Nov 2013 | A1 |
20140085143 | Chang | Mar 2014 | A1 |
20160049723 | Baks | Feb 2016 | A1 |
Number | Date | Country |
---|---|---|
103022726 | Apr 2013 | CN |
Entry |
---|
Fenn et al., The Development of Phased-Array Radar Technology, Lincoln Laboratory Journal, Jan. 2000, pp. 321-340, vol. 12, No. 2. |
Michael Salter, Phased Array Antenna, RISE Acreo, Online Publication, downloaded Dec. 4, 2015, url: https://www.acreo.se/projects/phased-array-antenna#description. |
Carlo Kopp, AEW&C—Phased Array Technology Parts 1 & 2, Air Power Australia, Sep., Oct. 1994, url: http://ausairpower.net/aew-aesa.html. |
Ferdinando Tiezzi, Overview of Automotive Antennas for Satellite Mobile Communications, ARTIC Workshop, Apr. 15, 2010, Barcelona, Spain. |
Hajimiri et al., Integrated Phased Array Systems in Silicon, Proceedings of the IEEE, Sep. 2005, pp. 1637-1665, vol. 93, No. 9. |
Mohit Anand, Applications of Metamaterial in Antenna Engineering, International Journal of Technical Research and Applications, Jan.-Feb. 2014, pp. 49-52, vol. 2, Issue 1, Bangalore, India. |
CST Studio Suite, Inmarsat Phased Array Design using Antenna Magus, System Integrity Workshop Series, 2012, Computer Simulation Technology. |
Van Der Vossen et al., Design of a Highly Integrated Ku-band Planar Broadband Phased Array Receiver with Dual Polarizatiion, European Radar Conference (EuRAD), Nov. 2014, Rome, Italy. |
Klatser et al., An Ultra Flat Phased Array Antenna With Integrated Receivers in SiGe BiCMOS, International Journal of Microwave and Wireless Technologies, 2015. |
Kim et al., Impact Behavior of Composite-Surface-Antenna Having Dual Band, Piers Online, 2011, pp. 281-285, vol. 7, No. 3. |
Sayan Roy, Designing of a Small Wearable Conformal Phased Array Antenna for Wireless Communications, Thesis, North Dakota State University, Aug. 2012, pp. 1-64, Fargo, North Dakota. |
Kymeta, Aeronautical Terminal Products, Webpages, Mar. 25, 2013, url: www.kymetacorp.com/products/aeronautical-products/. |
Number | Date | Country | |
---|---|---|---|
20170331176 A1 | Nov 2017 | US |
Number | Date | Country | |
---|---|---|---|
62334548 | May 2016 | US |