Antenna configuration

Information

  • Patent Grant
  • 11951316
  • Patent Number
    11,951,316
  • Date Filed
    Thursday, December 9, 2021
    2 years ago
  • Date Issued
    Tuesday, April 9, 2024
    26 days ago
Abstract
Apparatus for use with a medical implant having a receiving coil. A flexible housing to be placed against skin of a subject includes a flexible transmitting coil and control circuitry for driving a current through the transmitting coil to induce a current in the receiving coil. A sensor coupled to the circuitry determines divergence of a resonance frequency of the transmitting coil when flexed from a nominal resonance frequency of the transmitting coil, occurring in the absence of any forces applied to the transmitting coil. One or more electrical components coupled to the circuitry tune the resonance frequency of the transmitting coil. A switch is coupled to each of the electrical components, the switches including transistors having capacitances that depend on the voltage applied to each switch. The circuitry applies a respective DC voltage to each switch. Other applications are also described.
Description
FIELD OF THE INVENTION

Applications of the present invention relate to transmitting power to an implanted medical device.


BACKGROUND

Electrical power can be transferred to a percutaneous medical implant by magnetic induction. A current flowing through a coil produces a magnetic field, which, in turn, will induce a current in a second coil, provided the second coil is in close enough proximity to the magnetic field and oriented such that the magnetic field is substantially parallel to the central longitudinal axis of the second coil. A coil inside a medical implant can therefore act as a receiving coil, while a coil outside a patient's body can act as a transmitting coil. A current can be driven through the transmitting coil in order to induce an induced current in the receiving coil, thereby powering the medical implant.


A CBS News article entitled “Migraine ‘smart’ patch tested to help ease pain,” by Steven Reinberg, describes a study performed at Rambam Medical Center in Haifa, Israel, under Dr. David Yarnitzky, chair of neurology at the Rambam Medical Center. The study tested an arm patch to be worn on the upper arm with “[r]ubber electrodes and a chip in the patch [to] produce electric impulses that block pain signals from reaching the brain,” in order to treat migraine pain.


A St. Jude Medical, Inc. fact sheet entitled “Peripheral nerve stimulation for intractable chronic migraine,” describes peripheral nerve stimulation as a treatment for chronic migraines. The fact sheet states that “Peripheral nerve stimulation (PNS) is a therapy that uses mild electrical pulses to stimulate the nerves of the peripheral nervous system. The peripheral nerves make up a network of nerves outside of the central nervous system. For example, the ulnar nerve in the arms and the sciatic nerve in the legs are part of the peripheral nervous system. The St. Jude Medical systems currently approved for PNS in select markets look and operate much like a cardiac pacemaker. However, instead of sending pulses to the heart, the pulses are carried to the occipital nerves, located in the back of the head . . . . Researchers believe that by delivering electrical pulses to these specific peripheral nerve fibers, PNS may influence the way the nerves communicate with the brain and provide an alternative to long-term drug therapy for the relief of chronic migraine.”


SUMMARY OF THE INVENTION

A method is described for transmitting power to a medical implant that includes a receiving coil. For some applications, a transmitting coil, disposed in a transmitting coil housing, is placed against skin of a subject such that a central longitudinal axis of the transmitting coil is substantially perpendicular to the skin. For some applications, the medical implant is implanted between an ankle and a knee of a leg of a subject, typically closer to the ankle than the knee. To increase efficiency of the power transfer while accommodating for limited space near the ankle, the transmitting coil is oriented with respect to the skin such that it is not centered over the receiving coil, but rather only a portion of the transmitting coil is disposed directly over the receiving coil. This orientation of the transmitting coil with respect to the receiving coil allows for powering the medical implant using only one transmitting coil. To transmit power to the medical implant, control circuitry is activated to drive a current through the transmitting coil that induces an induced current in the receiving coil.


Typically, the transmitting coil housing and the transmitting coil are flexible in order to comfortably conform to the shape of a limb of the subject. In the absence of any forces applied to the transmitting coil, the transmitting coil has a nominal resonance frequency. In order to accommodate for possible fluctuations in the resonance frequency of the transmitting coil due to the flexing, a sensor may be coupled to the control circuitry and configured to determine an extent of divergence of (a) the resonance frequency of the transmitting coil when the transmitting coil is flexed from (b) the nominal resonance frequency of the transmitting coil, occurring in the absence of any forces applied to the transmitting coil. The control circuitry is further configured to output a signal that controls one or more electrical components that are (a) coupled to the control circuitry and (b) configured to tune the resonance frequency of the transmitting coil in order to compensate for the fluctuations.


There is therefore provided, in accordance with some applications of the present invention, a method for transmitting power to a medical implant that includes a receiving coil that is oriented such that a longitudinal axis of the receiving coil is substantially parallel to skin of a subject, the method including:


providing a transmitting coil disposed in a housing;


placing the housing against the skin such that:

    • (a) a central longitudinal axis of the transmitting coil is substantially perpendicular to the skin,
    • (b) a portion of the transmitting coil is disposed over the receiving coil,
    • (c) a first distance, from the central longitudinal axis of the transmitting coil to a longitudinal center of the receiving coil, is greater than a second distance, from the central longitudinal axis of the transmitting coil to an inner edge of the portion of the transmitting coil, and
    • (d) the first distance is less than a third distance, from the central longitudinal axis of the transmitting coil to an outer edge of the portion of the transmitting coil; and


      activating control circuitry to power the medical implant by driving a current through the transmitting coil that induces an induced current in the receiving coil.


For some applications, placing includes identifying the subject as suffering from migraines or cluster headaches, and in response to the identifying, placing the housing on a leg of a subject such that:


(a) the transmitting coil is disposed between a knee and an angle of the leg, and


(b) the transmitting coil transmits power to a medical implant configured to stimulate a tibial nerve in the leg of the subject.


For some applications, placing includes placing the housing on a leg of the subject such that:


(a) the transmitting coil is disposed between a knee and an ankle of the leg, and


(b) (i) a portion of the transmitting coil that is disposed over the receiving coil is closer to the ankle than (ii) a portion of the transmitting coil that is disposed at 180 degrees from the portion of the transmitting coil that is disposed over the receiving coil, is to the ankle.


For some applications, placing includes placing the housing such that the first distance is 15-45 mm.


For some applications, placing includes placing the housing such that the second distance is less than 30 mm.


For some applications, placing includes placing the housing such that the third distance is 40-60 mm.


For some applications, placing includes placing the housing such that a difference between the third distance and the second distance is 30-40 mm.


For some applications, providing the transmitting coil includes providing a transmitting coil wherein a ratio of (a) a difference between the third distance and the second distance, to (b) a longitudinal length of the receiving coil is greater than 0.5.


For some applications, providing the transmitting coil includes providing a transmitting coil wherein a ratio of (a) a difference between the third distance and the second distance, to (b) a longitudinal length of the receiving coil is less than 1.5.


For some applications, providing the transmitting coil includes providing a transmitting coil wherein a ratio of (a) a difference between the third distance and the second distance, to (b) a longitudinal length of the receiving coil is between 0.5 and 1.5.


For some applications, providing the transmitting coil includes providing a transmitting coil wherein:


(a) a height of the transmitting coil measured along a longitudinal axis of the transmitting coil is 300-600 microns,


(b) an outer diameter of the transmitting coil is 100-140 mm, and


(c) a ratio of the outer diameter of the transmitting coil to the height of the transmitting coil is at least 150.


For some applications, placing includes placing the housing such that the transmitting coil is over a receiving coil, wherein:


(a) a longitudinal length of the receiving coil is 3-15 mm,


(b) an outer diameter of the receiving coil is 0.6-1.5 mm, and


(c) a ratio of the outer diameter of the receiving coil to the longitudinal length of the receiving coil is less than 0.5.


For some applications, activating the control circuitry includes activating the control circuitry to drive the current through the transmitting coil at a frequency of 1-20 MHz.


For some applications, placing includes placing the housing against the skin and subsequently sliding it along the skin until an indicator, coupled to the housing, indicates that the transmitting coil is in an acceptable position with respect to the receiving coil.


For some applications, providing the transmitting coil includes providing a transmitting coil wherein a cross-sectional area of a wire of the transmitting coil is rectangular, wherein the cross-section is taken perpendicular to a direction of current flow within the wire.


For some applications, providing the transmitting coil includes providing a transmitting coil that is elongated in a direction perpendicular to the central longitudinal axis of the receiving coil.


For some applications, providing the transmitting coil includes providing a planar coil disposed in a housing.


For some applications, providing the planar coil includes providing a planar coil including a plurality of layers.


For some applications, providing the planar coil includes providing a planar coil with a line spacing, of adjacent coplanar wires, of 0.25-3 mm.


For some applications, providing the planar coil includes providing a planar coil with a line width of 1-4 mm.


For some applications, providing the transmitting coil includes providing a transmitting coil wherein an average distance from a wire of the transmitting coil to the central longitudinal axis of the transmitting coil is less than two times a square root of a cross-sectional area of a central non-coiled region of the transmitting coil.


For some applications, providing includes providing a transmitting coil wherein an average distance from the wire of the transmitting coil to the central longitudinal axis of the transmitting coil is 0.6-1.5 times the square root of the cross-sectional area of the central non-coiled region of the transmitting coil.


There is further provided, in accordance with some applications of the present invention, apparatus including:


a medical implant, the medical implant including:

    • a receiving coil; and
    • a plurality of electrodes;


a transmitting coil, having wire disposed at all rotational locations about a central longitudinal axis of the transmitting coil, oriented such that:

    • (a) the central longitudinal axis of the transmitting coil is substantially perpendicular to a central longitudinal axis of the receiving coil,
    • (b) at one of the rotational locations, a line from the wire and substantially parallel to the central longitudinal axis of the transmitting coil intersects the receiving coil, and at 180 degrees from the rotational location a line from the wire and substantially parallel to the central longitudinal axis of the transmitting coil does not intersect the receiving coil,
    • (c) a first distance from the central longitudinal axis of the transmitting coil to a longitudinal center of the receiving coil, is greater than a second distance from the central longitudinal axis of the transmitting coil to an inner edge of the transmitting coil at the one of the rotational locations, and
    • (d) the first distance is less than a third distance from the central longitudinal axis of the transmitting coil to an outer edge of the transmitting coil at the one of the rotational locations; and


control circuitry configured to transmit power to the medical implant by driving a current through the transmitting coil that induces an induced current in the receiving coil.


For some applications, the control circuitry is configured to drive the current through the transmitting coil at a frequency of 1-20 MHz.


For some applications, the medical implant is configured to be implanted 1-5 cm below skin of a subject, and the control circuitry is configured to transmit the power, by driving the current through the transmitting coil that induces the induced current in the receiving coil, when the medical implant is implanted 1-5 cm below the skin.


For some applications, the receiving coil is a cylindrical coil including a ferrite core.


For some applications, the first distance is 15-45 mm.


For some applications, the second distance is less than 30 mm.


For some applications, the third distance is 40-60 mm.


For some applications, a difference between the third distance and the second distance is 30-40 mm.


For some applications, a ratio of (a) a difference between the third distance and the second distance, to (b) a longitudinal length of the receiving coil is greater than 0.5.


For some applications, a ratio of (a) a difference between the third distance and the second distance, to (b) a longitudinal length of the receiving coil is less than 1.5.


For some applications, a ratio of (a) a difference between the third distance and the second distance, to (b) a longitudinal length of the receiving coil is between 0.5 and 1.5.


For some applications:


(a) a height of the transmitting coil measured along a longitudinal axis of the transmitting coil is 300-600 microns,


(b) an outer diameter of the transmitting coil is 100-140 mm, and


(c) a ratio of the outer diameter of the transmitting coil to the height of the transmitting coil is at least 150.


For some applications:


(a) a longitudinal length of the receiving coil is 3-15 mm,


(b) an outer diameter of the receiving coil is 0.6-1.5 mm, and


(c) a ratio of the outer diameter of the receiving coil to the longitudinal length of the receiving coil is less than 0.5.


For some applications:


(a) a first ratio, of the outer diameter of the transmitting coil to a height of the transmitting coil measured along a longitudinal axis of the transmitting coil, is at least 150,


(b) a second ratio, of the outer diameter of the receiving coil to the longitudinal length of the receiving coil, is less than 0.5, and


(c) a ratio of the first ratio to the second ratio is at least 300.


For some applications, the transmitting coil has between 4 and 10 turns.


For some applications, the receiving coil has between 10 and 40 turns.


For some applications, the medical implant is configured to send a signal to the control circuitry upon receiving the transmitted power.


For some applications, a cross-sectional area of a wire of the transmitting coil is rectangular, the cross-section being taken perpendicular to a direction of current flow within the wire.


For some applications, the transmitting coil is elongated in a direction perpendicular to the central longitudinal axis of the receiving coil.


For some applications, a length of the receiving coil is 3-15 mm.


For some applications, the medical implant includes a housing having a length of 30-45 mm and the receiving coil is disposed in within the housing.


For some applications, the apparatus further includes an indicator, and the control circuitry is configured to activate the indicator upon the transmitting coil being in an acceptable position with respect to the receiving coil.


For some applications, the control circuitry is configured to detect interference with its output signal and to activate the indicator upon the detection of the interference.


For some applications, the control circuitry is configured to activate the indicator again, upon the transmitting coil no longer being in correct position with respect to the receiving coil.


For some applications, the control circuitry is configured to ascertain an indication of an efficiency of the power transfer between the transmitting coil and the receiving coil, and to activate the indicator according to the ascertaining.


For some applications, the control circuitry is configured to measure a loss of power in the transmitting coil, the loss of power being indicative of the efficiency of the power transfer.


For some applications, the transmitting coil is a planar coil.


For some applications, a line width of the transmitting coil is 1-4 mm.


For some applications, the planar coil includes a plurality of layers.


For some applications, a line spacing of adjacent coplanar wires in the transmitting coil is 0.25-3 mm.


For some applications, the apparatus further includes a flexible printed circuit board (PCB), and the transmitting coil includes two planar layers disposed on either side of the flexible PCB.


For some applications, a height of each layer measured along a longitudinal axis of the transmitting coil is 15-100 microns.


For some applications, a height of the flexible PCB measured along a longitudinal axis of the transmitting coil is 100-200 microns.


For some applications, respective wires of the two layers are conductively connected to each other at at least one location along each turn of the transmitting coil.


For some applications, the apparatus further includes at least one capacitor, coupled to the transmitting coil at at least one location along at least one turn of the transmitting coil.


For some applications, the capacitor is electrically coupled to both of the two layers.


For some applications, the apparatus further includes a plurality of capacitors coupled to the transmitting coil such that at least one capacitor is coupled to the transmitting coil at at least one location along each turn of the transmitting coil.


For some applications, each of the capacitors is electrically coupled to both of the two layers.


For some applications, an insulating cover is coupled to both layers of the transmitting coil disposed on the flexible PCB.


For some applications, an average distance from a wire of the transmitting coil to the central longitudinal axis of the transmitting coil is less than two times a square root of a cross-sectional area of a central non-coiled region of the transmitting coil.


For some applications, the average distance from the wire of the transmitting coil to the central longitudinal axis of the transmitting coil is 0.6-1.5 times the square root of the cross-sectional area of the central non-coiled region of the transmitting coil.


There is further provided, in accordance with some applications of the present invention, apparatus for use with a medical implant that includes a receiving coil, the apparatus including:


a flexible housing configured to be placed against skin of a subject;


a flexible transmitting coil disposed in the housing;


control circuitry configured to transmit power to the medical implant by driving a current through the transmitting coil that induces an induced current in the receiving coil;


a sensor coupled to the control circuitry, the sensor configured to determine an extent of divergence of (a) a resonance frequency of the transmitting coil when the transmitting coil is flexed from (b) a nominal resonance frequency of the transmitting coil, occurring in the absence of any forces applied to the transmitting coil, and configured to output a signal according to the determination; and


one or more electrical components, coupled to the control circuitry and configured to tune the resonance frequency of the transmitting coil in response to the determination of the sensor.


For some applications, the control circuitry is configured to set the frequency of the current output by the control circuitry to be between 1 and 20 MHz.


For some applications, the flexible transmitting coil is configured to flex such that it can substantially conform to a lateral wall of a cylinder having a diameter between 8 and 50 cm.


For some applications, the sensor includes a phase detector, configured to (a) determine a phase difference between the phase of the current output by the control circuitry, and the phase of either a current or a voltage on at least one component of the transmitting coil, the phase difference being due to flexing of the transmitting coil, and (b) output a signal according to the determination.


For some applications, the control circuitry includes a feedback calculator configured to:


(a) receive the signal output by the phase detector,


(b) determine, according to the signal output by the phase detector, a necessary change in the resonance frequency of the transmitting coil, in order to reduce the extent of divergence of (a) the resonance frequency of the transmitting coil when the transmitting coil is flexed from (b) the nominal resonance frequency of the transmitting coil, and


(c) output a signal to the one or more electrical components, according to the determination.


For some applications, the sensor is configured to:


(a) measure a parameter that is indicative of the frequency of the current output by the control circuitry and the resonance frequency of the transmitting coil,


(b) look up at least one value in a look-up table with respect to the measured parameter, and


(c) output a signal to the one or more electrical components based on the looked-up value.


For some applications, the control circuitry is configured such that the measured parameter is a level of power output by the transmitting coil.


For some applications, at least one of the one or more electrical components is a variable inductor, the control circuitry is configured to vary an inductance of the variable inductor according to the signal output by the sensor, and the resonance frequency of the transmitting coil varies according to the variation of the inductance of the variable inductor.


For some applications, at least one of the one or more electrical components is a variable capacitor, the control circuitry is configured to vary a capacitance of the variable capacitor according to the signal output by the sensor, and the resonance frequency of the transmitting coil varies according to the variation of the capacitance of the variable capacitor.


For some applications, the apparatus further includes a plurality of switches, each switch coupled to a respective one of the electrical components.


For some applications, the control circuitry is configured to tune the resonance frequency of the transmitting coil, according to the signal output by the sensor, by activating at least one of the plurality of switches to facilitate or inhibit current flow through the respective electrical component.


For some applications, the control circuitry is configured to dither the resonance frequency of the transmitting coil by repeatedly activating and deactivating the at least one of the plurality of switches to facilitate or inhibit current flow through the respective electrical component.


For some applications, at least one of the plurality of switches is configured to be manually operated and the remaining switches are configured to be operated by the control circuitry, wherein (a) the electrical component coupled to the manually-operated switch is configured to vary the resonance frequency of the transmitting coil by more than (b) the electrical components coupled to the switches operated by the control circuitry are configured to vary the resonance frequency of the transmitting coil.


For some applications, the one or more electrical components is a plurality of inductors, coupled in series.


For some applications, the plurality of inductors includes 3-9 inductors.


For some applications, a first one of the inductors has an inductance of 1.5-2.5 times an inductance of another one of the inductors.


For some applications, the inductance of the first one of the inductors is twice the inductance of the other one of the inductors.


For some applications, each one of at least half of the inductors has an inductance which is twice an inductance of another one of the inductors.


For some applications, the control circuitry is configured such that when the extent of divergence of (a) the resonance frequency of the transmitting coil when the transmitting coil is flexed from (b) the nominal resonance frequency of the transmitting coil is reduced, current is allowed to pass through at least one of the inductors and current is inhibited from passing through at least another one of the inductors.


For some applications, the one or more electrical components is a plurality of capacitors coupled in parallel.


For some applications, the plurality of capacitors includes 4 to 10 capacitors.


For some applications, a first one of the capacitors has a capacitance of 1.5-2.5 times a capacitance of another one of the capacitors.


For some applications, the capacitance of the first one of the capacitors is twice the capacitance of the other one of the capacitors.


For some applications, each one of at least half of the capacitors has a capacitance that is twice a capacitance of another one of the capacitors.


For some applications, the control circuitry is configured such that when the extent of divergence of (a) the resonance frequency of the transmitting coil when the transmitting coil is flexed from (b) the nominal resonance frequency of the transmitting coil is reduced, current is allowed to pass through at least one of the capacitors and current is inhibited from passing through at least another one of the capacitors.


For some applications, the one or more electrical components is a plurality of electrical components including inductors, coupled in series, and capacitors, coupled in parallel.


For some applications, a first one of the inductors has an inductance of 1.5-2.5 times an inductance of another one of the inductors.


For some applications, the inductance of the first one of the inductors is twice the inductance of the other one of the inductors.


For some applications, each one of at least half of the inductors has an inductance that is twice an inductance of another one of the inductors.


For some applications, a first one of the capacitors has a capacitance of 1.5-2.5 times a capacitance of another one of the capacitors.


For some applications, the capacitance of the first one of the capacitors is twice the capacitance of the other one of the capacitors.


For some applications, each one of at least half of the capacitors has a capacitance that is twice a capacitance of another one of the capacitors.


For some applications, the control circuitry is configured such that when the extent of divergence of (a) the resonance frequency of the transmitting coil when the transmitting coil is flexed from (b) the nominal resonance frequency of the transmitting coil is reduced, current is allowed to pass through at least one of the electrical components and current is inhibited from passing through at least another one of the electrical components.


For some applications:


the control circuitry is configured to activate the switches by applying a respective voltage of 30-300 volts to each switch,


the switches include transistors, acting as diodes, having respective capacitances that are dependent on the respective voltage applied to each switch.


For some applications, the control circuitry is configured to apply the respective voltages to the respective switches at a voltage of 50-200 volts.


For some applications:


the control circuitry is configured to activate the switches by applying a respective voltage of 30-300 volts to each switch, and


the switches include transistors, which behave in their off states as variable capacitors, having respective capacitances that are dependent on the respective voltage applied to each switch.


For some applications, the control circuitry is configured to apply the respective voltages to the respective switches at a voltage of 50-200 volts.


For some applications, the apparatus further includes the medical implant.


There is further provided, in accordance with some applications of the present invention, a method for treating a subject suffering from migraines or cluster headaches, the method including:


identifying the subject as suffering from migraines or cluster headaches; and


in response to the identifying, powering a medical implant to stimulate a tibial nerve in a leg of the subject.


The present invention will be more fully understood from the following detailed description of applications thereof, taken together with the drawings, in which:





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-B are schematic illustrations of a medical implant comprising a receiving coil under skin of a subject and a transmitting coil disposed in a housing that is placed against the skin, in accordance with some applications of the present invention;



FIGS. 2A-B are schematic illustrations of a cross-sectional view of the receiving coil disposed in the medical implant and the transmitting coil disposed in the housing against the skin, in accordance with some applications of the present invention;



FIG. 3 is a schematic illustration of the orientation of the transmitting coil with respect to the receiving coil, in accordance with some applications of the present invention;



FIG. 4 is a schematic illustration of a top view and a cross-section of the transmitting coil, in accordance with some applications of the present invention;



FIGS. 5A-B are schematic illustrations of a cross-sectional view of the transmitting coil and a top view of the transmitting coil, in accordance with some applications of the present invention;



FIGS. 6-7 are schematic illustrations of the transmitting coil in the housing being flexed to conform to a curve of a limb of the subject, in accordance with some applications of the present invention;



FIGS. 8-13 are schematic illustrations of control circuitry of the transmitting coil, in accordance with some applications of the present invention;



FIG. 14 is a circuit diagram of the control circuitry of the transmitting coil, in accordance with some applications of the present invention; and



FIG. 15 is a graph showing rate of change of capacitance versus drain-to-source voltage change of a switch coupled to the control circuitry, in accordance with some applications of the present invention.





DETAILED DESCRIPTION

Reference is made to FIGS. 1A-B, which are schematic illustrations of a transmitting coil 20, disposed in a transmitting coil housing 22 that is placed against skin 28 of a subject, and a medical implant 23, under skin 28 of a limb 30 of a subject, comprising a receiving coil 24 that is disposed in a receiving coil housing 26, in accordance with some applications of the present invention. Typically, receiving coil housing 26 is oriented such that a central longitudinal axis 32 of receiving coil 24 is substantially parallel to skin 28. Transmitting coil housing 22 of transmitting coil 20 is typically placed against skin 28 and oriented such that a central longitudinal axis 34 (FIG. 2) of transmitting coil 20 is substantially perpendicular to skin 28. Power is transmitted to medical implant 23 by activating control circuitry 36 (FIG. 1B), coupled to transmitting coil housing 22, to drive a current through transmitting coil 20, for example at a frequency of 1-20 MHz, e.g., a fixed frequency of 6.78 or 13.56 MHz. For some applications, lower frequencies such as 0.1-0.5 MHz may also be used. A magnetic field, for example magnetic field 52 (FIG. 2A), generated by the current in transmitting coil 20, induces an induced current in receiving coil 24.


As used in the present application, including in the claims, a “central longitudinal axis” of an elongate structure is the set of all centroids of transverse cross-sectional sections of the structure along the structure. Thus, the cross-sectional sections are locally perpendicular to the central longitudinal axis, which runs along the structure. (If the structure is circular in cross-section, the centroids correspond with the centers of the circular cross-sectional sections.)


As used in the present application, including in the claims, substantially parallel elements are to be understood as having an angle between them that is less than 10 degrees. For some applications, substantially parallel elements have an angle between them that is less than 5 degrees.


As used in the present application, including in the claims, substantially perpendicular elements are to be understood as having an angle between them that is at least 85 degrees and/or less than 95 degrees.


Reference is now made to FIGS. 2A-B, which are schematic illustrations of an orientation of transmitting coil housing 22, and thereby transmitting coil 20, with respect to receiving coil 24, in accordance with some applications of the present invention. For some applications, medical implant 23 is implanted between a knee and an ankle of a subject, closer to the ankle than to the knee, such as is shown in FIGS. 1A-B. Typically, a doctor will implant the medical implant 2-10 cm away from the medial malleolus. Inside medical implant 23, receiving coil 24 is disposed closer to an ankle-side 84 (FIG. 2A) of the medical implant than it is to a knee-side 86 (FIG. 2A) of the medical implant. Space on skin 28 near the ankle however is limited due to the subject's ankle bone and shoe. Efficiency of the power transfer can be improved by ensuring that magnetic fields, e.g., magnetic field 52, generated by the current in transmitting coil 20 are substantially parallel to receiving coil 24 in the vicinity of receiving coil 24. Magnetic fields that are substantially parallel to receiving coil 24, but not in the vicinity of receiving coil 24, e.g., magnetic field 53, do not substantially affect the power transfer.


Therefore, taking into account the limited space available near the ankle, the desired orientation of the generated magnetic fields is accomplished by placing transmitting coil housing 22 against skin 28 such that transmitting coil 20, having a wire disposed at all rotational locations about central longitudinal axis 34, is not centered over receiving coil 24. Rather, only a portion 50 (FIG. 1A) of transmitting coil 20 is disposed over receiving coil 24, such that at one of the rotational locations about central longitudinal axis 34 of transmitting coil 20, a line 38 extending from the wire and substantially parallel to central longitudinal axis 34 of transmitting coil 20 intersects receiving coil 24, and at 180 degrees from the rotational location, a line 40 extending from the wire and substantially parallel to central longitudinal axis 34 of transmitting coil 20 does not intersect receiving coil 24. This orientation of transmitting coil 20, further described hereinbelow, allows for the use of only one transmitting coil 20 to power medical implant 23. Typically, (a) portion 50 of transmitting coil 20, that is disposed over receiving coil 24, is closer to the ankle than (b) a portion 51 of transmitting coil 20, that is not disposed over receiving coil 24, e.g., disposed at 180 degrees from portion 50, is to the ankle (for example as shown in FIG. 1A).


For some applications, medical implant 23 is implanted on a leg between the knee and the ankle, as described hereinabove, in order to treat patients suffering from migraines or cluster headaches using tibial nerve stimulation. Transmitting coil 20 powers medical implant 23 in order to provide neural stimulation to the tibial nerve, for example at a repetition rate of 10-60 Hz. Similarly to over-stimulation of the ulnar nerve for treatment of migraines, over-stimulation of the tibial nerve may cause paresthesia in the active pain centers in the brain, thereby reducing the pain of the migraine or cluster headache.


Reference is now made to FIG. 3, which is a schematic illustration of transmitting coil 20 disposed in transmitting coil housing 22 and receiving coil 24 disposed in receiving coil housing 26, in accordance with some applications of the present invention. Typically, transmitting coil housing 22 is placed such that (a) a first distance D1, from central longitudinal axis 34 of transmitting coil 20 to a longitudinal center 42 of receiving coil 24, is 15-45 mm, (b) a second distance D2, from central longitudinal axis 34 of transmitting coil 20 to an inner edge 44 of portion 50 of transmitting coil 20 that is disposed over receiving coil 24, is less than 30 mm, and (c) a third distance D3, from central longitudinal axis 34 of transmitting coil 20 to an outer edge 46 of portion 50 of transmitting coil 20 that is disposed over receiving coil 24, is 40-60 mm. Typically, (a) first distance D1 is greater than second distance D2 and less than third distance D3, and (b) a difference between second distance D2 and third distance D3 is 30-40 mm. The difference between third distance D3 and second distance D2 is referred to hereinbelow as width W of transmitting coil 20.


In order to further improve the efficiency of the power transfer, transmitting coil 20 is typically elongated in a direction perpendicular to central longitudinal axis 32 of receiving coil 24 thus increasing a distance between central longitudinal axis 34 and a wire of transmitting coil 20. Therefore, magnetic fields generated by the current in transmitting coil 20, e.g., magnetic field 54, that are not substantially parallel to receiving coil 24, are farther away from receiving coil 24 thereby they have less of an effect on the induced current in receiving coil 24. For some applications, an average distance D10 (FIG. 4) from the wire of transmitting coil 20 to central longitudinal axis 34 of transmitting coil 20 is less than two times, e.g., 0.6-1.5 times, a square root of a cross-sectional area of a central non-coiled region 56 of transmitting coil 20.


Efficiency of the power transfer is also affected by a depth of implantation of medical implant 23. Typically, medical implant 23 is implanted at a depth D14 (FIG. 2B) of 1-5 cm below skin 28. As used in the present application, including in the claims, the depth of medical implant 23 is the distance from skin 28 to central longitudinal axis 32 of receiving coil 24 measured substantially normal to the skin.


Reference is again made to FIG. 1B. In some applications, an indicator 48 is coupled to transmitting coil housing 22. Control circuitry 36 is configured to activate indicator 48 upon transmitting coil 20 being in an acceptable position with respect to receiving coil 24. For example, indicator 48 may be a visual indicator, an audible indicator, or a vibrator. Typically, indicator 48 is configured to indicate an acceptable position of transmitting coil 20 when the efficiency of the energy transmission between transmitting coil 20 and receiving coil 24 is above a threshold that is at least 85% of the maximum efficiency possible for the patient. For some applications, the maximum efficiency of the power transfer is approximately 5%.


For some applications, control circuitry 36 is able to detect when transmitting coil 20 is in an acceptable position by outputting a signal and subsequently detecting an interference, caused by receiving coil 24, with the signal. Upon detection of the interference, control circuitry 36 activates indicator 48.


Alternatively or additionally, control circuitry 36 is able to ascertain an indication of the efficiency of the energy transmission between transmitting coil 20 and receiving coil 24, and indicator 48 is configured to have a range of indications that are respectively representative of the efficiency ascertained by control circuitry 36. For some applications, the indication of the efficiency is a measurement of power loss in transmitting coil 20. Power loss in transmitting coil 20 may include one or more of the following: (a) power losses that do not appreciably change with the positioning of the transmitting coil, such as losses due to unavoidable resistance of transmitting coil 20 and other losses in the transmitting electronics, and (b) losses in the power transmitted to medical implant 23 which depend on the relative positioning of transmitting coil 20 and receiving coil 24, such as absorption of power in the tissue and surrounding structures. Thus, monitoring the power loss in transmitting coil 20 may facilitate proper positioning of transmitting coil 20 in relation to medical implant 23.


Alternatively or additionally, medical implant 23 is configured to send an output signal to control circuitry 36 upon receiving transmitted power from transmitting coil 20. This output signal may include data indicative of the power received by receiving coil 24 in medical implant 23. Control circuitry 36 receives the data indicative of the power received by receiving coil 24 in medical implant 23, and by comparing it to the power transmitted by transmitting coil 20, determines a parameter indicative of the efficiency of the power transmission. This parameter may be used to indicate to the user: a) if the efficiency is within a range of acceptable values; and b) if repositioning transmitting coil housing 22 has caused an increase or decrease in the power transmission. The indication may be used by a healthcare provider, during an initial training session, to train the patient or family member to correctly position transmitting coil housing 22. Similarly, the indication may be used by the patient or family member each time transmitting coil housing 22 has to be placed on the patient or repositioned. For some applications, the output signal from medical implant 23, indicative of the power received by receiving coil 24, is sent only when needed. For example, the output signal from medical implant 23 may be sent (a) when medical implant 23 is powered-up, (b) during positioning of transmitting coil 20, or (c) when the power received by receiving coil 24 in medical implant 23 is changed unexpectedly, indicating a possible movement of transmitting coil 20 relative to receiving coil 24.


Transmitting coil housing 22 can be positioned on skin 28 by placing housing 22 against skin 28 and subsequently sliding transmitting coil housing 22 along skin 28 until indicator 48 indicates that transmitting coil 20 is in an acceptable position with respect to receiving coil 24. In some applications, control circuitry 36 is further configured to activate indicator 48 again upon transmitting coil 20 no longer being in an acceptable position with respect to receiving coil 24.


Reference is now made to FIG. 4, which is a schematic illustration of transmitting coil 20 in accordance with some applications of the present invention. Typically, transmitting coil 20 is a planar coil having between 4 and 10 turns, e.g., 8 turns. A line spacing D9 of adjacent coplanar wires in transmitting coil 20 is typically 0.25-3 mm, e.g., 2 mm, and a line width D8 of the wires in transmitting coil 20 is typically 1-4 mm, e.g., 2 mm. For some applications, transmitting coil 20 comprises a plurality of planar layers, e.g., two planar layers.


One or more dimensions of transmitting coil 20 that highlight the planar properties of transmitting coil 20 are as follows:

    • a height D5 (FIG. 2B) of transmitting coil 20, measured along central longitudinal axis 34 of transmitting coil 20 when transmitting coil 20 is laid flat, i.e. the thickness of transmitting coil 20, is at least 300 and/or less than 600 microns;
    • an outer diameter D6 (FIG. 3) of transmitting coil 20 is at least 100 mm and/or less than 140 mm;
    • a ratio of outer diameter D6 of transmitting coil 20 to height D5 of transmitting coil 20 is at least 150.


As used in the present application, including in the claims, outer diameter D6 of transmitting coil 20 is the largest dimension of transmitting coil 20 from one side of the coil to the other, measured perpendicular to central longitudinal axis 34 of transmitting coil 20.


Typically, a cross-sectional area 108 of the wire of transmitting coil 20 is rectangular when the cross-section, e.g., cross-section A-A shown in FIG. 4, is taken perpendicular to a direction of current flow within the wire.


Typically, receiving coil 24 is a cylindrical coil having 10-40 turns, e.g., 20 turns, and comprising a ferrite core. For some applications, one or more dimensions of receiving coil 24 are as follows:

    • a longitudinal length D4 (FIG. 3) of receiving coil 24 is at least 3 mm and/or less than 15 mm;
    • an outer diameter D7 of receiving coil 24 (FIG. 2B) is at least 0.6 mm and/or less than 1.5 mm; and/or
    • a ratio of outer diameter D7 of receiving coil 24 to longitudinal length D4 of receiving coil 24 is less than 0.5.


Typically, receiving coil housing 26 is longitudinally longer than receiving coil 24, to accommodate for control circuitry disposed within medical implant 23. For some applications, a longitudinal length D11 of receiving coil housing 26 is at least 30 mm and/or less than 45 mm. Medical implant 23 may also comprise a plurality of electrodes.


For some applications, some dimensional relationships between transmitting coil 20 and receiving coil 24 are expressed according to a set of one or more of the following options:

    • (a) a first ratio, of outer diameter D6 (FIG. 3) of transmitting coil 20 to height D5 (FIG. 2B) of transmitting coil 20 is at least 150, (b) a second ratio, of outer diameter D7 (FIG. 2B) of receiving coil 24 to longitudinal length D4 (FIG. 3) of receiving coil 24 is less than 0.5, and (c) a ratio of the first ratio to the second ratio is at least 300;
    • a ratio of width W of transmitting coil 20 to longitudinal length D4 (FIG. 3) of receiving coil 24 is greater than 0.5;
    • a ratio of width W of transmitting coil 20 to longitudinal length D4 of receiving coil 24 is less than 1.5; and/or
    • a ratio of width W of transmitting coil 20 to longitudinal length D4 of receiving coil 24 is at least 0.5 and/or less than 1.5.


Reference is now made to FIGS. 5A-B, which are schematic illustrations of transmitting coil 20, in accordance with some applications of the present invention. FIG. 5A depicts schematic cross-sectional views of several locations of transmitting coil 20, in accordance with some applications of the present invention. For some applications, transmitting coil 20 comprises two planar layers 94 and 96 disposed on either side of a flexible printed circuit board (PCB) 98. A height D12 of each planar layer 94 and 96, measured along longitudinal axis 34 of transmitting coil 20, is 15-100 microns, e.g., 35 or 70 microns, and a thickness D13 of flexible PCB 98 is 100-200 microns, e.g., 150 microns. For some applications, at least once along each turn of transmitting coil 20 the two planar layers 94 and 96 are conductively connected to each other, such that current may flow from one layer to the other. For example, a via 100 filled with solder may be used to conductively connect the two planar layers 94 and 96.


Additionally, a capacitor 102 is coupled to transmitting coil 20 at at least one location along at least one turn of transmitting coil 20. Typically, capacitor 102 is attached to an exposed pad 92 of one of planar layers 94 or 96. For some applications, as seen in FIG. 5A, capacitor 102 is electrically coupled to both planar layers 94 and 96 by being coupled to two or more vias 100 in pad 92. For some applications, as seen in FIG. 5B, capacitor 102 is directly soldered to pad 92. For some applications, a plurality of capacitors 102 are coupled to transmitting coil 20 such that at least one capacitor 102 is coupled to transmitting coil 20 at at least one location along each turn of transmitting coil 20.


Typically, an insulating cover 104 is coupled, e.g., glued, to both planar layers 94 and 96 of transmitting coil 20 on flexible PCB 98. For some applications, a thickness D17 of a layer of glue 106 between cover 104 and each planar layer 94 and 96 is 15-50 microns. For some applications, a thickness D18 of cover 104 is 15-100 microns.



FIG. 5A shows both a cross-section and a top-view of transmitting coil 20. In the top-view, one planar layer 94 can be seen on flexible PCB 98, with one capacitor 102 coupled to each turn of transmitting coil 20. A plurality of solder-filled vias 100 are coupled to each turn of transmitting coil 20 to conductively connect planar layer 94 to planar layer 96, which is coupled to the other side of flexible PCB 98 and not visible in this figure. For some applications, vias 100 are positioned at the corners of each turn of transmitting coil 20, and on either side of each capacitor 102, as shown in FIG. 5A. Alternatively or additionally a plurality of vias 100, e.g., 2-30 vias 100 may be positioned anywhere along each turn of transmitting coil 20.


Reference is now made to FIGS. 6-7, which are schematic illustrations of transmitting coil housing 22, comprising transmitting coil 20, placed against skin 28 of limb 30 of the subject, in accordance with some applications of the present invention. Typically, in order to allow comfortable placement of transmitting housing 22 against limb 30, transmitting coil housing 22 and transmitting coil 20 are configured to be flexible such that they can substantially conform to a lateral wall of cylinders having diameters that range between a diameter D15 (FIG. 6) of 8 cm, e.g., a wrist, and a diameter D16 (FIG. 7) of 50 cm, e.g., a torso or obese upper leg. The flexing of transmitting coil 20, however, may cause the resonance frequency of transmitting coil 20 to fluctuate rather than remain at a nominal resonance frequency that occurs in the absence of any forces applied to transmitting coil 20 and is near the frequency of the current output by control circuitry 36.


Reference is now made to FIGS. 8-13, which are circuit diagrams of control circuitry 36, in accordance with some applications of the present invention. Portion 21 of control circuitry 36, as shown in FIGS. 8-13, is a model of transmitting coil 20 as shown in FIGS. 1-7. For some applications, a sensor 58 is coupled to control circuitry 36. Sensor 58 is coupled to control circuitry 36 and is configured to (a) determine an extent of divergence of (i) the resonance frequency of transmitting coil when transmitting coil 20 is flexed from (ii) the nominal resonance frequency of transmitting coil 20, and (b) subsequently output a signal to one or more electrical components that are coupled to control circuitry 36 and configured to tune the resonance frequency of transmitting coil 20 in response to the determination of sensor 58.


For some applications, sensor 58 comprises a phase detector 60 and a feedback calculator 62 (for example, as shown in FIGS. 8-12). Phase detector 60 is configured to (a) determine a phase difference between the phase of the current output by signal generator 64 and the phase of either a current or a voltage on at least one component of transmitting coil 20, and (b) output a signal to feedback calculator 62 according to the determination. After receiving the signal from phase detector 60, feedback calculator 62 (a) determines a necessary change in the resonance frequency of transmitting coil 20 that will reduce the extent of divergence of (i) the resonance frequency of transmitting coil 20 when transmitting coil 20 is flexed from (ii) the nominal resonance frequency of transmitting coil 20 and (b) outputs a signal to the electrical components according to the determination. Dashed lines 88 (FIGS. 8-12 represent feedback calculator 62 controlling each respective switch 74.


For some applications (e.g., as shown in FIG. 13), sensor 58 does not comprise phase detector 60 and feedback calculator 62. Rather, sensor 58 is configured to (a) measure a parameter that is indicative of both the frequency output by signal generator 64 and the resonance frequency of transmitting coil 20, e.g., by measuring the power output of transmitting coil 20, (b) look up at least one value in a look-up table with respect to the measured parameter, and (c) output a signal to the electrical components based on the looked-up value. Dashed line 90 (FIG. 13) represents sensor 58 controlling each respective switch 74.


For some applications, at least one of the electrical components is a variable inductor 66 (FIG. 8), whose inductance is varied according to the signal output by sensor 58. Variation of the inductance of variable inductor 66, in turn, cause variations in the resonance frequency of transmitting coil 20.


For some applications, at least one of the electrical components is a variable capacitor 68 (FIG. 9), whose capacitance is varied according to the signal output by sensor 58. Variation of the capacitance of variable capacitor 68, in turn, cause variations in the resonance frequency of transmitting coil 20.


For some applications, the one or more electrical components is a (a) a plurality of inductors 70, e.g., 3-9 inductors 70, coupled in series (FIG. 10), (b) a plurality of capacitors 72, e.g., 4-10 capacitors 72, coupled in parallel (FIG. 11), or (c) a combination of inductors 70, coupled in series, and capacitors 72, coupled in parallel (FIG. 12). When a plurality of inductors are used, typically a first one of inductors 70 has an inductance of 1.5-2.5 times, e.g., 2 times, an inductance of another one of inductors 70, and/or each one of at least half of inductors 70 has an inductance that is twice an inductance of another one of inductors 70. For example, 9 inductors 70 may have respective inductances of 2, 4, 8, 16, 32, 64, 128, 256, and 512 (arbitrary units). Similar sequencing may be used for a plurality of capacitors 72. For example, 10 capacitors 72 may have respective capacitances of 2, 4, 8, 16, 32, 64, 128, 256, 512, and 1024 (arbitrary units).


Typically, control circuitry 36 tunes the resonance frequency of transmitting coil 20, according to the signal output by sensor 58, by activating and/or deactivating at least one of a plurality of switches 74, each switch 74 being coupled to a respective one of the electrical components, in order to facilitate or inhibit current flow through the respective electrical component. In order to easily be able to increase and decrease the resonance frequency of transmitting coil 20, as necessary according to the signal output by sensor 58, control circuitry 36 is configured such that, when the extent of divergence of (a) the resonance frequency of transmitting coil 20 when transmitting coil 20 is flexed from (b) the nominal resonance frequency of transmitting coil 20 is reduced, at least one of switches 74 is activated, allowing current to flow through a respective electrical component, and at least another switch 74 is deactivated, inhibiting current from flowing through another respective electrical component. For some applications, control circuitry 36 is configured to dither the resonance frequency of transmitting coil 20 by repeatedly activating and deactivating at least one of switches 74 to alternatingly facilitate and inhibit current flow through a respective electrical component.


For some applications, a wider range of variation of the resonance frequency of transmitting coil 20 may be achieved by having at least one electrical component (a) configured to vary the resonance frequency of transmitting coil 20 by more than the remaining electrical components are configured to vary the resonance frequency of transmitting coil 20 and (b) coupled to a manually-operated switch. The manually-operated switch may be activated and/or deactivated by a user to provide gross tuning of the resonance frequency of transmitting coil 20 and the remaining switches 74 activated and/or deactivated by control circuitry 36 to provide fine tuning of the resonance frequency of transmitting coil 20.


Reference is now made to FIG. 14, which is a circuit diagram of control circuitry 36, in accordance with some applications of the present invention. For some applications, switches 74 comprise transistors 76 (e.g., field effect transistors, e.g., MOSFETs, as shown in FIG. 14) that behave, in their off state, as either diodes or variable capacitors, such that each switch 74 has a respective parasitic capacitance that depends on a respective voltage applied to each switch 74.


Reference is now made to FIG. 15, which is a graph showing rate of capacitance change versus drain-to-source voltage change of a switch, such as a switch 74 in control circuitry 36, in accordance with some applications of the present invention. Curve 78 of the graph shows (a) how the rate of capacitance change of a switch, such as switch 74, is significantly decreased when the switch is activated by an alternating current (AC) or, as shown in FIG. 14, a DC voltage, of over 50 volts, and (b) how the output capacitance of a switch, such as switch 74, significantly decreases as the drain-to-source voltage is increased from 0-50 volts. As shown by arrows 80 and 82, in order to reduce an effect that the respective parasitic capacitances of respective switches 74 may have on the resonance frequency of transmitting coil 20, control circuitry 36 is configured to activate switches 74 by applying a respective AC or, as shown in FIG. 14, DC voltage of 30-300 volts (arrow 80), e.g., 50-200 volts (arrow 82), to each switch 74, thereby reducing the output capacitance of each switch 74, as well as reducing the variation in output capacitance of each switch 74 over the duration of the AC voltage cycle or over the duration of the application of the DC voltage.


It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention includes both combinations and subcombinations of the various features described hereinabove, as well as variations and modifications thereof that are not in the prior art, which would occur to persons skilled in the art upon reading the foregoing description.

Claims
  • 1. Apparatus for use with a medical implant that comprises a receiving coil, the apparatus comprising: a flexible housing configured to be placed against skin of a subject;a flexible transmitting coil disposed in the housing;control circuitry configured to transmit power to the medical implant by driving a current through the transmitting coil that induces an induced current in the receiving coil;a sensor coupled to the control circuitry, the sensor configured to determine an extent of divergence of (a) a resonance frequency of the transmitting coil when the transmitting coil is flexed from (b) a nominal resonance frequency of the transmitting coil, occurring in the absence of any forces applied to the transmitting coil, and configured to output a signal according to the determination;one or more electrical components, coupled to the control circuitry and configured to tune the resonance frequency of the transmitting coil in response to the determination of the sensor; anda plurality of switches, each switch coupled to a respective one of the electrical components, the control circuitry being configured to apply a respective DC voltage to each switch, andthe switches comprising transistors having respective capacitances that are dependent on the respective DC voltage applied to each switch.
  • 2. The apparatus according to claim 1, wherein the control circuitry is configured to set the frequency of the current output by the control circuitry to be between 1 and 20 MHz.
  • 3. The apparatus according to claim 1, wherein the flexible transmitting coil is configured to flex such that it can substantially conform to a lateral wall of a cylinder having a diameter between 8 and 50 cm.
  • 4. The apparatus according to claim 1, wherein the sensor comprises a phase detector, configured to (a) determine a phase difference between the phase of the current output by the control circuitry, and the phase of either a current or a voltage on at least one component of the transmitting coil, wherein the phase difference is due to flexing of the transmitting coil, and (b) output a signal according to the determination.
  • 5. The apparatus according to claim 4, wherein the control circuitry comprises a feedback calculator configured to: (a) receive the signal output by the phase detector,(b) determine, according to the signal output by the phase detector, a necessary change in the resonance frequency of the transmitting coil, in order to reduce the extent of divergence of (a) the resonance frequency of the transmitting coil when the transmitting coil is flexed from (b) the nominal resonance frequency of the transmitting coil, and(c) output a signal to the one or more electrical components, according to the determination.
  • 6. The apparatus according to claim 1, wherein the sensor is configured to: (a) measure a parameter that is indicative of the frequency of the current output by the control circuitry and the resonance frequency of the transmitting coil,(b) look up at least one value in a look-up table with respect to the measured parameter, and(c) output a signal to the one or more electrical components based on the looked-up value.
  • 7. The apparatus according to claim 6, wherein the control circuitry is configured such that the measured parameter is a level of power output by the transmitting coil.
  • 8. The apparatus according to claim 1, wherein the control circuitry is configured to tune the resonance frequency of the transmitting coil, according to the signal output by the sensor, by activating at least one of the plurality of switches to facilitate or inhibit current flow through the respective electrical component.
  • 9. The apparatus according to claim 1, wherein at least one of the plurality of switches is configured to be manually operated and the remaining switches are configured to be operated by the control circuitry, wherein (a) the electrical component coupled to the manually-operated switch is configured to vary the resonance frequency of the transmitting coil by more than (b) the electrical components coupled to the switches operated by the control circuitry are configured to vary the resonance frequency of the transmitting coil.
  • 10. A system, comprising the apparatus according to claim 1, the system further comprising the medical implant.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a Continuation of U.S. Ser. No. 16/737,253 to Oron et al., entitled “Antenna configuration,” which published as U.S. 2020/0,139,136, and which is a Divisional of U.S. Ser. No. 15/621,433 to Oron et al. (abandoned), filed Jun. 13, 2017, entitled, “Antenna configuration.”

US Referenced Citations (755)
Number Name Date Kind
3411507 Wingrove Nov 1968 A
3693625 Auphan Sep 1972 A
3727616 Lenzkes Apr 1973 A
4019518 Maurer et al. Apr 1977 A
4338945 Kosugi et al. Jul 1982 A
4392496 Stanton Jul 1983 A
4535785 Van Den Honert Aug 1985 A
4559948 Liss et al. Dec 1985 A
4573481 Bullara Mar 1986 A
4585005 Lue et al. Apr 1986 A
4602624 Naples Jul 1986 A
4608985 Crish Sep 1986 A
4628942 Sweeney Dec 1986 A
4632116 Rosen Dec 1986 A
4649936 Ungar Mar 1987 A
4663102 Brenman et al. May 1987 A
4739764 Lau Apr 1988 A
4741339 Harrison et al. May 1988 A
4808157 Coombs Feb 1989 A
4867164 Zabara Sep 1989 A
4926865 Oman May 1990 A
4962751 Krauter Oct 1990 A
5025807 Zabara Jun 1991 A
5036854 Schollmeyer et al. Aug 1991 A
5069680 Grandjean Dec 1991 A
5178161 Kovacs Jan 1993 A
5188104 Wernicke Feb 1993 A
5199428 Obel et al. Apr 1993 A
5199430 Fang Apr 1993 A
5203326 Collins Apr 1993 A
5205285 Baker, Jr. Apr 1993 A
5215086 Terry, Jr. Jun 1993 A
5263480 Wernicke Nov 1993 A
5282468 Klepinski Feb 1994 A
5284479 De Jong Feb 1994 A
5292344 Douglas Mar 1994 A
5299569 Wernicke Apr 1994 A
5314453 Jeutter May 1994 A
5314495 Kovacs May 1994 A
5330507 Schwartz Jul 1994 A
5335657 Terry, Jr. Aug 1994 A
5411535 Fujii et al. May 1995 A
5423872 Cigaina Jun 1995 A
5439938 Synder et al. Aug 1995 A
5454840 Krakovsky et al. Oct 1995 A
5487760 Villafana Jan 1996 A
5505201 Grill, Jr. Apr 1996 A
5509924 Paspa et al. Apr 1996 A
5540730 Terry, Jr. Jul 1996 A
5540733 Testerman et al. Jul 1996 A
5540734 Zabara Jul 1996 A
5549655 Erickson Aug 1996 A
5571150 Wernicke Nov 1996 A
5591216 Testerman et al. Jan 1997 A
5634462 Tyler et al. Jun 1997 A
5690681 Geddes et al. Nov 1997 A
5690691 Chen Nov 1997 A
5700282 Zabara Dec 1997 A
5707400 Terry, Jr. Jan 1998 A
5711316 Elsberry et al. Jan 1998 A
5716385 Mittal Feb 1998 A
5755750 Petruska May 1998 A
5776170 Macdonald et al. Jul 1998 A
5776171 Peckham Jul 1998 A
5814089 Stokes Sep 1998 A
5824027 Hoffer et al. Oct 1998 A
5832932 Elsberry et al. Nov 1998 A
5833709 Rise et al. Nov 1998 A
5836994 Bourgeois Nov 1998 A
5861019 Sun et al. Jan 1999 A
5898579 Boys et al. Apr 1999 A
5916239 Geddes et al. Jun 1999 A
5938584 Ardito et al. Aug 1999 A
5944680 Christopherson Aug 1999 A
5954758 Peckham Sep 1999 A
5991664 Seligman Nov 1999 A
6002964 Feler et al. Dec 1999 A
6026326 Bardy Feb 2000 A
6026328 Peckham Feb 2000 A
6032076 Melvin et al. Feb 2000 A
6058331 King et al. May 2000 A
6066163 John May 2000 A
6070803 Stobbe Jun 2000 A
6071274 Thompson et al. Jun 2000 A
6091992 Bourgeois Jun 2000 A
6083249 Familoni Jul 2000 A
6086525 Davey et al. Jul 2000 A
6091977 Tarjan et al. Jul 2000 A
6094598 Elsberry et al. Jul 2000 A
6097984 Douglas Aug 2000 A
6104955 Bourgeois Aug 2000 A
6104960 Duysens et al. Aug 2000 A
6119516 Hock Sep 2000 A
6146335 Gozani Nov 2000 A
6148232 Avrahami Nov 2000 A
6161048 Sluijter et al. Dec 2000 A
6169924 Meloy et al. Jan 2001 B1
6205359 Boveja Mar 2001 B1
6212435 Lattner et al. Apr 2001 B1
6214032 Loeb et al. Apr 2001 B1
6230061 Hartung May 2001 B1
6240316 Richmond May 2001 B1
6246912 Sluijter et al. Jun 2001 B1
6266564 Schwartz Jul 2001 B1
6272383 Grey Aug 2001 B1
6292703 Meier et al. Sep 2001 B1
6319241 King Nov 2001 B1
6332089 Acker Dec 2001 B1
6341236 Osorio et al. Jan 2002 B1
6345202 Richmond et al. Feb 2002 B2
6356784 Lozano et al. Mar 2002 B1
6356788 Boveja Mar 2002 B2
6366813 Dilorenzo Apr 2002 B1
6405079 Ansarinia Jun 2002 B1
6442432 Lee Aug 2002 B2
6445953 Bulkes et al. Sep 2002 B1
6449507 Hill et al. Sep 2002 B1
6456878 Yerich et al. Sep 2002 B1
6463328 John Oct 2002 B1
6473644 Terry, Jr. et al. Oct 2002 B1
6496729 Thompson Dec 2002 B2
6496730 Kleckner et al. Dec 2002 B1
6582441 He et al. Jun 2003 B1
6591139 Loftin et al. Jul 2003 B2
6600954 Cohen Jul 2003 B2
6600956 Maschino et al. Jul 2003 B2
6606521 Paspa et al. Aug 2003 B2
6610713 Tracey Aug 2003 B2
6618627 Lattner et al. Sep 2003 B2
6641542 Cho et al. Nov 2003 B2
6682480 Habib et al. Jan 2004 B1
6712772 Cohen et al. Mar 2004 B2
6721603 Zabara et al. Apr 2004 B2
6735474 Loeb et al. May 2004 B1
6735475 Whitehurst et al. May 2004 B1
6770022 Mechlenburg Aug 2004 B2
6788973 Davis et al. Sep 2004 B2
6788975 Whitehurst et al. Sep 2004 B1
6804561 Stover Oct 2004 B2
6829508 Schulman Dec 2004 B2
6839594 Cohen Jan 2005 B2
6892098 Ayal May 2005 B2
6907295 Gross et al. Jun 2005 B2
6909917 Woods et al. Jun 2005 B2
6950706 Rodriguez et al. Sep 2005 B2
6993384 Bradley et al. Jan 2006 B2
7015769 Schulman et al. Mar 2006 B2
7025730 Cho et al. Apr 2006 B2
7027860 Bruninga et al. Apr 2006 B2
7047076 Li et al. May 2006 B1
7054689 Whitehurst et al. May 2006 B1
7054692 Whitehurst et al. May 2006 B1
7110820 Tcheng et al. Sep 2006 B2
7149575 Ostroff et al. Dec 2006 B2
7151914 Brewer Dec 2006 B2
7174218 Kuzma Feb 2007 B1
7177690 Woods et al. Feb 2007 B2
7177698 Klosterman et al. Feb 2007 B2
7190153 Stover et al. Mar 2007 B2
7190998 Shalev et al. Mar 2007 B2
7203549 Schommer et al. Apr 2007 B2
7209792 Parramon et al. Apr 2007 B1
7212867 Venrooij et al. May 2007 B2
7216000 Sieracki et al. May 2007 B2
7225032 Schmeling et al. May 2007 B2
7228178 Carroll Jun 2007 B2
7239921 Canfield et al. Jul 2007 B2
7242982 Singhal et al. Jul 2007 B2
7254449 Karunasiri Aug 2007 B2
7263402 Thacker et al. Aug 2007 B2
7277748 Wingeier et al. Oct 2007 B2
7277749 Gordon et al. Oct 2007 B2
7286880 Olson et al. Oct 2007 B2
7286881 Schommer et al. Oct 2007 B2
7289853 Campbell et al. Oct 2007 B1
7292890 Whitehurst et al. Nov 2007 B2
7308316 Schommer Dec 2007 B2
7324852 Barolat et al. Jan 2008 B2
7324853 Ayal Jan 2008 B2
7330756 Marnfeldt Feb 2008 B2
7337007 Nathan et al. Feb 2008 B2
7342508 Morgan et al. Mar 2008 B2
7363087 Nghiem et al. Apr 2008 B2
7376466 He et al. May 2008 B2
7389145 Kilgore et al. Jun 2008 B2
7483748 Torgerson et al. Jan 2009 B2
7483752 Von arx et al. Jan 2009 B2
7489561 Armstrong et al. Feb 2009 B2
7502652 Gaunt et al. Mar 2009 B2
7515012 Schulman et al. Apr 2009 B2
7515967 Phillips et al. Apr 2009 B2
7532932 Denker et al. May 2009 B2
7536226 Williams May 2009 B2
7539538 Parramon et al. May 2009 B2
7561921 Phillips et al. Jul 2009 B2
7565204 Matei Jul 2009 B2
7628750 Cohen Dec 2009 B2
7630771 Cauller Dec 2009 B2
7634313 Kroll et al. Dec 2009 B1
7643147 Pless Jan 2010 B2
7647117 Bauhahn Jan 2010 B2
7650192 Wahlstrand Jan 2010 B2
7655014 Ko et al. Feb 2010 B2
7657311 Bardy et al. Feb 2010 B2
7657317 Thacker et al. Feb 2010 B2
7657322 Bardy et al. Feb 2010 B2
7660632 Kirby et al. Feb 2010 B2
7680538 Durand et al. Mar 2010 B2
7680540 Jensen et al. Mar 2010 B2
7711434 Denker et al. May 2010 B2
7736379 Ewers et al. Jun 2010 B2
7747325 Dilorenzo Jun 2010 B2
7748344 Divergilio et al. Jul 2010 B2
7780625 Bardy Aug 2010 B2
7797050 Libbus et al. Sep 2010 B2
7801602 McClure et al. Sep 2010 B2
7803142 Longson et al. Sep 2010 B2
7809437 Palmer et al. Oct 2010 B2
7817280 Pless Oct 2010 B2
7822480 Park et al. Oct 2010 B2
7848818 Barolat et al. Dec 2010 B2
7869867 Armstrong et al. Jan 2011 B2
7894905 Pless et al. Feb 2011 B2
7899547 Emadi et al. Mar 2011 B1
7899556 Nathan et al. Mar 2011 B2
7904171 Parramon et al. Mar 2011 B2
7912551 Wosmek Mar 2011 B2
7925350 Palmer Apr 2011 B1
7917226 Nghiem May 2011 B2
7937148 Jacobson May 2011 B2
7941218 Sambelashvili et al. May 2011 B2
7962211 Torgerson et al. Jun 2011 B2
7962220 Kolafa et al. Jun 2011 B2
7974706 Moffitt et al. Jul 2011 B2
7979126 Payne et al. Jul 2011 B2
7991467 Markowitz et al. Aug 2011 B2
7996079 Armstrong Aug 2011 B2
7996089 Haugland et al. Aug 2011 B2
7996092 Mrva et al. Aug 2011 B2
8005547 Forsberg et al. Aug 2011 B2
8019443 Scheicher et al. Sep 2011 B2
8050771 Yamamoto et al. Nov 2011 B2
8055336 Schulman et al. Nov 2011 B1
8055350 Roberts Nov 2011 B2
8075556 Betts Dec 2011 B2
8086313 Singhal et al. Dec 2011 B2
8090438 Bardy et al. Jan 2012 B2
8092412 Sherman Jan 2012 B2
8115448 John Feb 2012 B2
8127424 Haller et al. Mar 2012 B2
8131377 Shhi et al. Mar 2012 B2
8140168 Olson et al. Mar 2012 B2
8170675 Alataris et al. May 2012 B2
8170681 Jimenez et al. May 2012 B2
8175719 Shi et al. May 2012 B2
8177792 Lubock et al. May 2012 B2
8185207 Molnar et al. May 2012 B2
8209021 Alataris et al. Jun 2012 B2
8219205 Tseng et al. Jul 2012 B2
8224453 De Ridder Jul 2012 B2
8229567 Phillips et al. Jul 2012 B2
8244367 Wahlstrand et al. Aug 2012 B2
8255057 Fang et al. Aug 2012 B2
8260432 DiGiore et al. Sep 2012 B2
8265770 Toy et al. Sep 2012 B2
8306627 Armstrong Nov 2012 B2
8311638 Aghassian Nov 2012 B2
8321028 Thenuwara et al. Nov 2012 B1
8335569 Aghassian Dec 2012 B2
8355792 Alataris et al. Jan 2013 B2
8359102 Alataris et al. Jan 2013 B2
8359103 Alataris et al. Jan 2013 B2
8364267 Schleicher et al. Jan 2013 B2
8369963 Parramon et al. Feb 2013 B2
8374700 Haubrich et al. Feb 2013 B2
8386047 Koester Feb 2013 B2
8386048 McClure et al. Feb 2013 B2
8396559 Alataris et al. Mar 2013 B2
8428731 Armstrong Apr 2013 B2
8428744 Stancer et al. Apr 2013 B2
8428746 DiGiore et al. Apr 2013 B2
8428748 Alataris et al. Apr 2013 B2
8437846 Swoyer et al. May 2013 B2
8437853 Inman et al. May 2013 B2
8457744 Janzig et al. Jun 2013 B2
8457759 Parker et al. Jun 2013 B2
8463404 Levi et al. Jun 2013 B2
8473066 Aghassian et al. Jun 2013 B2
8478420 Armstrong et al. Jul 2013 B2
8483838 Nghiem et al. Jul 2013 B2
8483845 Sage Jul 2013 B2
8494640 Peterson et al. Jul 2013 B2
8494650 Glukhovsky et al. Jul 2013 B2
8497804 Haubrich et al. Jul 2013 B2
8498716 Chen et al. Jul 2013 B2
8509905 Alataris et al. Aug 2013 B2
8509906 Walker et al. Aug 2013 B2
8515558 Zweber et al. Aug 2013 B1
8538548 Shi et al. Sep 2013 B2
8543200 Lane et al. Sep 2013 B2
8554326 Alataris et al. Oct 2013 B2
8555894 Schulman et al. Oct 2013 B2
8571651 Ben-ezra et al. Oct 2013 B2
8577474 Rahman et al. Nov 2013 B2
8588933 Floyd et al. Nov 2013 B2
8612014 Rahman et al. Dec 2013 B2
8612019 Moffitt Dec 2013 B2
8620435 Rooney et al. Dec 2013 B2
8620449 Zhao et al. Dec 2013 B2
8626310 Barror et al. Jan 2014 B2
8634927 Olson et al. Jan 2014 B2
8644947 Zhu et al. Feb 2014 B2
8644948 Grevious et al. Feb 2014 B2
8649874 Alataris et al. Feb 2014 B2
8660655 Peterson et al. Feb 2014 B2
8665086 Miller et al. Mar 2014 B2
8666491 Chen et al. Mar 2014 B2
8666504 Dronov et al. Mar 2014 B2
8676337 Kallmyer Mar 2014 B2
8676341 Kane et al. Mar 2014 B2
8688232 Finley et al. Apr 2014 B2
8694108 Alataris et al. Apr 2014 B2
8694109 Alataris et al. Apr 2014 B2
8712533 Alataris et al. Apr 2014 B2
8712534 Wei Apr 2014 B2
8718780 Lee May 2014 B2
8718781 Alataris et al. May 2014 B2
8718782 Alataris et al. May 2014 B2
8738145 Goetz et al. May 2014 B2
8750985 Parramon et al. Jun 2014 B2
8751009 Wacnik Jun 2014 B2
8755893 Gross et al. Jun 2014 B2
8761895 Stevenson et al. Jun 2014 B2
8768472 Fang et al. Jul 2014 B2
8774912 Gerber Jul 2014 B2
8774926 Alataris et al. Jul 2014 B2
8788045 Gross et al. Jul 2014 B2
8792988 Alataris et al. Jul 2014 B2
8798773 Mashiach Aug 2014 B2
8805519 Parker et al. Aug 2014 B2
8812135 Mashiach Aug 2014 B2
8831730 Mashiach et al. Sep 2014 B2
8843203 Lee et al. Sep 2014 B2
8849410 Walker et al. Sep 2014 B2
8849412 Perryman et al. Sep 2014 B2
8862239 Alataris et al. Oct 2014 B2
8868192 Alataris et al. Oct 2014 B2
8874217 Alataris et al. Oct 2014 B2
8874219 Trier et al. Oct 2014 B2
8874221 Alataris et al. Oct 2014 B2
8874222 Alataris et al. Oct 2014 B2
8880177 Alataris et al. Nov 2014 B2
8884779 Herman et al. Nov 2014 B2
8886326 Alataris et al. Nov 2014 B2
8886327 Alataris et al. Nov 2014 B2
8886328 Alataris et al. Nov 2014 B2
8892209 Alataris et al. Nov 2014 B2
8892214 Bonde et al. Nov 2014 B2
8903497 Norgaard et al. Dec 2014 B2
8903499 Pless et al. Dec 2014 B2
8903515 Mashiach Dec 2014 B2
8918179 Peterson et al. Dec 2014 B2
8918180 Peterson Dec 2014 B2
8923988 Bradley Dec 2014 B2
8942808 Peterson et al. Jan 2015 B2
8948871 Mashiach et al. Feb 2015 B2
8954165 Sharma et al. Feb 2015 B2
8958884 Kothandaraman et al. Feb 2015 B2
8958891 Kane et al. Feb 2015 B2
8983615 Tahmasian et al. Mar 2015 B2
8983618 Yamamoto et al. Mar 2015 B2
8989864 Funderburk et al. Mar 2015 B2
8989868 Mashiach et al. Mar 2015 B2
8994325 Carbunaru et al. Mar 2015 B2
8996115 Trier et al. Mar 2015 B2
9002445 Chen Apr 2015 B2
9002460 Parker Apr 2015 B2
9002461 Walker et al. Apr 2015 B2
9002466 Trier et al. Apr 2015 B2
9020599 Rooney et al. Apr 2015 B2
9020602 Aghassian Apr 2015 B2
9026227 Daglow May 2015 B2
9030159 Chen et al. May 2015 B2
9031653 Mashiach May 2015 B2
9031666 Fell May 2015 B2
9037261 Bradley May 2015 B2
9042997 Rahman et al. May 2015 B2
9044616 Chen et al. Jun 2015 B2
9056206 Torgerson et al. Jun 2015 B2
9061140 Shi et al. Jun 2015 B2
9061151 Mashiach et al. Jun 2015 B2
9061159 Rahman Jun 2015 B2
9061162 Mashiach et al. Jun 2015 B2
9067072 Tahmasian et al. Jun 2015 B2
9070507 Dronov et al. Jun 2015 B2
9072896 Dar et al. Jul 2015 B2
9079041 Park et al. Jul 2015 B2
9084900 Hershey et al. Jul 2015 B2
9089712 Joshi et al. Jul 2015 B2
9095725 Mashiach Aug 2015 B2
9095726 Parramon et al. Aug 2015 B2
9101774 Mashiach et al. Aug 2015 B2
9119969 Vansickle Sep 2015 B2
9142989 Fell et al. Sep 2015 B2
9149635 Denison et al. Oct 2015 B2
9149643 Tahmasian et al. Oct 2015 B2
9154219 Polefko et al. Oct 2015 B2
9155899 Mashiach et al. Oct 2015 B2
9155901 Dearden et al. Oct 2015 B2
9162068 Dronov Oct 2015 B2
9174051 Marnfeldt et al. Nov 2015 B2
9174053 Zhu Nov 2015 B2
9186504 Gross Nov 2015 B2
9192770 Wang et al. Nov 2015 B2
9199083 Caparso et al. Dec 2015 B2
9205258 Simon et al. Dec 2015 B2
9211418 Aghassian Dec 2015 B2
9216297 Kast et al. Dec 2015 B2
9220907 Mashiach et al. Dec 2015 B2
9220908 Mashiach Dec 2015 B2
9220909 Carbunaru et al. Dec 2015 B2
9220910 Colborn Dec 2015 B2
9225194 Joshi Dec 2015 B2
D747491 Thompson et al. Jan 2016 S
9227075 Aghassian et al. Jan 2016 B2
9232903 Pless et al. Jan 2016 B2
9238138 Lee et al. Jan 2016 B2
9240630 Joshi Jan 2016 B2
9242106 Klosterman et al. Jan 2016 B2
9248279 Chen et al. Feb 2016 B2
9248292 Trier et al. Feb 2016 B2
9248302 Mashiach et al. Feb 2016 B2
9252604 Kim Feb 2016 B2
9254393 Perryman et al. Feb 2016 B2
9259571 Straka et al. Feb 2016 B2
9259582 Joshi et al. Feb 2016 B2
9259584 Bauhahn et al. Feb 2016 B2
9265941 Van Den Biggelaar et al. Feb 2016 B2
9265958 Joshi et al. Feb 2016 B2
9289616 Koester Mar 2016 B2
9295841 Fang et al. Mar 2016 B2
9295850 Kallmyer Mar 2016 B2
9314613 Mashiach Apr 2016 B2
9314628 North et al. Apr 2016 B2
9314642 Ozawa et al. Apr 2016 B2
9320847 Rooney et al. Apr 2016 B2
9320899 Parramon et al. Apr 2016 B2
9320908 Fletcher et al. Apr 2016 B2
9327132 Mashiach May 2016 B2
9333367 Chen May 2016 B2
9339660 Feldman et al. May 2016 B2
9343923 Joshi May 2016 B2
9352161 Thacker et al. May 2016 B2
9370664 Marnfeldt et al. Jun 2016 B2
9375582 Kaula et al. Jun 2016 B2
9381360 Hershey Jul 2016 B2
9387331 Zhao et al. Jul 2016 B2
9387332 Zhao et al. Jul 2016 B2
9393423 Parramon et al. Jul 2016 B2
9393428 Nyberg, II et al. Jul 2016 B2
9393435 Mashiach Jul 2016 B2
9398901 Tischendorf et al. Jul 2016 B2
9399130 Bonde et al. Jul 2016 B2
9399131 Digiore et al. Jul 2016 B2
9399143 Yamamoto et al. Jul 2016 B2
9403013 Walker et al. Aug 2016 B2
9403020 Wingeier Aug 2016 B2
9403021 Dronov Aug 2016 B2
9407110 Lui et al. Aug 2016 B2
9409029 Perryman et al. Aug 2016 B2
9435830 Joshi Sep 2016 B2
9446251 Perryman et al. Sep 2016 B1
9446254 Ozawa et al. Sep 2016 B2
9449501 Grevious et al. Sep 2016 B2
9452288 Whitehurst et al. Sep 2016 B2
9457186 Gross Oct 2016 B2
9463321 Bradley et al. Oct 2016 B2
9463323 Lee et al. Oct 2016 B2
9463326 Ranu Oct 2016 B2
9468771 Griffith et al. Oct 2016 B2
9468772 Demmer Oct 2016 B2
9469437 Kamath Oct 2016 B2
9474905 Doan et al. Oct 2016 B2
9480841 Hershey et al. Nov 2016 B2
9504832 Libbus et al. Nov 2016 B2
9504838 Rao et al. Nov 2016 B2
9511238 Mashiach Dec 2016 B2
9517344 Bradley Dec 2016 B1
9517352 Kast et al. Dec 2016 B2
9522270 Perryman et al. Dec 2016 B2
9526906 Mashiach Dec 2016 B2
9533148 Carcieri Jan 2017 B2
9533153 Libbus et al. Jan 2017 B2
9533154 Kothandaraman et al. Jan 2017 B2
9533162 Ter-petrosyan et al. Jan 2017 B2
9555257 Mashiach et al. Jan 2017 B2
9561365 Shi et al. Feb 2017 B2
9585642 Dinsmoor et al. Mar 2017 B2
9586054 Aghassian Mar 2017 B2
9592385 Kaula et al. Mar 2017 B2
9597516 Lee et al. Mar 2017 B2
9597517 Moffitt Mar 2017 B2
9597521 Plotkin et al. Mar 2017 B2
9610450 Zhao Apr 2017 B2
9616230 Grandhe Apr 2017 B2
9623244 Kothandaraman Apr 2017 B2
9623245 King et al. Apr 2017 B2
9623253 Perryman et al. Apr 2017 B2
9623257 Olson et al. Apr 2017 B2
9630231 Kelsch et al. Apr 2017 B2
9636508 Chen et al. May 2017 B2
9643022 Mashiach et al. May 2017 B2
9649049 Pless et al. May 2017 B2
9649493 Mashiach May 2017 B2
9653941 Dinsmoor et al. May 2017 B2
9656074 Simon et al. May 2017 B2
9656076 Trier et al. May 2017 B2
9656081 Feldman et al. May 2017 B2
9675809 Chow Jun 2017 B2
9687649 Thacker Jun 2017 B2
9700725 Zhu Jul 2017 B2
9700730 Carbunaru et al. Jul 2017 B2
9707404 Rao et al. Jul 2017 B2
9713707 Oron et al. Jul 2017 B2
9713717 Aghassian Jul 2017 B2
9713718 Lamont et al. Jul 2017 B2
9713721 Kothandaraman Jul 2017 B2
9724513 Lane et al. Aug 2017 B2
9731116 Chen Aug 2017 B2
9737703 Carbunaru et al. Aug 2017 B2
9737714 Zottola Aug 2017 B2
9744347 Chen et al. Aug 2017 B2
9744362 Steinke et al. Aug 2017 B2
9744365 Davis et al. Aug 2017 B2
9744368 Dinsmoor Aug 2017 B2
9750930 Chen Sep 2017 B2
9782588 Shi et al. Oct 2017 B2
9782593 Parramon et al. Oct 2017 B2
9782596 Vamos et al. Oct 2017 B2
9789314 Perryman et al. Oct 2017 B2
9789321 Dixit et al. Oct 2017 B2
9789324 Bauhahn et al. Oct 2017 B2
9802038 Lee et al. Oct 2017 B2
9802048 Armstrong Oct 2017 B2
9802052 Marnfeldt Oct 2017 B2
9814458 North Nov 2017 B2
9814880 Hershey et al. Nov 2017 B2
9814884 Parker et al. Nov 2017 B2
9839786 Rondoni et al. Dec 2017 B2
9844677 Aghassian Dec 2017 B2
9849298 Ozawa et al. Dec 2017 B2
9855032 Mashiach et al. Jan 2018 B2
9855436 Dearden et al. Jan 2018 B2
9861825 Ozawa et al. Jan 2018 B2
9867989 Blum et al. Jan 2018 B2
9867994 Parramon Jan 2018 B2
9878158 Hershey et al. Jan 2018 B2
9907967 Mashiach et al. Mar 2018 B2
9913980 Ostroff et al. Mar 2018 B2
9913983 Gustafsson et al. Mar 2018 B2
9913986 Chow et al. Mar 2018 B2
9913990 Ter-petrosyan et al. Mar 2018 B2
9925381 Nassif Mar 2018 B2
9929584 Aghassian et al. Mar 2018 B2
9931107 Tischendorf et al. Apr 2018 B2
9935498 Joshi Apr 2018 B2
9943685 Ramesh et al. Apr 2018 B2
9950166 Mashiach et al. Apr 2018 B2
9950173 Doan Apr 2018 B2
9950179 Bonde et al. Apr 2018 B2
9956419 Bokil May 2018 B2
9956421 Bunyan et al. May 2018 B2
9974965 Perryman et al. May 2018 B2
9981130 Lee May 2018 B2
9993645 Walker et al. Jun 2018 B2
10010717 Aghassian et al. Jul 2018 B2
10014571 Andersen et al. Jul 2018 B2
10052097 Mashiach et al. Aug 2018 B2
10056688 Andersen et al. Aug 2018 B2
10058705 Andersen et al. Aug 2018 B2
10064288 Li et al. Aug 2018 B2
10080902 Dinsmoor et al. Sep 2018 B2
10105540 Oron et al. Oct 2018 B2
10105542 Jiang et al. Oct 2018 B2
10105543 Marnfeldt et al. Oct 2018 B2
10118040 Zhu Nov 2018 B2
10143845 Kothandaraman Dec 2018 B2
10149976 Andresen et al. Dec 2018 B1
10173062 Parker Jan 2019 B2
10177609 Olson et al. Jan 2019 B2
10179241 Walker et al. Jan 2019 B2
10182807 Bridgeman et al. Jan 2019 B2
10195425 Ostroff et al. Feb 2019 B2
10213608 Moffitt Feb 2019 B2
10219229 Mulligan, IV Feb 2019 B1
10226637 Aghassian et al. Mar 2019 B2
10532208 Ostroff et al. Jan 2020 B2
10583284 Peters et al. Mar 2020 B2
11083903 Nassif et al. Aug 2021 B2
20020077554 Schwartz et al. Jun 2002 A1
20020099419 Cohen et al. Jul 2002 A1
20020124848 Sullivan et al. Sep 2002 A1
20020183805 Fang et al. Dec 2002 A1
20020183817 Van Venrooij et al. Dec 2002 A1
20030014016 Purdy Jan 2003 A1
20030040774 Terry et al. Feb 2003 A1
20030060858 Kieval et al. Mar 2003 A1
20030100933 Ayal May 2003 A1
20030176898 Gross et al. Sep 2003 A1
20030236557 Whitehurst et al. Dec 2003 A1
20030236558 Whitehurst et al. Dec 2003 A1
20040015205 Whitehurst et al. Jan 2004 A1
20040019368 Lattner et al. Jan 2004 A1
20040048795 Ivanova et al. Mar 2004 A1
20040073270 Firlik et al. Apr 2004 A1
20040254624 Johnson Jun 2004 A1
20040167584 Carroll et al. Aug 2004 A1
20040249431 Ransbury et al. Dec 2004 A1
20040254612 Ezra et al. Dec 2004 A1
20050119716 McClure Jun 2005 A1
20050131495 Parramon et al. Jun 2005 A1
20050143789 Whitehurst Jun 2005 A1
20050165457 Benser et al. Jul 2005 A1
20050182457 Thrope et al. Aug 2005 A1
20050251061 Schuler et al. Nov 2005 A1
20060020305 Desai et al. Jan 2006 A1
20060047327 Colvin et al. Mar 2006 A1
20060085039 Hastings et al. Apr 2006 A1
20060100668 Ben-David et al. May 2006 A1
20060155345 Williams et al. Jul 2006 A1
20060271137 Stanton-Hicks Nov 2006 A1
20070032827 Katims Feb 2007 A1
20070067000 Strother et al. Mar 2007 A1
20070067007 Schulman Mar 2007 A1
20070073353 Rooney et al. Mar 2007 A1
20070073354 Knudson et al. Mar 2007 A1
20070083240 Peterson et al. Apr 2007 A1
20070088397 Jacobson Apr 2007 A1
20070173893 Pitts Jul 2007 A1
20070208392 Kuschner et al. Sep 2007 A1
20070255349 Torgerson et al. Nov 2007 A1
20070293908 Cowan et al. Dec 2007 A1
20070293912 Cowan et al. Dec 2007 A1
20080004535 Smits Jan 2008 A1
20080009914 Buysman et al. Jan 2008 A1
20080021336 Dobak Jan 2008 A1
20080027513 Carbunaru Jan 2008 A1
20080039915 Van Den Biggelaar Feb 2008 A1
20080065182 Strother et al. Mar 2008 A1
20080071178 Greenland et al. Mar 2008 A1
20080091255 Caparso et al. Apr 2008 A1
20080103407 Bolea et al. May 2008 A1
20080103572 Gerber May 2008 A1
20080109054 Hastings et al. May 2008 A1
20080119911 Rosero May 2008 A1
20080132964 Cohen et al. Jun 2008 A1
20080183235 Stancer et al. Jul 2008 A1
20080269740 Bonde et al. Oct 2008 A1
20090012590 Inman et al. Jan 2009 A1
20090036975 Ward et al. Feb 2009 A1
20090048642 Goroszeniuk Feb 2009 A1
20090149912 Dacey et al. Jun 2009 A1
20090152954 Le et al. Jun 2009 A1
20090182402 Glukhovsky Jul 2009 A1
20090204170 Hastings et al. Aug 2009 A1
20090204173 Fang et al. Aug 2009 A1
20090234407 Hastings et al. Sep 2009 A1
20090259280 Wilkin et al. Oct 2009 A1
20090270951 Kallmyer Oct 2009 A1
20090281594 King et al. Nov 2009 A1
20090326602 Glukhovsky et al. Dec 2009 A1
20100069992 Aghassian et al. Mar 2010 A1
20100094367 Sen Apr 2010 A1
20100121405 Ternes et al. May 2010 A1
20100125310 Wilson et al. May 2010 A1
20100125313 Lee et al. May 2010 A1
20100198298 Glukovsky et al. Aug 2010 A1
20100211131 Williams et al. Aug 2010 A1
20100241195 Meadows et al. Sep 2010 A1
20100244580 Uchida et al. Sep 2010 A1
20100249875 Kishawi et al. Sep 2010 A1
20100312320 Faltys et al. Sep 2010 A1
20100280568 Bulkes et al. Nov 2010 A1
20100305392 Gross et al. Dec 2010 A1
20100324630 Lee et al. Dec 2010 A1
20110034782 Sugimachi et al. Feb 2011 A1
20110046696 Barolat et al. Feb 2011 A1
20110087337 Forsell Apr 2011 A1
20110093036 Mashiach Apr 2011 A1
20110112605 Fahey May 2011 A1
20110137365 Ben-Erza et al. Jun 2011 A1
20110152965 Mashiach Jun 2011 A1
20110160792 Fishel Jun 2011 A1
20110160793 Gindele Jun 2011 A1
20110160798 Ackermann et al. Jun 2011 A1
20110208260 Jacobson Aug 2011 A1
20110208271 Dobak Aug 2011 A1
20110224744 Moffitt et al. Sep 2011 A1
20110224769 Spenser et al. Sep 2011 A1
20110230922 Fishel Sep 2011 A1
20110270339 Murray et al. Nov 2011 A1
20110282412 Glukhovsky et al. Nov 2011 A1
20110301662 Bar-Yoseph et al. Dec 2011 A1
20110301670 Gross Dec 2011 A1
20120004709 Chen et al. Jan 2012 A1
20120010694 Lutter et al. Jan 2012 A1
20120035679 Dagan et al. Feb 2012 A1
20120041511 Lee Feb 2012 A1
20120041514 Gross et al. Feb 2012 A1
20120065701 Cauller Mar 2012 A1
20120083857 Bradley et al. Apr 2012 A1
20120101326 Simon et al. Apr 2012 A1
20120123498 Gross May 2012 A1
20120130448 Woods et al. May 2012 A1
20120130463 Ben-David et al. May 2012 A1
20120158081 Gross et al. Jun 2012 A1
20120215285 Tahmasian et al. Aug 2012 A1
20120256494 Kesler Oct 2012 A1
20120296389 Fang et al. Nov 2012 A1
20130006326 Ackermann et al. Jan 2013 A1
20130066393 Gross et al. Mar 2013 A1
20130192611 Taepke, II et al. Aug 2013 A1
20130289662 Olson Oct 2013 A1
20130325084 Lee Dec 2013 A1
20140031840 Mashiach Jan 2014 A1
20140031903 Mashiach Jan 2014 A1
20140184150 Walley Jul 2014 A1
20140214134 Peterson Jul 2014 A1
20140296940 Gross Oct 2014 A1
20150004709 Nazarpoor Jan 2015 A1
20150018598 Nabutovsky et al. Jan 2015 A1
20150018728 Gross et al. Jan 2015 A1
20150039046 Gross Feb 2015 A1
20150080979 Lasko et al. Mar 2015 A1
20150100109 Feldman et al. Apr 2015 A1
20150148861 Gross May 2015 A1
20150148878 Yoo et al. May 2015 A1
20150174406 Lamensdorf et al. Jun 2015 A1
20150202449 Chen Jul 2015 A1
20150258339 Burchiel et al. Sep 2015 A1
20150270719 Kurs Sep 2015 A1
20150335882 Gross et al. Nov 2015 A1
20160206882 Oron et al. Jul 2016 A1
20160206889 Plotkin et al. Jul 2016 A1
20160206890 Oron et al. Jul 2016 A1
20160294366 Bao Oct 2016 A1
20160361544 Oron et al. Dec 2016 A1
20170007829 Gross Jan 2017 A1
20170128724 Oron et al. May 2017 A1
20170136232 Oron et al. May 2017 A1
20170224996 Oron et al. Aug 2017 A1
20170232255 Kent et al. Aug 2017 A1
20170296426 Oron et al. Oct 2017 A1
20180353764 Oron et al. Dec 2018 A1
20200046974 Ostroff et al. Feb 2020 A1
Foreign Referenced Citations (29)
Number Date Country
102008054403 Jun 2010 DE
0 688 577 Dec 1995 EP
1533000 May 2005 EP
1703638 Nov 2012 EP
1998010832 Mar 1998 WO
1999026530 Jun 1999 WO
0110432 Feb 2001 WO
2001010375 Feb 2001 WO
0126729 Apr 2001 WO
0209808 Feb 2002 WO
2004064729 Aug 2004 WO
2006102626 Sep 2006 WO
2007019491 Feb 2007 WO
2009055574 Apr 2009 WO
2009110935 Sep 2009 WO
2011154937 Dec 2011 WO
2012012591 Jan 2012 WO
2013035092 Mar 2013 WO
2013106884 Jul 2013 WO
2013111137 Aug 2013 WO
2013156038 Oct 2013 WO
2013164829 Nov 2013 WO
2014081978 May 2014 WO
2014087337 Jun 2014 WO
2014167568 Oct 2014 WO
2015004673 Jan 2015 WO
2016028608 Feb 2016 WO
2016157183 Oct 2016 WO
2016172109 Oct 2016 WO
Non-Patent Literature Citations (136)
Entry
Raab, Frederick. “Idealized operation of the class E tuned power amplifier.” IEEE transactions on Circuits and Systems 24.12 (1977): 725-735.
An Office Action dated Jun. 17, 2021, which issued during the prosecution of U.S. Appl. No. 16/363,256.
An Office Action dated Dec. 5, 2018, which issued during the prosecution of U.S. Appl. No. 15/581,390.
An Office Action dated Jun. 26, 2019, which issued during the prosecution of U.S. Appl. No. 15/395,257.
An Office Action dated Feb. 7, 2019, which issued during the prosecution of U.S. Appl. No. 15/706,956.
Alo, Kenneth M., et al. “Lumbar and sacral nerve root stimulation (NRS) in the treatment of chronic pain: a novel anatomic approach and neuro stimulation technique.” Neuromudulation: Technology at the Neural Interface 2.1 (1999): 23-31.
Gofeld, Michael, and John G. Hanlon. “Ultrasound-Guided Placement of a Paddle Lead Onto Peripheral Nerves: Surgical Anatomy and Methodology.” Neuromodulation: Technology at the Neural Interface 17.1 (2014): 48-53.
Stuart, R. Morgan, and Christopher J. Winfree. “Neurostimulation techniques for painful peripheral nerve disorders.” Neurosurgery Clinics of North America 20.1 (2009): 111-120.
An Office Action dated Dec. 21, 2020, which issued during the prosecution of U.S. Appl. No. 16/363,256.
An Office Action dated Dec. 2, 2020, which issued during the prosecution of U.S. Appl. No. 16/166,383.
C. de Balthasar, G. Cosendai, M. Hansen, D. Canfield, L. Chu, R. Davis, and J. Schulman, “Attachment of leads to RF-BION® microstimulators.” Jul. 2005.
D.W. Eisele, A.R. Schwartz, and P.L. Smith, “Tongue neuromuscular and direct hypoglossal nerve stimulation for obstructive sleep apnea.,” Otolaryngologic clinics of North America, vol. 36, 2003, p. 501.
G.E. Loeb, F.J.R. Richmond, J. Singh, R.A. Peck, W. Tan, Q. Zou, and N. Sachs, “RF-powered BIONs™ for stimulation and sensing,” Engineering in Medicine and Biology Society, 2004. IEMBS'04. 26th Annual International Conference of the IEEE, 2005, pp. 4182-4185.
G.E. Loeb, F.J. Richmond, and L.L. Baker, “The BION devices: injectable interfaces with peripheral nerves and muscles,” Neurosurgical focus, vol. 20, 2006, pp. 1-9.
E.A. Mann, T. Burnett, S. Cornell, and C.L. Ludlow, “The effect of neuromuscular stimulation of the genioglossus on the hypopharyngeal airway,” The Laryngoscope, vol. 112, 2002, pp. 351-356.
A. Oliven, R.P. Schnall, G. Pillar, N. Gavriely, and M. Odeh, “Sublingual electrical stimulation of the tongue during wakefulness and sleep,” Respiration physiology, vol. 127, 2001, pp. 217-226.
A. Oliven, D.J. O'Hearn, A. Boudewyns, M. Odeh, W. De Backer, P. van de Heyning, P.L. Smith, D.W. Eisele, L. Allan, H. Schneider, and others, “Upper airway response to electrical stimulation of the genioglossus in obstructive sleep apnea,” Journal of Applied Physiology, vol. 95, 2003, p. 2023.
A. Oliven, M. Odeh, L. Geitini, R. Oliven, U. Steinfeld, A.R. Schwartz, and N. Tov, “Effect of coactivation of tongue protrusor and retractor muscles on pharyngeal lumen and airflow in sleep apnea patients,” Journal of Applied Physiology, vol. 103, 2007, p. 1662.
A.R. Schwartz, D.W. Eisele, A. Hari, R. Testerman, D. Erickson, and P.L. Smith, “Electrical stimulation of the lingual musculature in obstructive sleep apnea,” Journal of Applied Physiology, vol. 81, 1996, p. 643.
W.H. Tran, G.E. Loeb, F.J.R. Richmond, A.C. Dupont, K.C. Mahutte, C.S.H. Sassoon, and M.J. Dickel, “Development of asynchronous, intralingual electrical stimulation to treat obstructive sleep apnea,” Engineering in Medicine and Biology Society, 2003. Proceedings of the 25th Annual International Conference of the IEEE, 2004, pp. 375-378.
W.H. Tran, G.E. Loeb, F.J.R. Richmond, R. Ahmed, G.T. Clark, and P.B. Haberman, “First subject evaluated with simulated BION™ treatment in genioglossus to prevent obstructive sleep apnea,” Engineering in Medicine and Biology Society, 2004. IEMBS'04. 26th Annual International Conference of the IEEE, 2005, pp. 4287-4289.
P.R. Troyk, “Injectable electronic identification, monitoring, and stimulation systems,” Biomedical Engineering, vol. 1, 1999, p. 177.
T.K. Whitehurst, J.H. Schulman, K.N. Jaax, and R. Carbunaru, “The Bion® Microstimulator and its Clinical Applications,” Implantable Neural Prostheses 1, 2009, pp. 253-273.
D.J. Young, “Wireless powering and data telemetry for biomedical implants,” Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE, 2009, pp. 3221-3224.
Reid R. Harrison, et al., “Wireless Neural Recording with Single Low-Power Integrated Circuit”, IEEE Trans Neural Syst Rehabil Eng. Aug. 2009; 17(4): 322-329.
An International Search Report and a Written Opinion both dated Apr. 17, 2012 which issued during the prosecution of Applicant's PCT/IL11/00870.
Patents Galore: Implantable Neurostimulators Fight Snoring and Corpse Eye-Proof Scanners. Printout from http://medgadget.com/2006/03/patents_galore.html (Downloaded Jan. 2012).
Chris Seper, “Neuros Medical Launches to Develop New Device to Block Amputee, Chronic Pain”, Mar. 17, 2009.
Urgent® PC, Simple. Safe. Effective. Neuromodulation System, Uroplasty, Mar. 2009.
“JumpStart and Case Technology Ventures Invest in Neuros Medical”, CTV Case Technology Ventures, Mar. 17, 2009.
“Responses to median and tibial nerve stimulation in patients with chronic neuropathic pain”, by Theuvenet, Brain Topography, vol. 11, No. 4, 1999, pp. 305-313(9)—an abstract.
Armstrong, J, “Is electrical stimulation effective in reducing neuropathic pain in patients with diabetes?”, by Foot Ankle Surg. Jul.-Aug. 1997; 36(4): 260-3—an abstract.
Ross Davis, Cerebellar Stimulation for Cerebral Palsy Spasticity, Function and Seizures. Clinical Neuroscience Center, 1999. pp. 290-299.
An Office Action dated Feb. 13, 2004, which issued during the prosecution of U.S. Appl. No. 10/254,024.
Bathien et al., Inhibition and synchronisation of tremor induced by a muscle twitch. J. Neurol, Neurosurg. and Psych. 1980, 43, 713-718.
Jobges et al., Vibratory proprioceptive stimulation affects Parkinsonian tremor. Parkinsonism & Related Disorders, 8(3), 171-176, Jan. 2002.
Mones and Weiss, The response of the tremor of patients with Parkinsonism to peripheral nerve stimulation. J. Neurol. Neurosurg. Psychiat. 1969, 32. 512-519.
Y. Zhang, et al., “Optimal Ventricular Rate Slowing During Atrial Fibrillation by Feedback AV Nodal-Selective Vagal Stimulation”, Am J Physiol Heart Circ Physiol 282:H1102-H1110, 2002.
N.J.M Rijkhoff, et al., “Selective Stimulation of Small Diameter Nerve Fibers in a Mixed Bundle”, Proceedings of the Annual Project Meeting Sensations/Neuros and Mid Term Review Meeting Neuros, Apr. 21-23, 1999.
M. Manfredi, “Differential Block of conduction of larger fibers in peripheral nerve by direct current”, Arch. Ital. Biol. 108:52-71, 1970.
A Restriction Requirement dated May 11, 2012, which issued during the prosecution of U.S. Appl. No. 12/946,246.
Cerebral Palsy, Barry S. Russman MD, CCurrent Science Inc. 2000.
A Notice of Allowance dated Mar. 7, 2005, which issued during the prosecution of U.S. Appl. No. 10/254,024.
A Notice of Allowance dated Aug. 26, 2004, which issued during the prosecution of U.S. Appl. No. 10/254,024.
An Office Action dated Jun. 24, 2011, which issued during the prosecution of U.S. Appl. No. 12/796,102.
An International Search Report and a Written Opinion both dated Nov. 14, 2011, which issued during the prosecution of Applicant's PCT/IL2011/000440.
An International Preliminary Report on Patentability dated Dec. 10, 2012, which issued during the prosecution of Applicant's PCT/IL2011/000440.
U.S. Appl. No. 60/263,834, filed Jan. 2, 2001.
Sweeney JD et al., “An asymmetric two electrode cuff for generation of unidirectionally propagated action potentials,” IEEE Transactions on Biomedical Engineering, vol. BME-33(6) (1986).
An Office Action dated Apr. 9, 2012, which issued during the prosecution of U.S. Appl. No. 12/796,102.
Invitation to pay Additional Fees dated May 10, 2013 which issued during the prosecution of Applicant's PCT/IL2013/050069.
Naples GG et al., “A spiral nerve cuff electrode for peripheral nerve stimulation,” by IEEE Transactions on Biomedical Engineering, 35(11) (1988).
Sweeney JD et al., “A nerve cuff technique for selective excitation of peripheral nerve trunk regions,” IEEE Transactions on Biomedical Engineering, 37(7) (1990).
Ungar IJ et al., “Generation of unidirectionally propagating action potentials using a monopolar electrode cuff,” Annals of Biomedical Engineering, 14:437-450 (1986).
Fitzpatrick et al., in “A nerve cuff design for the selective activation and blocking of myelinated nerve fibers,” Ann. Conf. of the IEEE Eng. in Medicine and Biology Soc, 13(2), 906 (1991).
Rijkhoff NJ et al., “Orderly recruitment of motoneurons in an acute rabbit model,” Ann. Conf. of the IEEE Eng., Medicine and Biology Soc., 20(5):2564 (1998).
Van den Honert C et al., “A technique for collision block of peripheral nerve: Frequency dependence,” MP-12, IEEE Trans. Biomed. Eng. 28:379-382 (1981).
Baratta R et al., “Orderly stimulation of skeletal muscle motor units with tripolar nerve cuff electrode,” IEEE Transactions on Biomedical Engineering, 36(8):836-43 (1989).
Van den Honert C et al., “Generation of unidirectionally propagated action potentials in a peripheral nerve by brief stimuli,” Science, 206:1311-1312 (1979).
M. Devor, “Pain Networks”, Handbook of Brand Theory and Neural Networks, ED M.A. Arbib MIT Press pp. 696-701, 1998.
Epilepsy center. http://www.bcm.tmc.edu/neural/struct/epilep/epilpsy_vagus.html.
J.F. Cortese, “Vagus Nerve Stimulation for Control of Intractable Epileptic Seizures”, May 31, 2001.
Evetovich T.K. et al., Gender comparisons of the mechanomyographic responses to minimal concentric and eccentric isokinetic muscle actions, Medicine & Science in Sports & Exercise, 1998 pp. 1697-1702. Abstract.
An Office Action dated Dec. 5, 2013, which issued during the prosecution of U.S. Appl. No. 13/528,433.
An Office Action dated Sep. 30, 2013, which issued during the prosecution of U.S. Appl. No. 12/796,102.
Chow et al., Evaluation of Cardiovascular Stents as Antennas for Implantable Wireless Applications, IEEE Transactions on Microwave Theory and Techniques, vol. 57, No. 10, Oct. 2009.
Dean, J. et al., “Motor Pattern Generation”, Handbook of Brain Theory and Neural Networks, pp. 696-701.
Hu et al., Percutaneous Biphasic Electrical Stimulation for Treatment of Obstructive Sleep Apnea Syndrome, IEEE Transactions on Biomedical Engineering, Jan. 2008 vol. 55 lssue:1 p. 181-187—an abstract.
A. Oliven, Electrical stimulation of the genioglossus to improve pharyngeal patency in obstructive sleep apnea: comparison of resultsobtained during sleep and anesthesia, U.S. National Library of Medicine, National Institutes of Health May 2009;148(5):315-9, 350, 349—an abstract.
U.S. Appl. No. 61/591,024, filed Jan. 26, 2012.
Mortimer et al., Peripheral Nerve and Muscle Stimulation, Neuroprosthetics Theory and Practice, Chapter 4.2, 2004, p. 632-638.
An Office Action dated May 19, 2017, which issued during the prosecution of U.S. Appl. No. 14/935,941.
Zabara J., Inhibition of experimental seizures in canines by repetitive vagal stimulation, Epilepsia. Nov.-Dec. 1992;33 (6):1005-12, http://www.ncbi.nlm.nih.gov/pubmed/1464256—an abstract.
A Notice of Allowance dated Jun. 9, 2014, which issued during the prosecution of U.S. Appl. No. 12/796,102.
Notice of Allowance dated Sep. 1, 2017, which issued during the prosecution of U.S. Appl. No. 14/649,873.
Brindley (1983) A technique for anodally blocking large nerve fibers.
An Office Action dated Sep. 22, 2016, which issued during the prosecution of U.S. Appl. No. 14/374,375.
DJOGlobal.com—Interferential Current Therapy (IFC).
A Notice of Allowance dated Apr. 25, 2014, which issued during the prosecution of U.S. Appl. No. 13/528,433.
U.S. Appl. No. 61/662,073, filed Jun. 20, 2012.
An Office Action dated Sep. 26, 2013, which issued during the prosecution of U.S. Appl. No. 13/528,433.
U.S. Appl. No. 60/985,353, filed Nov. 5, 2007.
Notice of Allowance dated Jun. 1, 2017, which issued during the prosecution of U.S. Appl. No. 14/601,626.
electrotherapy.org—Interferential Therapy.
Notice of Allowance dated May 17, 2017, which issued during the prosecution of U.S. Appl. No. 14/601,626.
Lind (2012) Advances in spinal cord stimulation.
Physical Therapy Web.com—Interferential Current (IFC) Equipment.
Shealy (1967) Electrical inhibition of pain by stimulation of the dorsal columns.
Nov. 30, 2015 massdevice.com—St. Jude Medical's Proclaim Elite debuts in Europe.
Kaplan et al. (2009) Design and fabrication of an injection tool for neuromuscular microstimulators.
Supplementary European Search Report dated Dec. 22, 2014, which issued during the prosecution of Applicant's European App No. 11792044.7.
An Office Action dated Oct. 30, 2015, which issued during the prosecution of U.S. Appl. No. 14/226,723.
Notice of Allowance dated Nov. 4, 2016, which issued during the prosecution of U.S. Appl. No. 14/601,568.
Sinan Filiz, Luke Xie, Lee E. Weiss, O.B. Ozdoganlar, Micromilling of microbarbs for medical implants, International Journal of Machine Tools and Manufacture, vol. 48, Issues 3-4, Mar. 2008, pp. 459-472.
UCLA Team Reports Initial Success with Trigeminal Nerve Stimulation epilepsy. https://web.archive.org/web/20121020145122/https:/www.epilepsy.com/epilepsy/newsletter/apr09_STIM.
Kucklick, Theodore R., ed. The medical device R&D handbook. Chapter 3—Intro to needles and cannulae. CRC Press, 2012.
Szmurlo, R., Starzynski, J., Wincenciak, S. and Rysz, A. (2009) ‘Numerical model of vagus nerve electrical stimulation’, COMPEL—The international journal for computation and mathematics in electrical and electronic engineering, 28(1), pp. 211-220.
An Office Action dated Apr. 5, 2017, which issued during the prosecution of U.S. Appl. No. 14/374,375.
Mitchum, A Shocking Improvement in Cardiology Science Life Blog, University of Chicago, http://sciencelife.uchospitals.edu/2010/04/13/a-shocking-improvement-in-cardiology/ (Downloaded Nov. 3, 2012).
Reggiani et al. “Biophysical effects of high frequency electrical field on muscle fibers in culture.” (2009) pp. 49-56.
https://www.uroplasty.com/files/pdf/20158.pdf Brochure (Downloaded Oct. 16, 2014).
An Office Action dated Aug. 8, 2016, which issued during the prosecution of U.S. Appl. No. 14/735,741.
An International Search Report and a Written Opinion both dated Jul. 11, 2013, which issued during the prosecution of Applicant's PCT/IL2013/050069.
An International Search Report and a Written Opinion both dated Apr. 29, 2014, which issued during the prosecution of Applicant's PCT/IB2013/060607.
An International Preliminary Report on Patentability dated Jul. 29, 2014, which issued during the prosecution of Applicant's PCT/IL2013/050069.
An International Preliminary Report on Patentability dated Jun. 9, 2015, which issued during the prosecution of Applicant's PCT/IB2013/060607.
An Office Action dated Dec. 12, 2016, which issued during the prosecution of U.S. Appl. No. 14/939,418.
Ex Parte Quayle Action dated Sep. 14, 2016, which issued during the prosecution of U.S. Appl. No. 14/601,568.
An Office Action dated May 13, 2016, which issued during the prosecution of U.S. Appl. No. 14/601,568.
An Office Action dated Aug. 11, 2016, which issued during the prosecution of U.S. Appl. No. 14/601,626.
CBS news article entitled, “Migraine ‘smart’ patch tested to help ease pain” by Steven Reinberg.
Zhang, D., Zhang, Z., Zi, Z., Zhang, Y., Zeng, W. and Chu, P.K., 2008. Fabrication of graded TiN coatings on nitinol occluders and effects on in vivo nickel release. Bio-medical materials and engineering, 18(6), pp. 387-393—an abstract.
Cardiovascular Stents as Antennas for Implantable Wireless Applications, by Ebrish, BMEN 5151, Apr. 29, 2010.
An Office Action dated Nov. 21, 2016, which issued during the prosecution of U.S. Appl. No. 14/601,626.
Spinal Cord Stimulation advanced level (Mayfield clinic)—dated Feb. 2010.
European Search Report dated Feb. 3, 2017, which issued during the prosecution of Applicant's European App No. 16196878.9.
Amendment in Response to Official Action dated Jan. 24, 2019 from the United States Patent and Trademark Office in U.S. Appl. No. 15/621,433.
An Office Action dated Dec. 6, 2017, which issued during the prosecution of U.S. Appl. No. 14/601,604.
An Office Action dated Dec. 26, 2017, which issued during the prosecution of U.S. Appl. No. 14/935,941.
An Office Action dated Jan. 8, 2018, which issued during the prosecution of U.S. Appl. No. 14/935,941.
An Office Action dated Mar. 5, 2018, which issued during the prosecution of U.S. Appl. No. 15/360,501.
An Office Action dated Nov. 30, 2017, which issued during the prosecution of U.S. Appl. No. 15/726,971.
Abkenari, Lara Dabiri, et al. “Clinical experience with a novel subcutaneous implantable defibrillator system in a single center.” Clinical Research in Cardiology 100.9 (2011): 737-744.
St. Jude Medical, Inc. fact sheet entitled, “Peripheral Nerve Stimulation for Intractable Chronic Migraine”.
Automatic Impedance Matching for 13.56 MHz NFC Antennas In Proceedings of the 6th Symposium on Communication Systems, Networks and Digital Signal Processing (2008) by Michael Roland, Harald Witschnig, Christian Saminger.
Takahata, K.; DeHennis, A.; Wise, K.D.; Gianchandani, Y.B., “Stentenna: a micromachined antenna stent for wireless monitoring of implantable microsensors,” in Engineering in Medicine and Biology Society, 2003. Proceedings of the 25th Annual International Conference of the IEEE , vol. 4, No., pp. 3360-3363 vol. 4, 17-21.
Itchkawitz—OC TechInnovation Blog—Electrodes for implantable defibrillator. Printout from http://octechinnovation.com/tag/cameron-health (Downloaded Mar. 2012).
Kaszala, K. and Ellenbogen, K.A., 2010. Device sensing sensors and algorithms for pacemakers and implantable cardioverter defibrillators. Circulation, 122(13), pp. 1328-1340.
An Office Action dated Apr. 22, 2019, which issued during the prosecution of U.S. Appl. No. 15/638,924.
An Office Action dated Oct. 11, 2018, which issued during the prosecution of U.S. Appl. No. 15/638,924.
Notice of Allowance dated Jan. 17, 2020, which issued during the prosecution of U.S. Appl. No. 15/638,924.
An Interview Summary dated Mar. 5, 2019, which issued during the prosecution of U.S. Appl. No. 15/638,924.
An Advisory Action and an Interview Summary dated Sep. 16, 2019, which issued during the prosecution of U.S. Appl. No. 15/638,924.
An Office Action dated Jan. 24, 2019, which issued during the prosecution of U.S. Appl. No. 15/621,433.
An Office Action dated Jul. 9, 2019, which issued during the prosecution of U.S. Appl. No. 15/621,433.
An Office Action dated Oct. 30, 2018, which issued during the prosecution of U.S. Appl. No. 15/621,433.
Related Publications (1)
Number Date Country
20220168580 A1 Jun 2022 US
Divisions (1)
Number Date Country
Parent 15621433 Jun 2017 US
Child 16737253 US
Continuations (1)
Number Date Country
Parent 16737253 Jan 2020 US
Child 17546644 US