1. Field
Embodiments of the present invention generally relate to electronically configurable and controllable antenna elements. More particularly, embodiments of the present invention relate to the control and configuration of amplitude and/or phase parameters of individual antenna elements such as, for example and without limitation, antenna elements of multi-element antenna arrays, multi-element electronically steerable antennas (MESAs), and the combination of MESAs with multiple-input multiple-output (MIMO) antenna technology.
2. Background
Generally, antennas can be classified into three categories: omni-directional, semi-directional, and highly-directional antennas. These three general antenna categories have different electromagnetic signal directional and gain characteristics (often referred to as “directivity”). Antenna directivity can be defined as the ratio of radiation intensity in the direction of the antenna's peak intensity or the desired direction of operation to the average radiation intensity in all other directions (e.g., total integrated power in all directions captured by the denominator of the ratio which includes the direction of interest). In addition to directivity, antennas are characterized by a radiation pattern, which can be either a two-dimensional or three-dimensional graphical plot of the antenna's signal intensity versus a reference angle.
Omni-directional antennas can have a broad radiation pattern and transmit and receive electromagnetic signals nearly uniformly in all directions. Examples of omni-directional antennas include dipoles, discones, masks, and loops, Semi-directional antennas are capable of focusing desired energy and signals in a desired direction. Examples of semi-directional antennas include patch antennas, panel antennas (both patch and panel antennas are also referred to as “planar antennas”), and Yagi antennas (e.g., a directional antenna having a horizontal conductor with several insulated dipoles parallel to and in the plane of the conductor).
Semi-directional antennas offer improved gain over omni-directional antennas in the desired direction of operation while reducing the gain of and/or potential interference from signals in other directions. As noted above, these characteristics of semi-directional antennas are referred to as directivity. Highly-directional antennas provide a smaller angle of radiation in the desired direction of operation, a more focused beam, and a narrower beam width compared to the above-described general antenna types. Examples of highly-directional antennas include parabolic dish, fixed arrays, and grid antennas (a grid antenna resembles, for example, a rectangular grill of a barbecue with edges slightly curved inward. The spacing of the wires on a grid antenna is determined by the designed operational wavelength of the antenna.).
All three of the above-described general antenna types (i.e., omni-directional, semi-directional, and highly-directional antennas) can also be classified as fixed antenna designs. A fixed antenna design is one that has a fixed gain, a fixed radiation pattern (e.g., fixed directionality), and a fixed direction of operation. An example of a fixed, highly-directional antenna is the parabolic dish antenna, which is commonly used in satellite communications. The parabolic dish antenna includes a reflector that is sized to produce the desired antenna gain and beam width for a specific radiation pattern and can be oriented in the desired direction of operation.
While particularly suitable for fixed gain, fixed location, fixed distance, and fixed direction communication systems, fixed antenna designs are not particularly suitable for applications requiring variable direction and/or variable gain. For example, the gain and radiation pattern of a parabolic dish antenna are fixed based on the size and design of the dish's reflector, and the direction of operation can only be changed by changing the dish's physical orientation. These disadvantages and limitations of static parabolic dish antennas apply to most fixed antenna designs.
An antenna design that offers advantages over the aforementioned limitations of fixed antenna designs is a multi-element electronically steerable antenna (MESA). This type of antenna can be utilized either in a fixed location or in a portable (or mobile) environment. A single MESA can be designed to produce omni-directional, semi-directional, and highly-directional antenna radiation patterns or directivity. The directivity and gain of the MESA are determined by the number of antenna array elements and the ability to determine and control the relative phase shifts and/or amplitudes between antenna array elements.
A MESA can electronically change its gain and radiation pattern (e.g., directivity), as well as its direction of operation, by varying the relative phase shift and/or amplitude of its antenna array elements. Furthermore, a MESA does not require any mechanical components, such as a motor or a servometer, to change its direction of operation, its gain, or its radiation pattern. This allows both its size and weight to be reduced, making the MESA an ideal candidate for portable (or mobile) communication systems. Additionally, because the MESA operational parameters can be modified electronically, the direction of operation of the MESA can be changed more rapidly than a fixed antenna design, making the MESA a good antenna technology to locate, acquire, and track fast moving signals.
Conventional MESA arrays use variable phase shifters (e.g., time delay phase shifters, vector modulators, and digital phase shifters) to control directivity. The input dynamic range and resolution of such phase shifters, however, is limited, which limits the accuracy at which a determined configuration of relative phase shifts can be set. In turn, this limits the accuracy of the resulting beam steering angle of the antenna array and the suitability of the antenna array for certain applications (e.g., high mobility applications). Increasing the number of antenna elements of the array typically allows greater accuracy of beam steering angle but comes with an increased footprint and cost.
Therefore, an antenna design is needed for variable directivity and variable gain, while minimizing the footprint, cost, and power consumption associated with the antenna design. Embodiments of the present invention generally relate to electronically configurable and controllable antenna elements.
An embodiment of the present invention includes an energy converter transmitter. The transmitter can include the following: a control circuit configured to receive input information and generate amplitude control signals and phase control signals; a multiple input single output (MISO) operator configured to receive the amplitude control signals and the phase control signals and to generate a radio frequency (RF) output signal; and, an antenna element configured to receive and transmit the RF output signal. The transmitter can also include digital and mixed-signal circuitry configured to provide phase control information and output power control information to the control circuit and a power supply configured to control an amount of power provided to the MISO operator. In an embodiment, mixed-signal circuitry can be defined as circuitry that contains both analog and digital circuitry. Examples of mixed-signal circuitry include, but are not limited to, digital-to-analog converter (DAC) circuitry, analog-to-digital converter (ADC) circuitry, pulse width modulators, and phase locked loop (PLL) circuitry.
Another embodiment of the present invention includes a method for a radio frequency (RF) signal transmission. The method includes the following: generating, with a control circuit, amplitude control signals and phase control signals derived from input information; generating, with a multiple input single output (MISO) operator, the RF output signal based on the amplitude control signals and the phase control signals; and, transmitting, with an antenna, the RF output signal. The method can also include providing phase control information and output power control information to the control circuit and controlling, with a power supply, an amount of power provided to the MISO operator. In an embodiment, the MISO operator is an energy converter that can be controlled by the amplitude and phase control signals.
A further embodiment of the present invention includes a multi-element antenna array. The array can include a plurality of signal paths, in which each of the signal paths includes the following: a control circuit configured to receive input information and generate amplitude control signals and phase control signals; a multiple input single output (MISO) operator configured to receive the amplitude control signals and the phase control signals and to generate a radio frequency (RF) output signal; and, an antenna element configured to receive and transmit the RF output signal. The array can also include digital and mixed-signal circuitry configured to provide phase control information and output power control information to the control circuit and a calibration path configured to calibrate the amplitude and phase of the antenna element for each of the signal paths. In an embodiment, the MISO operator for each signal path is an energy converter that can be controlled by the amplitude and phase control signals.
Further embodiments, features, and advantages of the present invention, as well as the structure and operation of the various embodiments of the present invention, are described in detail below with reference to the accompanying drawings. It is noted that the invention is not limited to the specific embodiments described herein. Such embodiments are presented herein for illustrative purposes only. Additional embodiments will be apparent to a person skilled in the relevant art based on the teachings contained herein.
The accompanying drawings, which are incorporated herein and form a part of the specification, illustrate embodiments of the present invention and, together with the description, further serve to explain the principles of the invention and to enable a person skilled in the relevant art to make and use the invention.
Embodiments of the present invention will be described with reference to the accompanying drawings. Generally, the drawing in which an element first appears is typically indicated by the leftmost digit(s) in the corresponding reference number.
1. Energy Converter
The term “energy converter” is used throughout the specification. In an embodiment, an energy converter is an apparatus configured to convert energy from a potential energy (e.g., AC or DC power source) to a radio frequency (RF) signal by controlling a dynamic impedance at a trans-impedance node, thus resulting in a variable dynamic loadline. Examples of energy converters are described in the U.S. patents cross-referenced above, which are incorporated by reference herein in their entireties. For example, as described in at least one of the U.S. patents cross-referenced above, an energy converter based transmitter enables highly linear and efficient generation of desired waveforms over a wide range of output power. This highly linear and efficient energy converter is aided by amplitude and/or phase control mechanisms which can be applied at various stages of an energy converter based transmitter. For example, amplitude and/or phase control can be generated by digital control circuitry (in some embodiments, also referred to herein as a “Vector Synthesis Engine” (VSE)) and applied to multiple input multiple output (MISO) operator circuitry of the energy converter based transmitter. Amplitude and/or phase control signals may in turn be aided by various circuit and system characterization, circuit and/or system calibration and/or feedback (e.g., measurement and correction) mechanisms to ensure high amplitude/phase accuracy at the output of the energy converter.
In an embodiment, the MISO operator may be configured to control the impedance between a potential energy source and RF output circuitry to create a desired RF signal at a desired output power. In an embodiment, the multiple control inputs to the MISO operator may be control paths partitioned to control upper branch and lower branch circuitry. Alternatively, the multiple inputs to the MISO operator may control a single branch with multiple control paths. The control paths that serve as inputs to the MISO operator may be directly or indirectly utilized by the MISO operator to control a complex impedance of a trans-impedance node. Each baseband information input sample to the MISO operator may have a corresponding complex impedance value at the trans-impedance node, according to an embodiment of the present invention. The MISO operator and corresponding MISO circuitry may be considered as applying a mathematical “function” or “operation” such that the impedance at the trans-impedance node can be varied based on the amplitude and phase control signals (e.g., inputs to the MISO operator).
In an embodiment, an energy converter can convert electrical energy of one type to electrical energy of another type. The statistics of an input potential energy to the energy converter can be different from the statistics of output energy from the energy converter, according to an embodiment of the present invention. Accordingly, multiple forms of electrical energy (e.g., AC or DC energy) can be consumed at the input of the energy converter and modulated to produce a desired modulated RF carrier at the output of the energy converter.
The above description of “energy converter” contrasts characteristics of a traditional amplifier. For example, as would be understood by a person skilled in the relevant art, a traditional amplifier is not designed to accept an input that possesses an arbitrary statistic with respect to an output of the amplifier. Rather, traditional amplifiers are typically designed to reproduce the essential statistic of the input including voltage, current, and frequency—at its output with additional power increase due to a power supply of the amplifier that is consumed during the amplification process.
Further, for traditional amplifier designs, the input to the amplifier must possess a carrier frequency consistent with the output of the amplifier and the cross-correlation of the input and output should be as close to 1 as possible or meet minimum output waveform requirements of the amplifier. For example, a traditional amplifier requires a modulated RF carrier signal to be coupled to its input and an amplified version of the input modulated RF carrier signal at the output. This requirement is in addition to accounting for noise and non-linearities in the amplifier design.
2. Beam Steering in a Multi-Element Antenna Array
In this section, beam steering in a multi-element antenna array is described. As an example,
The main beam steering angle (measured relative to a reference Y-axis) of antenna array 100 (which determines the direction of operation of the antenna) is a function of the relative phase shift (which will be denoted as “ΔΦ” herein) between the first and second antenna elements. In
It can be shown that the main beam steering angle of antenna array 100 and the relative phase shift between the first and second antenna elements of antenna array 100 are related by the following equation:
where x is the distance labeled “x” in
From
x=d*sin(ΦS). (2)
Thus, by substitution, the relative phase shift between the first and second antenna elements of antenna array 100 can be written as a function of the main beam steering angle of the array as:
As a numerical example, assume that the RF output frequency of antenna array 100 is 3 GHz (which corresponds to a wavelength (λ)=9.993 cm), that the distance between the first and second antenna elements (d) is 2.5 cm, and that the desired beam steering angle (ΦS) is 45 degrees. Substituting these numerical values into equation (3) above results in a relative phase shift between the first and second antenna elements (ΔΦ) of approximately 63.684 degrees. An antenna array beam 106 that results from this example is illustrated in
3. Conventional Multi-Element Antenna Array
To achieve a desired beam steering angle via multi-element antenna array 400, the relative phase shifts between successive antenna elements 4081-408N must be set appropriately. This includes determining a configuration of relative phase shifts between successive antenna elements 4081-408N, which results in the desired beam steering angle and controlling variable phase shifters 4061-406N for each signal path, as necessary, to achieve the determined configuration.
Conventional multi-element antenna arrays, including conventional MESA arrays, implement variable phase shifters 4061-406N using time delay phase shifters, vector modulators, and digital phase shifters, for example. The dynamic range and resolution of such phase shifters, however, is limited, which limits the accuracy at which a determined configuration of relative phase shifts can be set. In turn, this limits the accuracy of the resulting beam steering angle of the antenna array and the suitability of the antenna array for certain applications (e.g., high mobility applications). Increasing the number of antenna elements of the array typically allows greater accuracy of beam steering angle but comes with an increased footprint, cost, and power consumption.
4. Energy Converter Based Multi-Element Antenna Array
Embodiments of the present invention provide an energy converter based multi-element antenna array, which will be described below. In an embodiment, the multi-element antenna array is electronically steerable.
Accordingly, energy converter based multi-element antenna array embodiments replace, in each signal path, the conventional transmitter, power amplifier, and variable phase shifter (e.g., as used in conventional multi-element transmit antenna array 400 of
In addition, embodiments of the present invention leverage various levels of amplitude and/or phase control mechanisms of the energy converter based transmitter to enable both highly-controllable and highly-accurate beam steering in the multi-element antenna array. Indeed, as described above, amplitude and/or phase in an energy converter based transmitter can be controlled at any given time using one or more of multiple stages of the energy converter based transmitter, according to an embodiment of the present invention.
VSE circuitry 602 receives command and control information via a command and control interface 506. In an embodiment, the command and control information is provided by digital and/or mixed-signal circuitry that may include, for example, a microprocessor, FPGA, state machine, or a combination thereof (not shown in
VSE circuitry 602 uses the received I and Q information, element phase, and element power control information to generate amplitude control signals 610, phase control signals 612 (which are filtered by Interpolation/Anti-Alias Filter circuitry 608) and DCPS control signals 606. VSE circuitry 602 and Interpolation/Anti-Alias Filter circuitry 608 provide amplitude control signals 610 and phase control signals 612 to MISO operator 620, and VSE circuitry provides DCPS control signals 606 to DCPS circuitry 616 to generate the desired RF output waveform at the desired amplitude and phase.
Each of amplitude control signals 610, phase control signals 612, filter signal and control interface signals 604, and DCPS control signals 606 can be used, alone or in various combinations, to control the amplitude and/or phase of the output signal of MISO operator 620. In particular, amplitude control signals 610 and phase control signals 612 control the output of MISO operator 620 by controlling various stages of MISO operator 620. Similarly, filter signal and control interface 604 and DCPS control signals 606 control the amplitude and/or phase of the output signal of MISO operator 620 by, respectively, altering the response of Interpolation/Anti-Alias Filter circuitry 608 and controlling the amount of power provided to MISO operator and output storage networks 620.
Further detailed implementations of the energy converter based transmitter are described in U.S. patent application Ser. No. 11/256,172, filed Oct. 24, 2005, now U.S. Pat. No. 7,184,723, U.S. patent application Ser. No. 11/508,989, filed Aug. 24, 2006, now U.S. Pat. No. 7,355,470, and U.S. patent application Ser. No. 12/236,079, filed Sep. 23, 2008, now U.S. Pat. No. 7,911,272, all of which are incorporated herein by reference in their entireties. As detailed in these U.S. patents, amplitude and/or phase control in the energy converter based transmitter can be applied at any given time using at least one of VSE circuitry 602 (also known as the digital control or transfer function module), Interpolation/Anti-Alias Filter circuitry 608, MISO operator 620 (including the vector modulation and output stage), and DCPS circuitry 616 of the energy converter based transmitter. The accuracy of amplitude and/or phase control may further be aided by various circuit and system characterization, circuit and/or system calibration, and/or feed-forward (e.g., pre-compensation) and/or feedback (e.g., measurement and correction) mechanisms, as described in the above-mentioned U.S. patents.
Together, the various levels of amplitude and/or phase control mechanisms of an energy converter based transmitter can be used, according to embodiments of the present invention, to enable various resolution levels (e.g., accuracy levels) to set the amplitude and/or phase of the energy converter based transmitter. In turn, when the energy converter based transmitter is used in an energy converter based multi-element antenna array, various beam steering (e.g., directivity) accuracy levels can be enabled. For example, depending on the desired beam steering accuracy, one or more of the amplitude/phase control mechanisms in one or more (or in each) energy converter based transmitter of the multi-element antenna array can be used. In addition, by combining multiple control mechanisms, each with a respective control dynamic range, the resulting beam steering accuracy levels include higher accuracy with greater repeatability levels than allowed by using conventional variable phase shifters.
5. MESA-Based Multiple-Input Multiple Output (MIMO) Antenna
Multiple Input Multiple Output (MIMO) antenna operation is often referred to as “spatial multiplexing.” Spatial multiplexing refers to a technique that separates one or more high data rate signals into multiple (and sometimes lower) data rate signals, which are then transmitted over different transmit antennas on the same frequency or channel. If the transmit antennas have reasonably different spatial signatures (e.g., the antennas have different polarizations or exist in different planes), a receiver with the same number of receive antennas can process the multiple data rate signals as parallel channels. As such, spatial multiplexing can greatly increase channel capacity. MIMO operation requires at least two antennas but can employ as many antennas as practice allows can be spatially separated.
As a result of the above described MIMO antenna configuration, desired spatial signal paths can be created between MIMO transmit antenna 702 and MIMO receive antenna 704. For example, three spatially independent signal paths 706A, 706B, and 706C can be created as shown in
As described above, embodiments of the present invention enable a multi-element electronically steerable antenna (MESA) array. The MESA array can be controlled electronically to change its gain, radiation pattern, and/or direction of operation by varying the relative phase shifts and/or amplitudes of the antenna elements of the array. In an embodiment, the MESA array includes at least two antenna elements.
According to an embodiment of the present invention, the MESA array can further be used in a MIMO communication system. As such, in an embodiment, each TX antenna of a MIMO transmit antenna is implemented as one or more MESAs. As a result, each TX antenna can be electronically configured or re-configured for increased and/or optimum performance, according to (or changes in) the environment. For example, the beam width and/or direction of each TX antenna can be electronically changed based on feedback from the MIMO receiver. This can be done, for example, in order to achieve a desired spatial multiplexing, increase the number of MIMO spatial paths, improve the signal to noise ratio of MIMO signals at the receiver, and/or increase spatial isolation between the MIMO spatial paths (e.g., to increase the information data rate or compensate for channel interference).
Thus, embodiments of the present invention enable a MESA-based
MIMO transmit antenna configurable to optimize spatial multiplexing system parameters, as desired. Further, according to embodiments of the present invention, a single MESA array can be configured to operate as a MIMO transmit/receive antenna. For example, in an embodiment, the individual elements of a MESA array can be individually configured so as to create therefrom multiple antennas, in which the multiple antennas are configured to form a MIMO antenna.
6. Example Implementations
Example implementations according to embodiments of the present invention will now be provided. These example implementations are provided for the purpose of illustration only, and thus are not limiting. As further described, these example implementations use an energy converter based transmitter and/or an energy sampling based receiver in their designs to enable a RF power transceiver engine for highly accurate, highly efficient multimode wireless applications. Examples of energy converter based transmitters and energy sampling receivers are described the U.S. patents cross-references above, which are incorporated by reference herein in their entireties. For example, as described in at least one of the U.S. patents cross-referenced above, the energy sampling receiver provides an efficient and highly linear solution for demodulating RF waveforms. An energy sampling based receiver provides high sensitivity, high dynamic range, wide instantaneous bandwidth, and a broad tuning range in a compact implementation.
Baseband processor 802 provides transmit (TX) information to transmit section 804, according to an embodiment of the present invention. The TX information may be in the form of real time in-phase (I) and quadrature (Q) TX waveform data. Additionally, in an embodiment, baseband processor 802 receives receive (RX) information from receive section 806. The RX information may be in the form of real time I and Q waveform data. Additionally, baseband processor 802 may embody the control circuitry, software and/or firmware, and interface(s) found in microprocessor of FPGA processor 808.
Transmit section 804 includes one or more TX signal paths (four in the example of
Receive section 806 includes one or more RX signal paths (four in the example of
Microprocessor/FPGA processor 808 is programmable via a user computer interface 816, tor example, in order to control TX and/or RX sections 804 and 806, respectively, of wireless device 800. According to embodiments of the present invention, microprocessor/FPGA processor 808 can be used to setup, control, calibrate, and test the antenna elements. Microprocessor/FPGA processor 808 may support a graphical user interface, which can be used to download and upload test waveforms and to control individual antenna elements.
Furthermore, microprocessor/FPGA processor 808 receives feedback information from phase and amplitude alignment/calibration receive path 814. In an embodiment, the received feedback information includes information regarding phase alignment and the amplitude or power output of the TX antenna elements.
Phase and amplitude alignment/calibration receive path 814 is used to calibrate the TX antenna elements (e.g., to ensure that the TX antenna elements are operating at a desired phase and power output). In an embodiment, phase and amplitude alignment/calibration receive path 814 includes an antenna (or antenna coupler) 818 and calibration receiver circuitry. The calibration receiver circuitry includes an RF amplifier 820, a frequency down-converter 822, a baseband amplifier 824, interpolation/anti-alias filters 826, and an analog-to-digital (ADC) converter 828. In an embodiment, gain control signal provided by microprocessor/FPGA processor 808 controls the gain of RF amplifier 820.
According to embodiments of the present invention, phase and amplitude alignment/calibration receiver path 814 may include more or less components than shown in
As shown in
A TX LO 914 provides a local oscillator (LO) signal to each MISO operator 9041-9044 as well as to calibration receiver circuitry 910. As a result, a DC signal is generated when a signal transmitted by TX antenna element 9061-9064 is received and down-converted by calibration receiver circuitry 910 using the provided LO signal. When TX antennas 9061-9064 are substantially equidistant to calibration receiver antenna 908, a substantially equal DC signal value is generated for all TX antennas 9061-9064 when TX antennas 9061-9064 are phase calibrated. In other words, TX antennas 9061-9064 can be phase calibrated by ensuring that the substantially same DC signal value (e.g., a pre-determined value) is generated for all TX antennas (in the case that TX antennas 9061-9064 are substantially equidistant to calibration receiver antenna 908 and the same signal is transmitted by TX antennas 9061-9064). In addition to phase calibration, calibration controller 912 and calibration receiver circuitry 910 can be used to calibrate the amplitude or power output of each antenna element.
As would be understood by a person skilled in the relevant art, when TX antennas 9061-9064 are not substantially equidistant to calibration receiver antenna 908, different DC signal values may result for TX antennas 9061-9064. In an embodiment, the generated DC signal value for each TX antenna 9061-9064 is normalized using a respective normalization factor (e.g., determined for each TX antenna 9061-9064 based on its relative location to calibration receiver antenna 908), and the normalized DC signal values are then used to calibrate TX antennas 9061-9064 (e.g., the normalized DC signal values are fixed to the same pre-determined value). Alternatively, in an embodiment, the generated DC signal values are compared against different respective pre-determined DC signal values, where each pre-determined DC signal value is computed a priori for a respective TX antenna 9061-9604 using testing and experimentation. This technique can be used to calibrate both amplitude or power output and phase of each antenna element.
An example of the operation of the phase and amplitude calibration receive path of
Process 1000 begins in step 1002, which includes setting the phase of an antenna element being calibrated to a selected value. In an embodiment, step 1002 is performed using one or more of calibration controller 912, VSE 902, and MISO operator 904 of
Step 1004 includes setting the power output of the antenna element being calibrated to a selected value. In an embodiment, step 1004 is performed using one or more of calibration controller 912, VSE 902, and MISO operator 904 of
Step 1006 includes transmitting an RF carrier signal from the antenna element. The RF carrier signal is transmitted at the selected phase value and the selected power output value. The RF carrier signal can be any RF signal. In an embodiment, step 1006 is performed using one or more of VSE 902, MISO operator 904, and TX antenna element 906 of
Step 1008 includes receiving the transmitted RF carrier signal using the calibration receiver circuitry. Step 1008 is performed by calibration receiver circuitry 910 of
Step 1010 includes comparing an output of the calibration receiver circuitry to a desired value or range of values. In an embodiment, step 1010 is performed by calibration controller 912 of
Step 1012 includes determining whether or not the output of the calibration receiver circuitry is equal to the desired value or within a defined tolerance error from the desired value. If the result of step 1012 is “Yes,” then calibration process 1000 proceeds to step 1014, which ends the calibration process for the antenna element being calibrated. Process 1000 can be repeated for another antenna element, if any. Otherwise, process 1000 proceeds to step 1016, which includes adjusting the phase and/or amplitude of the antenna element. In an embodiment, step 1016 includes adjusting the phase and/or amplitude of the antenna element based on a comparison of the output of the calibration receiver circuitry and the desired value or range of values. The phase and/or amplitude of the antenna element is adjusted so as to bring the output of the calibration receiver circuitry closer to the desired value and within the defined tolerance error from the desired value.
As described above, when all TX antenna elements are substantially equidistant to the calibration receiver antenna or antenna coupling circuity, the TX antenna elements are all calibrated to a substantially similar desired value. However, in the case that the TX antennas are placed in a non-symmetrical layout relative to the calibration receiver antenna, then the TX antenna elements may have to be calibrated to different desired values.
The phase and amplitude calibration techniques described herein can be performed prior to the example implementation operation and/or during the example implementation operation. In an embodiment, the phase and amplitude calibration can occur during a set-up process or procedure, at regular time intervals, or in the event of a measured or observed error (e.g., at a time which does not interfere with normal operation of the transceiver).
In an embodiment, calibrating the sub-sets relative to each other can be done by selecting a single representative TX antenna element from each sub-set, calibrating the selected TX antenna elements using calibration receiver antenna/coupler 908, and then applying the calibration result of each representative TX antenna element to all other antenna elements of its respective sub-set. In an embodiment, this calibration technique may require predictably-characterized offset parameters.
Based on the description herein, a person skilled in the relevant art will recognize that similar phase and amplitude calibration techniques (as described above) can be used to calibrate one or more elements in a receive signal path.
7. Example Systems
Embodiments of the present invention, as described above, are suitable for use in various communication applications including, but not limited to, military communication applications, wireless local area networks (WLAN) applications, cellular phone applications (e.g., in base stations, handsets, etc.), picocell applications, femtocell applications, and automobile applications. In particular, MESA based MIMO antenna embodiments are suitable for use in a Long Term Evolution (LTE) based communication system (which is part of the 4G Enhanced Packet System (EPS) standard), and can be used to optimize the system's data throughput, user capacity, and performance (e.g., signal to noise ratios) in any static or dynamic environment.
Based on the description herein, a person skilled in the relevant art will recognize that other types of base stations can include the transceivers discussed above. The other types of base stations include, but are not limited to, macro base stations (operating in networks that are relatively large), micro base stations (operating in networks that are relatively small), satellite base stations (operating with satellites), cellular base stations (operating in a cellular telephone networks), and data communication base stations (operating as gateways to computer networks).
Advantages of implementing embodiments of the present invention into, for example, the above-noted systems include but are not limited to signal range and quality improvement, increased communication bandwidth, increased capacity, rapid antenna directionality without the use of mechanical movement, and reduction in power consumption. Additional advantages include smaller form factors, enhanced reliability, enhanced repeatability, electronically-controlled antenna gain, beam width, beam shape, beam steering, electronic calibration, and electronic signal acquisition and tracking.
8. Conclusion
It is to be appreciated that the Detailed Description section, and not the
Summary and Abstract sections, is intended to be used to interpret the claims. The Summary and Abstract sections may set forth one or more but not all exemplary embodiments of the present invention as contemplated by the inventors, and thus, are not intended to limit the present invention and the appended claims in any way.
Embodiments of the present invention have been described above with the aid of functional building blocks illustrating the implementation of specified functions and relationships thereof. The boundaries of these functional building blocks have been arbitrarily defined herein for the convenience of the description. Alternate boundaries can be defined so long as the specified functions and relationships thereof are appropriately performed.
The foregoing description of the specific embodiments will so fully reveal the general nature of the invention such that others can, by applying knowledge within the skill of the relevant art, readily modify and/or adapt for various applications such specific embodiments, without undue experimentation, without departing from the general concept of the present invention. Therefore, such adaptations and modifications are intended to be within the meaning and range of equivalents of the disclosed embodiments, based on the teaching and guidance presented herein. It is to be understood that the phraseology or terminology herein is for the purpose of description and not of limitation, such that the terminology or phraseology of the present specification is to be interpreted by the skilled artisan in light of the teachings and guidance.
The breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.
This application claims the benefit of U.S. Provisional Patent Application No. 61/492,576 , filed Jun. 2, 2011, titled “Transmit Antenna Multi-Element Control,” which is incorporated herein by reference in its entirety. The present application is related to U.S. patent application Ser. No. 11/256,172 filed Oct. 24, 2005, now U.S. Pat. No. 7,184,723; U.S. patent application Ser. No. 11/508,989, filed Aug. 24, 2006,now U.S. Pat. No. 7,355,470; U.S. patent application Ser. No. 12/236,079, filed Sep. 23, 2008, now U.S. Pat. No. 7,911,272; U.S. patent application Ser. No. 09/590,955, filed Jul. 25, 2006, now U.S. Pat. No. 7,082,171; U.S. patent application Ser. No. 12/014,461, filed Jan. 15, 2008, now U.S. Pat. No. 7,554,508; and, U.S. patent application Ser. No. 13/442,706, filed Apr. 9, 2012, titled “Systems and Methods of RF Power Transmission, Modulation, and Amplification,” all of which are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
1882119 | Chireix | Oct 1932 | A |
1946308 | Chireix | Feb 1934 | A |
2116667 | Chireix | May 1938 | A |
2210028 | Doherty | Aug 1940 | A |
2220201 | Bliss | Nov 1940 | A |
2269518 | Chireix et al. | Jan 1942 | A |
2282706 | Chireix el al. | May 1942 | A |
2282714 | Fagot | May 1942 | A |
2294800 | Price | Sep 1942 | A |
2508524 | Lang | May 1950 | A |
2529073 | Chireix | Nov 1950 | A |
2555039 | Bissonette | May 1951 | A |
2591749 | Villemagne | Apr 1952 | A |
2670404 | Chireix | Feb 1954 | A |
2677806 | Chireix | May 1954 | A |
2714634 | Hall | Aug 1955 | A |
2734100 | Kendall | Feb 1956 | A |
2857591 | Nagel | Oct 1958 | A |
2890280 | Feyzeau | Jun 1959 | A |
2908753 | Ernyei et al. | Oct 1959 | A |
2938945 | France | May 1960 | A |
2963933 | Bereskin | Dec 1960 | A |
2964622 | Fire | Dec 1960 | A |
2968697 | Rager, Jr. | Jan 1961 | A |
3056017 | Peras | Sep 1962 | A |
3078456 | Alpers | Feb 1963 | A |
3121198 | Potter | Feb 1964 | A |
3154782 | Kagawa et al. | Oct 1964 | A |
3170127 | Cramer | Feb 1965 | A |
3176060 | Bissonette et al. | Mar 1965 | A |
3212008 | Kahn | Oct 1965 | A |
3219862 | Kieffert | Nov 1965 | A |
3263019 | Hurvitz | Jul 1966 | A |
3341697 | Kaufman et al. | Sep 1967 | A |
3413570 | Brume et al. | Nov 1968 | A |
3418595 | Loewenstern, Jr. | Dec 1968 | A |
3436686 | Vackar | Apr 1969 | A |
3437945 | Duncan | Apr 1969 | A |
3458816 | O'Brien | Jul 1969 | A |
3493718 | Kestner et al. | Feb 1970 | A |
3513352 | Souillard | May 1970 | A |
3525941 | Smith | Aug 1970 | A |
3544697 | Munch, Jr. | Dec 1970 | A |
3651429 | Ruthroff | Mar 1972 | A |
3697692 | Hafler | Oct 1972 | A |
3716730 | Cerny, Jr. | Feb 1973 | A |
3777275 | Cox | Dec 1973 | A |
3789314 | Beurrier | Jan 1974 | A |
3815040 | Seidel | Jun 1974 | A |
3852530 | Shen | Dec 1974 | A |
3852669 | Bowman et al. | Dec 1974 | A |
3896395 | Cox | Jul 1975 | A |
3906390 | Rollett | Sep 1975 | A |
3909742 | Cox et al. | Sep 1975 | A |
3927379 | Cox et al. | Dec 1975 | A |
3936819 | Angelle et al. | Feb 1976 | A |
3991343 | Delpy | Nov 1976 | A |
4090147 | Seidel | May 1978 | A |
4095196 | Seidel | Jun 1978 | A |
4104946 | Peterson | Aug 1978 | A |
4151517 | Kelley | Apr 1979 | A |
4178557 | Henry | Dec 1979 | A |
4229715 | Henry | Oct 1980 | A |
4301490 | Nagel et al. | Nov 1981 | A |
4346354 | Hanna | Aug 1982 | A |
4378530 | Garde | Mar 1983 | A |
4433312 | Kahn | Feb 1984 | A |
4439744 | Kumar et al. | Mar 1984 | A |
4441080 | Saari | Apr 1984 | A |
4446440 | Bell | May 1984 | A |
4485357 | Voorman | Nov 1984 | A |
4509017 | Andren et al. | Apr 1985 | A |
4511813 | Pan | Apr 1985 | A |
4580111 | Swanson | Apr 1986 | A |
4584541 | Nossen | Apr 1986 | A |
4605902 | Harrington | Aug 1986 | A |
4628286 | Nossen | Dec 1986 | A |
4682119 | Michel | Jul 1987 | A |
4682149 | Larson | Jul 1987 | A |
4686448 | Jones et al. | Aug 1987 | A |
4687999 | Desperben et al. | Aug 1987 | A |
4701716 | Poole | Oct 1987 | A |
4717894 | Edwards et al. | Jan 1988 | A |
4743858 | Everard | May 1988 | A |
4780803 | Dede Garcia-Santamaria | Oct 1988 | A |
4816783 | Leitch | Mar 1989 | A |
4817116 | Akaiwa et al. | Mar 1989 | A |
4873492 | Myer | Oct 1989 | A |
4951303 | Larson | Aug 1990 | A |
4974236 | Gurcan et al. | Nov 1990 | A |
4995055 | Weinberger et al. | Feb 1991 | A |
5005419 | O'Donnell et al. | Apr 1991 | A |
5012200 | Meinzer | Apr 1991 | A |
5017888 | Meinzer | May 1991 | A |
5077539 | Howatt | Dec 1991 | A |
5081673 | Engelke et al. | Jan 1992 | A |
5093636 | Higgins, Jr. et al. | Mar 1992 | A |
5115203 | Krett et al. | May 1992 | A |
5124665 | McGann | Jun 1992 | A |
5164678 | Puri et al. | Nov 1992 | A |
5214670 | Ballatore | May 1993 | A |
5229735 | Quan | Jul 1993 | A |
5239275 | Leitch | Aug 1993 | A |
5239686 | Downey | Aug 1993 | A |
5264807 | Okubo et al. | Nov 1993 | A |
5287069 | Okubo et al. | Feb 1994 | A |
5302914 | Arntz et al. | Apr 1994 | A |
5304943 | Koontz | Apr 1994 | A |
5307069 | Evans | Apr 1994 | A |
5345189 | Hornak et al. | Sep 1994 | A |
5351288 | Engelke et al. | Sep 1994 | A |
5365187 | Hornak et al. | Nov 1994 | A |
5365190 | Yu et al. | Nov 1994 | A |
5404114 | Sager | Apr 1995 | A |
5410280 | Linguet et al. | Apr 1995 | A |
5420541 | Upton et al. | May 1995 | A |
5426641 | Afrashteh et al. | Jun 1995 | A |
5432473 | Mattila et al. | Jul 1995 | A |
5438591 | Oie et al. | Aug 1995 | A |
5485120 | Anvari | Jan 1996 | A |
5490172 | Komara | Feb 1996 | A |
5495500 | Jovanovich et al. | Feb 1996 | A |
5508657 | Behan | Apr 1996 | A |
5515068 | Uragami et al. | May 1996 | A |
5530722 | Dent | Jun 1996 | A |
5541554 | Stengel et al. | Jul 1996 | A |
5554865 | Larson | Sep 1996 | A |
5559471 | Black | Sep 1996 | A |
5568088 | Dent et al. | Oct 1996 | A |
5574967 | Dent et al. | Nov 1996 | A |
5574992 | Cygan et al. | Nov 1996 | A |
5612651 | Chethik | Mar 1997 | A |
5621351 | Puri et al. | Apr 1997 | A |
5631604 | Dent et al. | May 1997 | A |
RE35536 | Irissou et al. | Jun 1997 | E |
5638024 | Dent et al. | Jun 1997 | A |
5694433 | Dent | Dec 1997 | A |
5697074 | Makikallio et al. | Dec 1997 | A |
5710520 | Frey | Jan 1998 | A |
5719527 | Bateman et al. | Feb 1998 | A |
5724005 | Chen et al. | Mar 1998 | A |
5739723 | Sigmon et al. | Apr 1998 | A |
5757229 | Mitzlaff | May 1998 | A |
5764704 | Shenoi | Jun 1998 | A |
5767750 | Yamaji | Jun 1998 | A |
5770971 | McNicol | Jun 1998 | A |
5784412 | Ichihara | Jul 1998 | A |
5784689 | Kobayashi | Jul 1998 | A |
5786727 | Sigmon | Jul 1998 | A |
5792956 | Li | Aug 1998 | A |
5805640 | O'Dea et al. | Sep 1998 | A |
5815531 | Dent | Sep 1998 | A |
5835128 | Macdonald et al. | Nov 1998 | A |
5841876 | Gifford et al. | Nov 1998 | A |
5854571 | Pinckley et al. | Dec 1998 | A |
5862460 | Rich | Jan 1999 | A |
5872481 | Sevic et al. | Feb 1999 | A |
5877643 | Drogi | Mar 1999 | A |
5880633 | Leizerovich et al. | Mar 1999 | A |
5886573 | Kolanek | Mar 1999 | A |
5886575 | Long | Mar 1999 | A |
5890051 | Schlang et al. | Mar 1999 | A |
5892394 | Wu | Apr 1999 | A |
5892395 | Stengel et al. | Apr 1999 | A |
5901346 | Stengel et al. | May 1999 | A |
5903854 | Abe et al. | May 1999 | A |
5933766 | Dent | Aug 1999 | A |
5949283 | Proctor et al. | Sep 1999 | A |
5952947 | Nussbaum et al. | Sep 1999 | A |
5956097 | Nguyen et al. | Sep 1999 | A |
5963091 | Chen et al. | Oct 1999 | A |
5973559 | Alberty | Oct 1999 | A |
5973568 | Shapiro et al. | Oct 1999 | A |
5974041 | Kornfeld et al. | Oct 1999 | A |
5990734 | Wright et al. | Nov 1999 | A |
5990738 | Wright et al. | Nov 1999 | A |
5999046 | Kotzamanis | Dec 1999 | A |
6011830 | Sasin et al. | Jan 2000 | A |
6026286 | Long | Feb 2000 | A |
6028485 | Sigmon et al. | Feb 2000 | A |
6043707 | Budnik | Mar 2000 | A |
6054894 | Wright et al. | Apr 2000 | A |
6054896 | Wright et al. | Apr 2000 | A |
6057798 | Burrier et al. | May 2000 | A |
6069525 | Sevic et al. | May 2000 | A |
6085074 | Cygan | Jul 2000 | A |
6097252 | Sigmon et al. | Aug 2000 | A |
6104991 | Newland et al. | Aug 2000 | A |
6111461 | Matsuno | Aug 2000 | A |
6111462 | Mucenieks et al. | Aug 2000 | A |
6125266 | Matero et al. | Sep 2000 | A |
6130910 | Anderson et al. | Oct 2000 | A |
6130916 | Thomson | Oct 2000 | A |
6133788 | Dent | Oct 2000 | A |
6133789 | Braithwaite | Oct 2000 | A |
6137355 | Sevic et al. | Oct 2000 | A |
6147553 | Kolanek | Nov 2000 | A |
6154093 | Chen et al. | Nov 2000 | A |
6157253 | Sigmon et al. | Dec 2000 | A |
6169455 | Yamaguchi | Jan 2001 | B1 |
6175747 | Tanishima et al. | Jan 2001 | B1 |
6181199 | Camp, Jr. et al. | Jan 2001 | B1 |
6188277 | Borodulin et al. | Feb 2001 | B1 |
6198416 | Velazquez | Mar 2001 | B1 |
6201452 | Dent et al. | Mar 2001 | B1 |
6204735 | Cairns | Mar 2001 | B1 |
6215354 | Kolanek et al. | Apr 2001 | B1 |
6232838 | Sugimoto | May 2001 | B1 |
6236688 | Ohta et al. | May 2001 | B1 |
6242975 | Eidson et al. | Jun 2001 | B1 |
6246286 | Persson | Jun 2001 | B1 |
6246599 | Jang et al. | Jun 2001 | B1 |
6252461 | Raab | Jun 2001 | B1 |
6256482 | Raab | Jul 2001 | B1 |
6259320 | Valk et al. | Jul 2001 | B1 |
6285251 | Dent et al. | Sep 2001 | B1 |
6292054 | Ma et al. | Sep 2001 | B1 |
6295442 | Camp, Jr. et al. | Sep 2001 | B1 |
6300828 | McInnis | Oct 2001 | B1 |
6304545 | Armbruster et al. | Oct 2001 | B1 |
6307894 | Eidson et al. | Oct 2001 | B2 |
6311045 | Domokos | Oct 2001 | B1 |
6311046 | Dent | Oct 2001 | B1 |
6313703 | Wright et al. | Nov 2001 | B1 |
6337599 | Lee | Jan 2002 | B2 |
6342812 | Abdollahian et al. | Jan 2002 | B1 |
6349216 | Alberth, Jr. et al. | Feb 2002 | B1 |
6359506 | Camp, Jr. et al. | Mar 2002 | B1 |
6359508 | Mucenieks | Mar 2002 | B1 |
6359513 | Kuo et al. | Mar 2002 | B1 |
6366177 | McCune et al. | Apr 2002 | B1 |
6369651 | Dent | Apr 2002 | B1 |
6373901 | O'Dea et al. | Apr 2002 | B1 |
6373902 | Park et al. | Apr 2002 | B1 |
6374092 | Leizerovich et al. | Apr 2002 | B1 |
6380802 | Pehike et al. | Apr 2002 | B1 |
6384680 | Takei et al. | May 2002 | B1 |
6384681 | Bonds | May 2002 | B1 |
6385439 | Hellberg | May 2002 | B1 |
6388513 | Wright et al. | May 2002 | B1 |
6392483 | Suzuki et al. | May 2002 | B2 |
6396341 | Pehlke | May 2002 | B1 |
6396347 | Lie et al. | May 2002 | B1 |
6404823 | Grange et al. | Jun 2002 | B1 |
6407635 | Mucenieks et al. | Jun 2002 | B2 |
6411655 | Holden et al. | Jun 2002 | B1 |
6421389 | Jett et al. | Jul 2002 | B1 |
6424216 | Mu et al. | Jul 2002 | B2 |
6434122 | Barabash et al. | Aug 2002 | B2 |
6437644 | Kenington | Aug 2002 | B1 |
6449465 | Gailus et al. | Sep 2002 | B1 |
6452446 | Eisenberg et al. | Sep 2002 | B1 |
6459334 | Wright et al. | Oct 2002 | B2 |
6459337 | Goren et al. | Oct 2002 | B1 |
6462617 | Kim | Oct 2002 | B1 |
6469581 | Kobayashi | Oct 2002 | B1 |
6470431 | Nicosia et al. | Oct 2002 | B2 |
6472934 | Pehlke | Oct 2002 | B1 |
6472937 | Gerard et al. | Oct 2002 | B1 |
6476670 | Wright et al. | Nov 2002 | B1 |
6496062 | Nitz et al. | Dec 2002 | B1 |
6501331 | Adar | Dec 2002 | B2 |
6504428 | Cova et al. | Jan 2003 | B2 |
6504447 | Laney et al. | Jan 2003 | B1 |
6507731 | Hasegawa | Jan 2003 | B1 |
6510309 | Thompson et al. | Jan 2003 | B1 |
6510310 | Muralidharan | Jan 2003 | B1 |
6522194 | Pehlke | Feb 2003 | B1 |
6522198 | Ahn | Feb 2003 | B2 |
6522201 | Hsiao et al. | Feb 2003 | B1 |
6525605 | Hu et al. | Feb 2003 | B2 |
6529773 | Dewan | Mar 2003 | B1 |
6531935 | Russat et al. | Mar 2003 | B1 |
6535060 | Goren et al. | Mar 2003 | B2 |
6538509 | Ren | Mar 2003 | B2 |
6538793 | Rosenberg et al. | Mar 2003 | B2 |
6545535 | Andre | Apr 2003 | B2 |
6552634 | Raab | Apr 2003 | B1 |
6566944 | Pehlke et al. | May 2003 | B1 |
6577199 | Dent | Jun 2003 | B2 |
6577691 | Richards et al. | Jun 2003 | B2 |
6583679 | Cox et al. | Jun 2003 | B1 |
6583739 | Kenington | Jun 2003 | B1 |
6586995 | Tachibana | Jul 2003 | B1 |
6587010 | Wagh et al. | Jul 2003 | B2 |
6587511 | Barak et al. | Jul 2003 | B2 |
6587514 | Wright et al. | Jul 2003 | B1 |
6587913 | Campanale et al. | Jul 2003 | B2 |
6593806 | Melanson | Jul 2003 | B1 |
6600368 | Kim | Jul 2003 | B2 |
6603352 | Wight | Aug 2003 | B2 |
6606483 | Baker et al. | Aug 2003 | B1 |
6614854 | Chow et al. | Sep 2003 | B1 |
6622198 | Jones, Jr. | Sep 2003 | B2 |
6624694 | Ma et al. | Sep 2003 | B2 |
6633200 | Kolanek | Oct 2003 | B2 |
6636112 | McCune | Oct 2003 | B1 |
6637030 | Klein | Oct 2003 | B1 |
6646505 | Anderson | Nov 2003 | B2 |
6647073 | Tapio | Nov 2003 | B2 |
6653896 | Sevic et al. | Nov 2003 | B2 |
6672167 | Buell et al. | Jan 2004 | B2 |
6674326 | Hiramoto et al. | Jan 2004 | B1 |
6678041 | Kimura et al. | Jan 2004 | B2 |
6681101 | Eidson et al. | Jan 2004 | B1 |
6683918 | Jackson et al. | Jan 2004 | B2 |
6690232 | Ueno et al. | Feb 2004 | B2 |
6690233 | Sander | Feb 2004 | B2 |
6697436 | Wright et al. | Feb 2004 | B1 |
6697603 | Lovinggood et al. | Feb 2004 | B1 |
6700440 | Hareyama | Mar 2004 | B2 |
6700441 | Zhang et al. | Mar 2004 | B1 |
6700453 | Heiskala et al. | Mar 2004 | B2 |
6701419 | Tomaiuolo et al. | Mar 2004 | B2 |
6707338 | Kenington et al. | Mar 2004 | B2 |
6714776 | Birleson | Mar 2004 | B1 |
6724252 | Ngo et al. | Apr 2004 | B2 |
6735424 | Larson et al. | May 2004 | B1 |
6737914 | Gu | May 2004 | B2 |
6737916 | Luu | May 2004 | B2 |
6741840 | Nagode et al. | May 2004 | B2 |
6741867 | Tetsuya | May 2004 | B1 |
6750707 | Takei et al. | Jun 2004 | B2 |
6751265 | Schell et al. | Jun 2004 | B1 |
6765519 | Karlquist | Jul 2004 | B2 |
6781534 | Karlquist | Aug 2004 | B2 |
6784732 | Hajimiri et al. | Aug 2004 | B2 |
6784837 | Revankar et al. | Aug 2004 | B2 |
6785342 | Isaksen et al. | Aug 2004 | B1 |
6791408 | Goren et al. | Sep 2004 | B2 |
6791410 | Kim et al. | Sep 2004 | B2 |
6794934 | Betti-Berutto et al. | Sep 2004 | B2 |
6794938 | Weldon | Sep 2004 | B2 |
6798843 | Wright et al. | Sep 2004 | B1 |
6801086 | Chandrasekaran | Oct 2004 | B1 |
6801567 | Schmidl et al. | Oct 2004 | B1 |
6806767 | Dow | Oct 2004 | B2 |
6806789 | Bawell et al. | Oct 2004 | B2 |
6819171 | Kenington | Nov 2004 | B2 |
6819176 | Lee | Nov 2004 | B1 |
6819720 | Willetts | Nov 2004 | B1 |
6825719 | Barak et al. | Nov 2004 | B1 |
6829471 | White et al. | Dec 2004 | B2 |
6831491 | Karlquist | Dec 2004 | B2 |
6834183 | Black et al. | Dec 2004 | B2 |
6836183 | Wight | Dec 2004 | B2 |
6838942 | Somerville et al. | Jan 2005 | B1 |
6842070 | Nilsson | Jan 2005 | B2 |
6847266 | Laney et al. | Jan 2005 | B2 |
6853244 | Robinson et al. | Feb 2005 | B2 |
6853247 | Weldon | Feb 2005 | B2 |
6853248 | Weldon | Feb 2005 | B2 |
6859098 | Husseini | Feb 2005 | B2 |
6864742 | Kobayashi | Mar 2005 | B2 |
6867647 | Wouters | Mar 2005 | B2 |
6873211 | Thompson et al. | Mar 2005 | B1 |
6879209 | Grundlingh | Apr 2005 | B2 |
6882217 | Mueller | Apr 2005 | B1 |
6882711 | Nicol | Apr 2005 | B1 |
6882829 | Mostov et al. | Apr 2005 | B2 |
6889034 | Dent | May 2005 | B1 |
6891432 | Nagle et al. | May 2005 | B2 |
6900694 | Suzuki et al. | May 2005 | B2 |
6906585 | Weldon | Jun 2005 | B2 |
6914487 | Doyle et al. | Jul 2005 | B1 |
6917244 | Rosnell et al. | Jul 2005 | B2 |
6917389 | Lee | Jul 2005 | B2 |
6924699 | Ahmed | Aug 2005 | B2 |
6928272 | Doi | Aug 2005 | B2 |
6930547 | Chandrasekaran et al. | Aug 2005 | B2 |
6937096 | Wight et al. | Aug 2005 | B2 |
6937102 | Lopez et al. | Aug 2005 | B2 |
6940349 | Hellberg | Sep 2005 | B2 |
6943624 | Ohnishi et al. | Sep 2005 | B2 |
6947713 | Checoury et al. | Sep 2005 | B2 |
6960956 | Pehlke et al. | Nov 2005 | B2 |
6970040 | Dening | Nov 2005 | B1 |
6975177 | Varis et al. | Dec 2005 | B2 |
6980780 | Chen et al. | Dec 2005 | B2 |
6987954 | Nielsen | Jan 2006 | B2 |
6990323 | Prikhodko et al. | Jan 2006 | B2 |
6993301 | Kenington et al. | Jan 2006 | B1 |
7010276 | Sander et al. | Mar 2006 | B2 |
7015752 | Saed | Mar 2006 | B2 |
7023272 | Hung et al. | Apr 2006 | B2 |
7026871 | Saèd | Apr 2006 | B2 |
7030714 | Korol | Apr 2006 | B2 |
7031382 | Hessel et al. | Apr 2006 | B2 |
7034613 | Saèd | Apr 2006 | B2 |
7035607 | Lim et al. | Apr 2006 | B2 |
7042283 | Suzuki et al. | May 2006 | B2 |
7042286 | Meade et al. | May 2006 | B2 |
7043208 | Nigra | May 2006 | B2 |
7043213 | Robinson et al. | May 2006 | B2 |
7054296 | Sorrells et al. | May 2006 | B1 |
7054597 | Rosnell | May 2006 | B2 |
7057461 | Canilao et al. | Jun 2006 | B1 |
7064607 | Maclean et al. | Jun 2006 | B2 |
7068099 | Versteegen | Jun 2006 | B2 |
7068101 | Saèd et al. | Jun 2006 | B2 |
7068103 | Lind | Jun 2006 | B2 |
7071774 | Hellberg | Jul 2006 | B2 |
7071777 | McBeath et al. | Jul 2006 | B2 |
7078976 | Blednov | Jul 2006 | B2 |
7081795 | Matsuura et al. | Jul 2006 | B2 |
7084702 | Ichitsubo et al. | Aug 2006 | B1 |
7088970 | Williams | Aug 2006 | B2 |
7091775 | Ichitsubo et al. | Aug 2006 | B2 |
7091777 | Lynch | Aug 2006 | B2 |
7092675 | Lim et al. | Aug 2006 | B2 |
7092676 | Abdelgany et al. | Aug 2006 | B2 |
7099382 | Aronson et al. | Aug 2006 | B2 |
7103328 | Zelley | Sep 2006 | B2 |
7139535 | Zschunke | Nov 2006 | B2 |
7145397 | Yamamoto et al. | Dec 2006 | B2 |
7173980 | Masenten et al. | Feb 2007 | B2 |
7177418 | Maclean et al. | Feb 2007 | B2 |
7184723 | Sorrells et al. | Feb 2007 | B2 |
7193459 | Epperson et al. | Mar 2007 | B1 |
7197284 | Brandt et al. | Mar 2007 | B2 |
7200369 | Kim et al. | Apr 2007 | B2 |
7230996 | Matsuura et al. | Jun 2007 | B2 |
7242245 | Burns et al. | Jul 2007 | B2 |
7260368 | Blumer | Aug 2007 | B1 |
7260369 | Feher | Aug 2007 | B2 |
7292189 | Orr et al. | Nov 2007 | B2 |
7327803 | Sorrells et al. | Feb 2008 | B2 |
7345534 | Grebennikov | Mar 2008 | B2 |
7349673 | Moloudi et al. | Mar 2008 | B2 |
7355470 | Sorrells et al. | Apr 2008 | B2 |
7378902 | Sorrells et al. | May 2008 | B2 |
7403579 | Jaffe et al. | Jul 2008 | B2 |
7414469 | Sorrells et al. | Aug 2008 | B2 |
7421036 | Sorrells et al. | Sep 2008 | B2 |
7423477 | Sorrells et al. | Sep 2008 | B2 |
7428230 | Park | Sep 2008 | B2 |
7440733 | Maslennikov et al. | Oct 2008 | B2 |
7459893 | Jacobs | Dec 2008 | B2 |
7460612 | Eliezer et al. | Dec 2008 | B2 |
7466760 | Sorrells et al. | Dec 2008 | B2 |
7474695 | Liu et al. | Jan 2009 | B2 |
7486894 | Aronson et al. | Feb 2009 | B2 |
7502599 | Ben-Ayun et al. | Mar 2009 | B2 |
7509102 | Rofougaran et al. | Mar 2009 | B2 |
7526261 | Sorrells et al. | Apr 2009 | B2 |
7560984 | Akizuki et al. | Jul 2009 | B2 |
7620129 | Sorrells et al. | Nov 2009 | B2 |
7639072 | Sorrells et al. | Dec 2009 | B2 |
7647030 | Sorrells et al. | Jan 2010 | B2 |
7672648 | Groe et al. | Mar 2010 | B1 |
7672650 | Sorrells et al. | Mar 2010 | B2 |
7738853 | Eddy et al. | Jun 2010 | B2 |
7750733 | Sorrells et al. | Jul 2010 | B2 |
RE41582 | Larson et al. | Aug 2010 | E |
7778320 | Agazzi et al. | Aug 2010 | B2 |
7835709 | Sorrells et al. | Nov 2010 | B2 |
7844235 | Sorrells et al. | Nov 2010 | B2 |
7885682 | Sorrells et al. | Feb 2011 | B2 |
7907671 | Klomsdorf et al. | Mar 2011 | B2 |
7911272 | Sorrells et al. | Mar 2011 | B2 |
7929989 | Sorrells et al. | Apr 2011 | B2 |
7932776 | Sorrells et al. | Apr 2011 | B2 |
7937106 | Sorrells et al. | May 2011 | B2 |
7945224 | Sorrells et al. | May 2011 | B2 |
7949365 | Sorrells et al. | May 2011 | B2 |
7978390 | Kikuchi | Jul 2011 | B2 |
8013675 | Sorrells et al. | Sep 2011 | B2 |
8026764 | Sorrells et al. | Sep 2011 | B2 |
8031804 | Sorrells et al. | Oct 2011 | B2 |
8036306 | Sorrells et al. | Oct 2011 | B2 |
8050353 | Sorrells et al. | Nov 2011 | B2 |
8059749 | Sorrells et al. | Nov 2011 | B2 |
8073078 | Kaczman et al. | Dec 2011 | B2 |
8170081 | Forenza et al. | May 2012 | B2 |
8233858 | Sorrells et al. | Jul 2012 | B2 |
8280321 | Sorrells et al. | Oct 2012 | B2 |
8315336 | Sorrells et al. | Nov 2012 | B2 |
8334722 | Sorrells et al. | Dec 2012 | B2 |
8351870 | Sorrells et al. | Jan 2013 | B2 |
8355466 | Kleider et al. | Jan 2013 | B2 |
8369807 | Mikhemar et al. | Feb 2013 | B2 |
8384484 | Winslow | Feb 2013 | B2 |
8406711 | Sorrells et al. | Mar 2013 | B2 |
8410849 | Sorrells et al. | Apr 2013 | B2 |
8428527 | Sorrells et al. | Apr 2013 | B2 |
8433264 | Sorrells et al. | Apr 2013 | B2 |
8447248 | Sorrells et al. | May 2013 | B2 |
8461924 | Rawlins et al. | Jun 2013 | B2 |
8502600 | Rawlins et al. | Aug 2013 | B2 |
8548093 | Sorrells et al. | Oct 2013 | B2 |
8577313 | Sorrells et al. | Nov 2013 | B2 |
8626093 | Sorrells et al. | Jan 2014 | B2 |
8639196 | Sorrells et al. | Jan 2014 | B2 |
20010001008 | Dent | May 2001 | A1 |
20010004373 | Hirata | Jun 2001 | A1 |
20010006354 | Lee | Jul 2001 | A1 |
20010006359 | Suzuki et al. | Jul 2001 | A1 |
20010030581 | Dent | Oct 2001 | A1 |
20010052816 | Ahn | Dec 2001 | A1 |
20020008577 | Cova et al. | Jan 2002 | A1 |
20020027958 | Kolanek | Mar 2002 | A1 |
20020042253 | Dartois | Apr 2002 | A1 |
20020047745 | Kolanek | Apr 2002 | A1 |
20020053973 | Ward, Jr. | May 2002 | A1 |
20020058486 | Persson | May 2002 | A1 |
20020071497 | Bengtsson et al. | Jun 2002 | A1 |
20020079962 | Sander | Jun 2002 | A1 |
20020084845 | Eisenberg et al. | Jul 2002 | A1 |
20020094034 | Moriyama | Jul 2002 | A1 |
20020101907 | Dent et al. | Aug 2002 | A1 |
20020105378 | Tapio | Aug 2002 | A1 |
20020105384 | Dent | Aug 2002 | A1 |
20020125947 | Ren | Sep 2002 | A1 |
20020126769 | Jett et al. | Sep 2002 | A1 |
20020127986 | White et al. | Sep 2002 | A1 |
20020130716 | Larson et al. | Sep 2002 | A1 |
20020130727 | Nagasaka | Sep 2002 | A1 |
20020130729 | Larson et al. | Sep 2002 | A1 |
20020136275 | Wight | Sep 2002 | A1 |
20020136325 | Pehlke et al. | Sep 2002 | A1 |
20020146996 | Bachman, II et al. | Oct 2002 | A1 |
20020153950 | Kusunoki et al. | Oct 2002 | A1 |
20020159532 | Wight | Oct 2002 | A1 |
20020164965 | Chominski et al. | Nov 2002 | A1 |
20020168025 | Schwent et al. | Nov 2002 | A1 |
20020171478 | Wouters | Nov 2002 | A1 |
20020171485 | Cova | Nov 2002 | A1 |
20020172376 | Bizjak | Nov 2002 | A1 |
20020180547 | Staszewski et al. | Dec 2002 | A1 |
20020183021 | Brandt | Dec 2002 | A1 |
20020186079 | Kobayashi | Dec 2002 | A1 |
20020191638 | Wang et al. | Dec 2002 | A1 |
20020196864 | Booth et al. | Dec 2002 | A1 |
20030006845 | Lopez et al. | Jan 2003 | A1 |
20030031268 | Wight | Feb 2003 | A1 |
20030041667 | White | Mar 2003 | A1 |
20030083026 | Liu | May 2003 | A1 |
20030087625 | Conti | May 2003 | A1 |
20030098753 | Wagh et al. | May 2003 | A1 |
20030102910 | Sevic et al. | Jun 2003 | A1 |
20030102914 | Kenington et al. | Jun 2003 | A1 |
20030107435 | Gu | Jun 2003 | A1 |
20030114124 | Higuchi | Jun 2003 | A1 |
20030118121 | Makinen | Jun 2003 | A1 |
20030119526 | Edge | Jun 2003 | A1 |
20030123566 | Hasson | Jul 2003 | A1 |
20030125065 | Barak et al. | Jul 2003 | A1 |
20030132800 | Kenington | Jul 2003 | A1 |
20030179041 | Weldon | Sep 2003 | A1 |
20030190895 | Mostov et al. | Oct 2003 | A1 |
20030201835 | Dening et al. | Oct 2003 | A1 |
20030210096 | Pengelly et al. | Nov 2003 | A1 |
20030210746 | Asbeck et al. | Nov 2003 | A1 |
20030219067 | Birkett et al. | Nov 2003 | A1 |
20030220086 | Birkett | Nov 2003 | A1 |
20030228856 | Orihashi et al. | Dec 2003 | A1 |
20030231057 | Hiramoto et al. | Dec 2003 | A1 |
20040008081 | Friedel et al. | Jan 2004 | A1 |
20040021517 | Irvine et al. | Feb 2004 | A1 |
20040025104 | Amer | Feb 2004 | A1 |
20040027198 | Chandrasekaran et al. | Feb 2004 | A1 |
20040037363 | Norsworthy et al. | Feb 2004 | A1 |
20040046524 | Zschunke | Mar 2004 | A1 |
20040052312 | Matero | Mar 2004 | A1 |
20040056723 | Gotou | Mar 2004 | A1 |
20040062397 | Amer | Apr 2004 | A1 |
20040075492 | Wight | Apr 2004 | A1 |
20040076238 | Parker et al. | Apr 2004 | A1 |
20040085134 | Griffith et al. | May 2004 | A1 |
20040092281 | Burchfiel | May 2004 | A1 |
20040095192 | Krvavac | May 2004 | A1 |
20040101065 | Hagh et al. | May 2004 | A1 |
20040108896 | Midtgaard | Jun 2004 | A1 |
20040113698 | Kim et al. | Jun 2004 | A1 |
20040119514 | Karlquist | Jun 2004 | A1 |
20040119622 | Karlquist | Jun 2004 | A1 |
20040119624 | Karlquist | Jun 2004 | A1 |
20040125006 | Tani et al. | Jul 2004 | A1 |
20040131131 | Peach et al. | Jul 2004 | A1 |
20040135630 | Hellberg | Jul 2004 | A1 |
20040142667 | Lochhead et al. | Jul 2004 | A1 |
20040146116 | Kang et al. | Jul 2004 | A1 |
20040166813 | Mann et al. | Aug 2004 | A1 |
20040169559 | Weldon | Sep 2004 | A1 |
20040174213 | Thompson | Sep 2004 | A1 |
20040181745 | Amer | Sep 2004 | A1 |
20040184559 | Ballantyne | Sep 2004 | A1 |
20040185805 | Kim et al. | Sep 2004 | A1 |
20040189380 | Myer et al. | Sep 2004 | A1 |
20040189381 | Louis | Sep 2004 | A1 |
20040196899 | Zhou et al. | Oct 2004 | A1 |
20040198263 | Ode et al. | Oct 2004 | A1 |
20040222851 | Weldon | Nov 2004 | A1 |
20040224715 | Rosenlof et al. | Nov 2004 | A1 |
20040227570 | Jackson et al. | Nov 2004 | A1 |
20040233599 | Busking | Nov 2004 | A1 |
20040246060 | Varis et al. | Dec 2004 | A1 |
20040251962 | Rosnell et al. | Dec 2004 | A1 |
20040263242 | Hellberg | Dec 2004 | A1 |
20040263245 | Winter et al. | Dec 2004 | A1 |
20040263246 | Robinson et al. | Dec 2004 | A1 |
20040266059 | Wight et al. | Dec 2004 | A1 |
20040266365 | Hasson et al. | Dec 2004 | A1 |
20040266368 | Rosnell | Dec 2004 | A1 |
20040266374 | Saed et al. | Dec 2004 | A1 |
20050001674 | Saed et al. | Jan 2005 | A1 |
20050001675 | Saed | Jan 2005 | A1 |
20050001676 | Saed | Jan 2005 | A1 |
20050001677 | Saed | Jan 2005 | A1 |
20050001678 | Saed | Jan 2005 | A1 |
20050001679 | Saed | Jan 2005 | A1 |
20050002470 | Saed et al. | Jan 2005 | A1 |
20050003770 | Saed | Jan 2005 | A1 |
20050007194 | Grundlingh | Jan 2005 | A1 |
20050012547 | Kwon et al. | Jan 2005 | A1 |
20050018787 | Saed | Jan 2005 | A1 |
20050024262 | Cantrell et al. | Feb 2005 | A1 |
20050025181 | Nazari | Feb 2005 | A1 |
20050047038 | Nakajima et al. | Mar 2005 | A1 |
20050058059 | Amer | Mar 2005 | A1 |
20050058193 | Saed | Mar 2005 | A1 |
20050058209 | Magrath | Mar 2005 | A1 |
20050058227 | Birkett et al. | Mar 2005 | A1 |
20050058228 | Birkett | Mar 2005 | A1 |
20050073360 | Johnson et al. | Apr 2005 | A1 |
20050073374 | Korol | Apr 2005 | A1 |
20050088226 | Robinson et al. | Apr 2005 | A1 |
20050110590 | Korol | May 2005 | A1 |
20050111574 | Muller et al. | May 2005 | A1 |
20050118973 | Khlat | Jun 2005 | A1 |
20050129140 | Robinson | Jun 2005 | A1 |
20050129141 | Lee | Jun 2005 | A1 |
20050136864 | Zipper | Jun 2005 | A1 |
20050181746 | Wight | Aug 2005 | A1 |
20050191976 | Shakeshaft et al. | Sep 2005 | A1 |
20050195031 | Grundlingh | Sep 2005 | A1 |
20050201483 | Coersmeier | Sep 2005 | A1 |
20050215206 | Granstrom et al. | Sep 2005 | A1 |
20050227646 | Yamazaki et al. | Oct 2005 | A1 |
20050242879 | Muller | Nov 2005 | A1 |
20050253652 | Song et al. | Nov 2005 | A1 |
20050253745 | Song et al. | Nov 2005 | A1 |
20050260956 | Loraine et al. | Nov 2005 | A1 |
20060006946 | Burns et al. | Jan 2006 | A1 |
20060017500 | Hellberg | Jan 2006 | A1 |
20060035618 | Pleasant | Feb 2006 | A1 |
20060052068 | Sander et al. | Mar 2006 | A1 |
20060052124 | Pottenger et al. | Mar 2006 | A1 |
20060055458 | Shiikuma et al. | Mar 2006 | A1 |
20060066396 | Brandt | Mar 2006 | A1 |
20060068707 | Greeley | Mar 2006 | A1 |
20060088081 | Withington et al. | Apr 2006 | A1 |
20060160502 | Kintis | Jul 2006 | A1 |
20060220625 | Chapuis | Oct 2006 | A1 |
20060238245 | Carichner et al. | Oct 2006 | A1 |
20060262889 | Kalvaitis et al. | Nov 2006 | A1 |
20060264190 | Aleiner | Nov 2006 | A1 |
20060291589 | Eliezer et al. | Dec 2006 | A1 |
20060292999 | Sorrells et al. | Dec 2006 | A1 |
20060293000 | Sorrells et al. | Dec 2006 | A1 |
20070019757 | Matero | Jan 2007 | A1 |
20070021080 | Kuriyama et al. | Jan 2007 | A1 |
20070030063 | Izumi et al. | Feb 2007 | A1 |
20070071114 | Sanderford et al. | Mar 2007 | A1 |
20070076814 | Ikeda et al. | Apr 2007 | A1 |
20070082630 | Aridas et al. | Apr 2007 | A1 |
20070087708 | Sorrells et al. | Apr 2007 | A1 |
20070087709 | Sorrells et al. | Apr 2007 | A1 |
20070090874 | Sorrells et al. | Apr 2007 | A1 |
20070096806 | Sorrells et al. | May 2007 | A1 |
20070111686 | Lee | May 2007 | A1 |
20070127563 | Wu et al. | Jun 2007 | A1 |
20070155344 | Wiessner et al. | Jul 2007 | A1 |
20070184790 | Gilberton et al. | Aug 2007 | A1 |
20070190952 | Waheed et al. | Aug 2007 | A1 |
20070194986 | Dulmovits, Jr. et al. | Aug 2007 | A1 |
20070218852 | Huynh | Sep 2007 | A1 |
20070247217 | Sorrells et al. | Oct 2007 | A1 |
20070247220 | Sorrells et al. | Oct 2007 | A1 |
20070247221 | Sorrells et al. | Oct 2007 | A1 |
20070248156 | Sorrells et al. | Oct 2007 | A1 |
20070248185 | Sorrells et al. | Oct 2007 | A1 |
20070248186 | Sorrells et al. | Oct 2007 | A1 |
20070249299 | Sorrells et al. | Oct 2007 | A1 |
20070249300 | Sorrells et al. | Oct 2007 | A1 |
20070249301 | Sorrells et al. | Oct 2007 | A1 |
20070249302 | Sorrells et al. | Oct 2007 | A1 |
20070249304 | Snelgrove et al. | Oct 2007 | A1 |
20070291668 | Duan | Dec 2007 | A1 |
20080019459 | Chen et al. | Jan 2008 | A1 |
20080072025 | Staszewski et al. | Mar 2008 | A1 |
20080089252 | Choi | Apr 2008 | A1 |
20080133982 | Rawlins et al. | Jun 2008 | A1 |
20080225929 | Proctor et al. | Sep 2008 | A1 |
20080225935 | Reddy | Sep 2008 | A1 |
20080259846 | Gonikberg et al. | Oct 2008 | A1 |
20080272841 | Sorrells et al. | Nov 2008 | A1 |
20080299913 | Han et al. | Dec 2008 | A1 |
20080311860 | Tanaka et al. | Dec 2008 | A1 |
20090004981 | Eliezer et al. | Jan 2009 | A1 |
20090070568 | Shi et al. | Mar 2009 | A1 |
20090072898 | Sorrells et al. | Mar 2009 | A1 |
20090091384 | Sorrells et al. | Apr 2009 | A1 |
20090134947 | Tarng | May 2009 | A1 |
20090201084 | See et al. | Aug 2009 | A1 |
20090227214 | Georgantas et al. | Sep 2009 | A1 |
20090238249 | van Waasen et al. | Sep 2009 | A1 |
20090262861 | Nielsen | Oct 2009 | A1 |
20090262877 | Shi et al. | Oct 2009 | A1 |
20100103052 | Ying | Apr 2010 | A1 |
20100311353 | Teillet et al. | Dec 2010 | A1 |
20110300885 | Darabi et al. | Dec 2011 | A1 |
20120025624 | Lee et al. | Feb 2012 | A1 |
20120153731 | Kirby et al. | Jun 2012 | A9 |
20120263215 | Peng | Oct 2012 | A1 |
20130038389 | Sorrells et al. | Feb 2013 | A1 |
Number | Date | Country |
---|---|---|
0 011 464 | May 1980 | EP |
0 471 346 | Aug 1990 | EP |
0 630 104 | Dec 1994 | EP |
0 708 546 | Apr 1996 | EP |
0 471 346 | Nov 1996 | EP |
0 639 307 | Dec 1997 | EP |
0 821 304 | Jan 1998 | EP |
0 725 478 | Aug 1998 | EP |
0 892 529 | Jan 1999 | EP |
0 897 213 | Feb 1999 | EP |
0 598 585 | Mar 1999 | EP |
0 630 104 | Aug 2000 | EP |
0 821 304 | Feb 2002 | EP |
1 068 666 | May 2003 | EP |
1 381 154 | Jan 2004 | EP |
0 897 213 | Mar 2004 | EP |
1 487 100 | Dec 2004 | EP |
1 332 550 | Mar 2005 | EP |
1 142 250 | Apr 2005 | EP |
1 521 359 | Apr 2005 | EP |
1 583 228 | Oct 2005 | EP |
2159374 | Nov 1985 | GB |
2 267 402 | Dec 1993 | GB |
54-022749 | Feb 1979 | JP |
60-63517 | Apr 1985 | JP |
1-284106 | Nov 1989 | JP |
2-87708 | Mar 1990 | JP |
3-232307 | Oct 1991 | JP |
4-095409 | Mar 1992 | JP |
4-104604 | Apr 1992 | JP |
5-22046 | Jan 1993 | JP |
5-037263 | Feb 1993 | JP |
6-338728 | Dec 1994 | JP |
H08-163189 | Jun 1996 | JP |
9-018536 | Jan 1997 | JP |
9-074320 | Mar 1997 | JP |
10-70451 | Mar 1998 | JP |
2000-209291 | Jul 2000 | JP |
2000-244261 | Sep 2000 | JP |
2001-136057 | May 2001 | JP |
2001-217659 | Aug 2001 | JP |
2001-308650 | Nov 2001 | JP |
2002-543729 | Dec 2002 | JP |
2003-298357 | Oct 2003 | JP |
2003-298361 | Oct 2003 | JP |
2004-260707 | Sep 2004 | JP |
2005-101940 | Apr 2005 | JP |
102824 | Nov 1991 | RO |
100466 | Aug 1992 | RO |
1322183 | Jul 1987 | SU |
WO 9421035 | Sep 1994 | WO |
WO 9610310 | Apr 1996 | WO |
WO 9619063 | Jun 1996 | WO |
WO 9741642 | Nov 1997 | WO |
WO 9748219 | Dec 1997 | WO |
WO 9923755 | May 1999 | WO |
WO 9952206 | Oct 1999 | WO |
WO 0041371 | Jul 2000 | WO |
WO 0067370 | Nov 2000 | WO |
WO 0103292 | Jan 2001 | WO |
WO 0145205 | Jun 2001 | WO |
WO 0191282 | Nov 2001 | WO |
WO 0239577 | May 2002 | WO |
WO 02082633 | Oct 2002 | WO |
WO 03047093 | Jun 2003 | WO |
WO 03061115 | Jul 2003 | WO |
WO 2004023647 | Mar 2004 | WO |
WO 2004036736 | Apr 2004 | WO |
WO 2004057755 | Jul 2004 | WO |
WO 2005031966 | Apr 2005 | WO |
WO 2005036732 | Apr 2005 | WO |
2005-151543 | Jun 2005 | WO |
WO 2005055413 | Jun 2005 | WO |
Entry |
---|
“The Ampliphase AM transmission system,” ABU Technical Review, No. 33, p. 10-18 (Jul. 1974). |
“Designing an SSB Outphaser,” Electronics World, pp. 306-310 (Apr. 1996). |
“New 50 KW Ampliphase AM Transmitter,” RCA in Broadcast News, No. 111, pp. 36-39 (Jun. 1961). |
***The Ampliphase Page***; Ampliphase—A quick description . . . , Reproduction of text from http://rossrevenge.co.uk/tx/ampli.htm, 13 pages (visited Jan. 18, 2006). |
Ajluni, C., “Chip Set Withstands WLAN's Future Blows,” at http://www.wsdmag.com/Articles/Print.cfm?ArticleID=6792, 5 pages (Oct. 2003). |
Ampen-Darko, S. and Al-Raweshidy, H.S., “Gain/phase imbalance cancellation technique in LINC transmitters,” Electronics Letters, vol. 34, No. 22, pp. 2093-2094 (Oct. 29, 1988). |
Ampen-Darko, S.O. And Al-Raweshidy, H.S., “A Novel Technique for Gain/Phase Cancellation in LINC Transmitters,” IEEE VTS—50th Vehicular Technology Conference, Amsterdam, pp. 2034-2038 (Sep. 19-22, 1999). |
Andreani, P., Linear PA architectures (Chapter 13), available at http://server.oersted.dtu.dk/personal/31636/pdf/paLin.pdf, 10 pages (Jun. 14, 2007). |
Ariyavisitakul, S. and Lie, T.P., “Characterizing the Effects of Nonlinear Amplifiers on Linear Modulation for Digital Portable Radio Communications,” IEEE Transactions on Vehicular Technology, vol. 39, No. 4, pp. 383-389 (Nov. 1990). |
ARMMS—The RF and Microwave Society—Last Meeting, at http://www.armms.org/last.html, 4 pages (printed Apr. 14, 2005). |
Asbeck, P.M. et al., “Power Amplifier Approaches for High Efficiency and Linearity,” in Itoh, T. et al. (eds.), RF Technologies for Low Power Wireless Communications, ISBN No. 0-471-38267-1, pp. 189-227 (2001). |
Asbeck, P.M. et al., “Synergistic Design of DSP and Power Amplifiers for Wireless Communications,” IEEE Transactions on Microwave Theory and Techniques, vol. 49, No. 11, pp. 2163-2169 (Nov. 2001). |
Banelli, P., “Error Sensitivity in Adaptive Predistortion Systems,” Global Telecommunications Conference—Globecom '99, pp. 883-888 (1999). |
Bateman, A., et al., “The Application of Digital Signal Processing to Transmitter Linearisation,” EUROCON 88: 8th European Conference on Electrotechnics, pp. 64-67 (Jun. 13-17, 1988). |
Bespalov, V.B. and Aslamazyan, A.S., “Broadband Strip-Line SHF Ampliphasemeter,” Measurement Techniques (Translated from Russian), vol. 25, No. 8, pp. 712-715 (Aug. 1982). |
Birafane, A. and Kouki, A., “An Analytical Approach to LINC Power Combining Efficiency Estimation and Optimization,” 33rd European Microwave Conference—Munich, pp. 1227-1229 (2003). |
Birafane, A. and Kouki, A., “Distortion Free LINC Amplifier with Chireix-Outphasing Combiner Using Phase-Only Predistortion,” 34th European Microwave Conference—Amsterdam, pp. 1069-1072 (2004). |
Birafane, A. and Kouki, A., “On the Linearity and Efficiency of Outphasing Microwave Amplifiers,” IEEE Transactions on Microwave Theory and Techniques, vol. 52, No. 7, pp. 1702-1708 (Jul. 2004). |
Birafane, A. and Kouki, A., “Sources of Linearity Degradation in LINC Transmitters for Hybrid and Outphasing Combiners,” Canadian Conference on Electrical and Computer Engineering—Niagara Falls, pp. 547-550 (May 2004). |
Birafane, A. and Kouki, A.B., “Phase-Only Predistortion for LINC Amplifiers With Chireix-Outphasing Combiners,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, No. 6, pp. 2240-2250 (Jun. 2005). |
Breed, G., “Intermodulation Distortion Performance and Measurement Issues,” High Frequency Electronics, p. 56(2) (May 2003). |
Bruckmann, H., “Modulation Arrangements and Operating Costs of Broadcasting and Radio-Telephony Transmitters,” Telegraphen-Fernsprech-Funk-und Fernsehtechnik, vol. 24, pp. 83-91 (Apr. 1935). |
Burnill, J., “Transmitting AM,” Electronics World + Wireless World, pp. 58-60 (Jan. 1995). |
Casadevall, F. and Olmos, J.J., “On the Behavior of the LINC Transmitter,” 40th IEEE Vehicular Technology Conference, pp. 29-34 (May 6-9, 1990). |
Casadevall, F.J. and Valdovinos, A., “Performance Analysis of QAM Modulations Applied to the LINC Transmitter,” IEEE Transactions on Vehicular Technology, vol. 42, No. 4, pp. 399-406 (Nov. 1993). |
Casadevall, F.J., “The LINC Transmitter”, RF Design, pp. 41-48 (Feb. 1990). |
Cha, J. et al., “Highly Efficient Power Amplifier for CDMA Base Stations Using Doherty Configuration,” IEEE MTT-S International Microwave Symposium Digest, pp. 533-536 (2004). |
Chan, K.Y. et al., “Analysis and Realisation of the LINC Transmitter using the Combined Analogue Locked Loop Universal Modulator (CALLUM),”IEEE 44th Vehicular Technology Conference, vol. 1, pp. 484-488 (Jun. 8-10, 1994). |
Chan, J.-T. et al., “The Optimal RLS Parameter Tracking Algorithm for a Power Amplifier Feedforward Linearizer,” IEEE Transactions on Circuits and Systems—II: Analog and Digital Signal Processing, vol. 46, No. 4, pp. 464-468 (Apr. 1999). |
Chireix, H., “High Power Outphasing Modulation” Proceedings of the Institute of Radio Engineers, vol. 23, No. 11, pp. 1370-1392 (Nov. 1935). |
Choi, L.U., Multi-user MISO and MIMO Transmit Signal Processing for Wireless Communication, PhD Thesis submitted to the Hong Kong University of Science and Technology, 191 pages, Mar. 2003. |
Clark, G., “A Comparison of AM Techniques,” ABU Technical Review, No. 44, p. 33-42, (May 1976). |
Clark, G., “A Comparison of Current Broadcast Amplitude Modulation Techniques”, IEEE Transactions on Broadcasting, vol. BC-21, No. 2, pp. 25-31 (Jun. 1975). |
Clifton, J.C. et al., “Novel Multimode J-pHEMT Front-End Architecture With Power-Control Scheme for Maximum Effciency,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, No. 6, pp. 2251-2258 (Jun. 2005). |
Colantonio, P., “High Linearity and Efficiency Microwave PAs,” 12th GAAS Symposium—Amsterdam, pp. 183-186 (2004). |
Computational Science Research Center Colloquium—Time Reversal Bases Communications in Complex Environments, Friday, Apr. 9, 2004, 2 pages, printed Jul. 14, 2006 from http://www.sdsunivers.info/info—content—event.asp?id=15044. |
Conradi, C.P. et al., “Evaluation of a Lossless Combiner in a LINC Transmitter,” Proceedings of the 1999 IEEE Canadian Conference on Electrical Computer Engineering, pp. 105-110 (May 9-12, 1999). |
Couch, L. and Walker, J.L., “A VHF LINC Amplifier,”Proceedings of the IEEE Southeastcon, pp. 122-125 (1982). |
Course #08: Advanced RF Power Amplifier Techniques for Modern Wireless and Microwave Systems, from http://www.cei.se/008.htm, 6 pages (printed Apr. 14, 2005). |
Course #114: Advanced RF Power Amplifier Techniques, from http://www.bessercourse.com/outlinesOnly.asp?CTID=114, 3 pages (printed Jun. 22, 2005). |
Cox, “Component Signal Separation and Recombination for Linear Amplification with Nonlinear Components,” IEEE Transactions on Communications, vol. COM-23, No. 11, pp. 1281-1287 (Nov. 1975). |
Cox, D.C. and Leck, R.P., “A VHF Implementation of a LINC Amplifier,” IEEE Transactions on Communications, vol. COM-22, pp. 1942-1945 (Dec. 1974). |
Cox, D.C., “Linear Amplification with Nonlinear Components,” IEEE Transactions on Communications, vol. COM-22, pp. 1942-1945 (Dec. 1974). |
Cripps, S.C., Advanced Techniques in RF Power Amplifier Design, Section 2—“Doherty and Chireix,” pp. 33-72, Artech House (2002). |
Cripps, Steve C., PA Linearisation in RFICs . . . ignoring the obvious?, available at http://www.cei.se/pa—milan.ppt, Hywave Associates, 24 pages (Created Aug. 2, 2001). |
Cripps, Steve C., RF Power Amplifiers for Wireless Communications, Artech House, ISBN No. 0890069891, pp. 240-250 (Apr. 1999). |
Deltimple, N. et al., “A Reconfigurable RF Power Amplifier Biasing Scheme”, Proceedings of the 2nd Annual IEEE Northeast Workshop on Circuits and Systems (NEWCAS2004), pp. 365-368, (Jun. 20-23, 2004). |
Dennis, A., “A Novel Digital Transmitter Architecture for Multimode/Multiband Applications: DTX, A Technology of MACOM,” Tyco Electronics, 32 pages (Aug. 17, 2004). |
Dinis, R. et al., “Performance Trade-Offs with Quasi-Linearly Amplified OFDM Through a Two-Branch Combining Technique,” IEEE 46th Vehicular Technology Conference, pp. 899-903 (Apr. 28-May 1, 1996). |
Ellinger, F. et al., “Calibratable Adaptive Antenna Combiner at 5.2 GHz with High Yield for Laptop Interface Card,” IEEE Transactions on Microwave Theory and Techniques, vol. 48, No. 12, pp. 2714-2720 (Dec. 2000). |
Faust, H.H. et al., “A Spectrally Clean Transmitting System for Solid-State Phased-Array Radars,” Proceedings of the 2004 IEEE Radar Conference, pp. 140-144 (Apr. 26-Apr. 29, 2004). |
Fisher, S.T., “A New Method of Amplifying with High Efficiency a Carrier Wave Modulated in Amplitude by a Voice Wave,” Proceedings of the Institute of Radio Engineers, vol. 34, pp. 3-13P (Jan. 1946). |
Garcia, P. et al., “An Adaptive Digital Method of Imbalances Cancellation in LINC Transmitters,” IEEE Transactions on Vehicular Technology, vol. 54, No. 3, pp. 879-888 (May 2005). |
Gaudernack. L.F., “A Phase-Opposition System of Amplitude Modulation,” IRE Proceedings, vol. 26, No. 8, pp. 983-1008 (Aug. 1938). |
Gentzler, C.G. and Leong, S.K., “Broadband VHF/UHF Amplifier Design Using Coaxial Transformers,” High Frequency Electronics, pp. 42, 44, 46, 48, 50, and 51 (May 2003). |
Gerhard, W. and Knöchel, R., “Digital Component Separator for future W-CDMA-LINC Transmitters implemented on an FPGA,” Advances in Radio Science, 3, pp. 239-246 (2005). |
Gründlingh, J. et al., “A High Efficiency Chireix Out-phasing Power Amplifier for 5GHz WLAN Applications,” IEEE MTT-S International Microwave Symposium Digest, vol. 3, pp. 1535-1538 (2004). |
Hakala, I. et al., “A 2.14-GHz Chireix Outphasing Transmitter,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, No. 6, pp. 2129-2138 (Jun. 2005). |
Hakala, I. et al., “Chireix Power Combining with Saturated Class-B Power Amplifiers,” Conference Proceedings, 34th European Microwave Conference, pp. 379-382 (2004). |
Hamedi-Hagh, S. and Salama, A.T., “CMOS Wireless Phase-Shifted Transmitter,” IEEE Journal of Solid-State Circuits, vol. 39, No. 8, pp. 1241-1252 (Aug. 2004). |
Hammond, R. and Henry, J., “High Power Vector Summation Switching Power Amplifier Development,” IEEE Power Electronics Specialists Conference (PESC), pp. 267-272 (Jun. 29-Jul. 3, 1981). |
Heiden, D., “Principle of a phase constant and low distortion amplitude modulation system for transistor transmitters,” Nachrichtentechnische Zeitschrift, vol. 23, No. 12, pp. 608-612 (Dec. 1970). |
Hetzel, S.A. et al.,“LINC Transmitter,” Electronics Letters, vol. 27, No. 10, pp. 844-846 (May 9, 1991). |
Internet Postings at “Class E-AM Forum” :: View topic—What exactly is class D?, at http://classe.monkeypuppet.com/viewtopic.php?t=220, 6 pages (Dec. 14-17, 2003). |
Iwamoto, M. et al.,“An Extended Doherty Amplifier with High Effiency Over a Wide Power Range,” IEEE Transactions on Microwave Theory and Techniques, vol. 49, No. 12, pp. 24722-2479 (Dec. 2001). |
Jeong, Y.-C., Linearizing Principles on High Power Amplifier, Chonbuk National University School of Electronics & Information Engineering, 41 pages (Oct. 26, 2004). |
Karn, P., Re: [amsat-bb] AO-40 Satellite RF Architecture Question, at http://www.uk/amsat.org/ListArchives/amsat-bb/2002/msg01409.html, 2 pages (Feb. 25, 2002). |
Katz, A., Linearization: Reducing Distortion in Power Amplifiers, The College of New Jersey, 52 pages (Apr. 16, 2004). |
Kaunisto, R., “A Vector-Locked Loop for Power Amplifier Linearization,” IEEE MTT-S International Microwave Symposium Digest, 4 pages, (Jun. 6-11, 2004). |
Kelly, W.M. et al., “Vector Modulator, Output Amplifier, and Multiplier Chain Assemblies for a Vector Signal Generator,” Hewlett-Packard Journal, vol. 38, No. 11, pp. 48-52 (Dec. 1987). |
Kenington, P.B. et al., “Broadband Linearisation of High-Efficiency Power Amplifiers,” Proceedings of the Third International Mobile Satellite Conference, pp. 59-64 (1993). |
Kim, I. et al., “The linearity and efficiency enhancement using 3-way Doherty amplifier with uneven power drive,” International Technical Conference on Circuits/Systems, Computers and Communications, Jeju, Korea, pp. 369-370 (Jul. 2005). |
Kim, J. et al., “Optimum Operation of Asymmetrical-Cells-Based Linear Doherty Pwer Amplifiers—Uneven Power Drive and Power Matching,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, No. 5, pp. 1802-1809 (May 2005). |
Kosugi, H. et al., “A High-Efficiency Linear Power Amplifier Using an Envelope Feedback Method,” Electronics and Communications in Japan, Part 2, vol. 77, No. 3, pp. 50-57 (1994). |
Kurzrok, R., “Simple Lab-Built Test Accessories for RF, IF, Baseband and Audio,” High Frequency Electronics, pp. 60 and 62-64 (May 2003). |
Langridge, R. et al., “A Power Re-Use Technique for Improved Efficiency of Outphasing Microwave Power Amplifiers,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, No. 8, pp. 1467-1470 (Aug. 1999). |
Li, C. et al., “Optimal IDM-MISO Transmit Strategy with Partial CSI at Transmitter,” 6 pages, downloaded Jun. 2006 from http://www288.pair.com/ciss/ciss/numbered/36.pdf. |
Love, D.J. et al., “Grassmannian Beamforming for Multiple-Input Multiple-Output Wireless Systems,” pp. 1-29, downloaded Jun. 2006 from http://www.math.ucdavis.edu/˜strohmer/papers/2003/grassbeam.ps.gz, Jun. 3, 2003. |
Lyles, J.T.M., [Amps] Amplifuzz [TSPA], at http://lists.contesting.com/pipermail/amps/2005-January/042303.html, 2 pages (Jan. 28, 2005). |
Manuals and Schematics, at http://www.lks.net/˜radio/Pages/manuals.htm, 8 pages (last update Aug. 23, 2005). |
Masse, D., “Advanced Techniques in RF Power Amplifier Design,” Microwave Journal (International Edition), vol. 45, Issue 9, p. 216 (Sep. 2002). |
Masse, D., “Design of Linear RF Outphasing Power Amplifiers,” Microwave Journal (International Edition), vol. 47, Issue 7, p. 152 (Jul. 2004). |
McCune, E., “High-Efficiency, Multi-Mode Multi-Band Terminal Power Amplifiers,” IEEE Microwave Magazine, vol. 6, No. 1, pp. 44-55 (Mar. 2005). |
McPherson, D.S. et al., “A 28 GHz HBT Vector Modulator and Its Application to an LMCS Feedforward Power Amplifier,” 28th European Microwave Conference—Amsterdam, vol. 1, pp. 523-528 (1998). |
Mead Education: Information Registration: RF Transceivers and Power Amplifiers, at http://www.mead.ch/htm/ch/bios—texte/RF-PA—05—text.html, 3 pages (printed Sep. 1, 2005). |
Morais, D.H. and Feher, K., “NLA-QAM: A Method for Generating High-Power QAM signals Through Nonlinear Amplifications,” IEEE Transactions on Communications, vol. COM-30, No. 3, pp. 517-522 (Mar. 1982). |
Moustakas, A.L. and Simon, S.H., “Optimizing multiple-input single-output (MISO) communications systems with general Gaussian channels; nontrivial convariance and nonzero mean,” IEEE Trans. on Information Theory, vol. 49, Issue 10, pp. 2270-2780, Oct. 2003. |
Musson, D.R., “Ampliphase . . . for Economical Super-Power AM Transmitters”, Broadcast News, vol. No. 119, pp. 24-29 (Feb. 1964). |
Norris, G.B. et al., “A Fully Monolithic 4-18 GHZ Digital Vector Modulator,” IEEE MTT-S International Microwave Symposium Diges , pp. 789-792 (1990). |
Olson, S.A. and Stengel, R.E., “LINC Imbalance Correction using Baseband Preconditioning,” Proceedings IEEE Radio Wireless Conference, pp. 179-182 (Aug. 1-4, 1999). |
Pereyra, L. A., “Modulation techniques for radiodiffusion transmitters,” Revista Telegrafica Electronica, vol. 67, No. 801, pp. 1132-1138 and 1148 (Oct. 1979). |
Pigeon, M., “A CBC Engineering Report: Montreal Antenna Replacement Project,” Broadcast Technology, vol. 15, No. 4, pp. 25-27 (Jan. 1990). |
Poitau, G. et al., “Experimental Characterization of LINC Outphasing Combiners' Efficiency and Linearity,” Proceedings IEEE Radio and Wireless Conference, pp. 87-90 (2004). |
Price, T.H., “The Circuit Development of the Ampliphase Broadcasting Transmitter,” The Proceedings of the Intsitution of Electrical Engineers, vol. 101, pp. 391-399 (1954). |
Qiu, R.C. et al., “Time Reversal with MISO for Ultra-Wideband Communications: Experimental Results (invited paper),” 4 pages, downloaded Jun. 2006 from http://iweb.tntech.edu/rqiu/paper/conference/RWS06Qiu—TH2B1.pdf. |
Raab, F.H. et al., “Power Amplifiers and Transmitters for RF and Microwave,” IEEE Transactions on Microwave Theory and Techniques, vol. 50, No. 3, pp. 814-826 (Mar. 2002). |
Raab, F.H. et al., “RF and Microwave Power Amplifier and Transmitter Technologies—Part 1,” High Frequency Electronics, pp. 22, 24, 26, 28, 29, 30, 32, 34, and 36 (May 2003). |
Raab, F.H. et al., “RF and Microwave Power Amplifier and Transmitter Technologies—Part 3,” High Frequency Electronics, pp. 34, 36, 38, 40, 42-44, 46, and 48 (2003). |
Raab, F.H. et al., “RF and Microwave Power Amplifier and Transmitter Technologies—Part 5,” High Frequency Electronics, pp. 46, 48-50, 52, and 54 (2004). |
Raab, F.H., “Efficiency of Doherty RF-Power Amplifier Systems,” IEEE Transactions on Broadcasting, vol. BC-33, No. 3, pp. 77-83 (Sep. 1987). |
Raab, F.H., “Efficiency of Outphasing RF Power-Amplifier Systems,” IEEE Transactions on Communications, vol. COM-33, No. 10, pp. 1094-1099 (Oct. 1985). |
Rabjohn, G. and Wight, J., “Improving Efficiency, Output Power with 802.11a Out-Phasing PAs,” at http://www.us.design-reuse.com/articles/article6937.html, 8 pages (Jan. 9, 2004). |
Rustako, A.J. and Yeh, Y.S., “A Wide-Band Phase-Feedback Inverse-Sine Phase Modulator with Application Toward a LINC Amplifier,” IEEE Transactions on Communications, vol. COM-24, No. 10, pp. 1139-1143 (Oct. 1976). |
Saleh, A.A.M. and Cox, D.C., “Improving the Power-Added Efficiency of FET Amplifiers Operating with Varying-Envelope Signals,” IEEE Transactions on Microwave Theory and Techniques, vol. 31, No. 1, pp. 51-56 (Jan. 1983). |
Saraga, W., “A new version of the out-phasing (quadrature-modulation) method for frequency translation (SSB generation and detection),” Transmission Aspects of Communications Networks, pp. 131-134 (1964). |
Shi, B. and Sundström, L., “A 200-MHz IF BiCMOS Signal Component Separator for Linear LINC Transmitters,” IEEE Journal of Solid-State Circuits, vol. 35, No. 7, pp. 987-993 (Jul. 2000). |
Shi, B. and Sundström, L., “A Voltage-Translinear Based CMOS Signal Component Separator Chip for Linear LINC Transmitters,” Analog Integrated Circuits and Signal Processing, 30, pp. 31-39 (2002). |
Shi, B. and Sundström, L., “Investigation of a Highly Efficient LINC Amplifier Topology,” Proceedings IEEE 45th Vehicular Technology Conference, vol. 2, pp. 1215-129 (Oct. 7-11, 2001). |
Shin, B. et al., “Linear Power Amplifier based on 3-Way Doherty Amplifier with Predistorter,” IEEE MTT-S International Microwave Symposium Digest, pp. 2027-2030 (2004). |
Simon, M. and Weigel, R., “A Low Noise Vector Modulator with integrated Basebandfilter in 120 nm CMOS Technology,” 2003 IEEE Radio Frequency Integrated Circuits Symposium, pp. 409-412 (2003). |
Skarbek, I. “New High-Efficiency 5-KW AM Transmitter ‘Unique Class C Amplifier Operates with 90% Efficiency’,” RCE Broadcast News # 107, pp. 8-13 (Mar. 1960). |
Sokal, N. O., “RF Power Amplifiers, Classes A through S—How they Operate, and When to Use Each,” Electronics Industries Forum of New England, Professional Program Proceedings, Boston, MA, pp. 179-252 (1997). |
Staudinger, J. et al, “High Efficiency CDMA RF Power Amplifier Using Dynamic Envelope Tracking Technique,” IEEE MTT-S International Microwave Symposium Digest, vol. 2, pp. 873-876 (Jun. 11-16, 2000). |
Stengel, B. and Eisenstadt, W.R., “LINC Power Amplifier Combiner Method Efficiency Optimization,” IEEE Transactions on Vehicular Technology, vol. 49, No. 1, pp. 229-234 (Jan. 2000). |
Sundström, L. “Spectral Sensitivity of LINC Transmitters to Quadrature Modulator Misalignments,” IEEE Transactions on Vehicular Technology,vol. 49, No. 4, pp. 1474-1487 (Jul. 2000). |
Sundströ{umlaut over ( )}m, L., “Automatic adjustment of gain and phase imbalances in LINC transmitters,” Electronics Letters, vol. 31, No. 3, pp. 155-156 (Feb. 2, 1995). |
Sundström, L., “Effect of modulation scheme on LINC transmitter power efficiency,” Electronics Letters, vol. 30, No. 20, pp. 1643-1645 (Sep. 29, 1994). |
Sundström, L., “Effects of reconstruction filters and sampling rate for a digital signal component separator on LINC transmitter performance,” Electronic Letters, vol. 31, No. 14, pp. 1124-1125 (Jul. 6, 1995). |
Sundström, L., “The Effect of Quantization in a Digital Signal Component Separator for LINC Transmitters,” IEEE Transactions on Vehicular Technology, vol. 45, No. 2, pp. 346-352 (May 1996). |
Sundström, L., Digital RF Power Amplifier Linearisers Analysis and Design, Department of Applied Electronics, Lund University, pp. i-x and 1-64 (1995). |
Tan, J. S. and Gardner, P., “A LINC Demonstrator Based On Switchable Phase Shifters,” Microwave and Optical Technology Letters, vol. 35, No. 4, pp. 262-264 (Nov. 20, 2002). |
Tchamov, N. T., Power Amplifiers, Tampere University of Technology, Institute of Communications Engineering, RF-ASIC Laboratory, 26 pages (May 17, 2004). |
TDP: RCA BHF-100A, at http://www.transmitter.be/rca-bhf100a.html, 8 pages (printed Jun. 15, 2005). |
The Ampliphase Ancestry, at http://www.rossrevenge.co.uk/tx/ancest.htm, 8 pages, (latest update Aug. 2002). |
Tomisato, S. et al., “Phase Error Free LINC Modulator,” Electronics Letters, vol. 25, No. 9, pp. 576-577 (Apr. 27, 1989). |
Ullah, I., “Exciter Modulator for an Ampliphase Type Broadcast Transmitter,” ABU Technical Review, No. 62, pp. 21-27 (May 1979). |
Ullah, I., “Output Circuit of an Ampliphase Broadcast Transmitter,” ABU Technical Review, No. 63, pp. 17-24 (Jul. 1979). |
Vasyukov, V.V. et al., “The Effect of Channel Phase Asymmetry on Nonlinear Distortions in Modulation by Dephasing,” Radioelectronics and Communications Systems, vol. 28, No. 4, pp. 86-87 (1985). |
Venkataramani, M., Efficiency Improvement of WCDMA Base Station Transmitters using Class-F power amplifiers, Thesis, Virginia Polytechnic Institute, Blacksburg, Virginia, pp. i-xi and 1-55 (Feb. 13, 2004). |
Virmani, B.D., “Phase-to-amplitude modulation,”Wireless World, vol. 61, No. 4, pp. 183-187 (Apr. 1955). |
Wang, F. et al., “Envelope Tracking Power Amplifier with Pre-Distortion Linearization for WLAN 802.11g,” 2004 IEEE MTT-S International Microwave Symposium Digest, vol. 3, pp. 1543-1546 (Jun. 6-11, 2004). |
Whitaker, Jerry C., Power Vacuum Tubes Handbook (Electronics Handbook Series), CRC Publishing, ISBN No. 0849313457, pp. 236-238 (May 1999). |
Wight, J., “Computational microwave circuits arrive,” at http://www.eetimes.com/showArticle.jhtml?article ID=18900752, EE Times, 3 pages (Apr. 12, 2004). |
Wilds, R.B., “An S-Band Two-Phase Demodulator,” pp. 48-53 (Aug. 1958). |
Woo, Y.Y. et al., “SDR Transmitter Based on LINC Amplifier with Bias Control,” IEEE MTT-S International Microwave Symposium Digest, pp. 1703-1706 (2003). |
Ya, S. et al., “A C-Band Monolithic Vector Modulator,” Research & Progress of SSE, vol. 14, No. 4, pp. 302-306 (Nov. 1994). |
Yang, Y. et al., “A Fully Matched N-Way Doherty Amplifier With Optimized Linearity,” IEEE Transactions on Microwave Theory and Techniques, vol. 51, No. 3. pp. 986-993 (Mar. 2003). |
Yang, Y. et al., “A Microwave Doherty Amplifier Employing Envelope Tracking Technique for High Efficiency and Linearity,” IEEE Microwave and Wireless Components Letters, vol. 13, No. 9, pp. 370-372 (Sep. 2003). |
Yang, Y. et al., “Experimental Investigation on Efficiency and Linearity of Microwave Doherty Amplifier,” IEEE, 4 pages (2001). |
Yang, Y. et al., “Optimum Design for Linearity and Efficiency of a Microwave Doherty Amplifier Using a New Load Matching Technique,” Microwave Journal, 8 pages (Dec. 1, 2001). |
Yankin, V. A., “Effect of quantization, amplifier noise and the parameters of the calibration elements on the accuracy of measurement using a six-port microwave ampliphasemeter,” Radioelectronics and Communication Systems, vol. 32, No. 8, pp. 110-112 (1989). |
Yao, J. and Long, S.I., “High Efficiency Switching-Mode Amplifier for Mobile and Base Station Applications,” Final Report Mar. 2002 for MICRO Project 02-044, 4 pages (2002-2003). |
Yao, J. et al., “High Efficiency Switch Mode Amplifiers for Mobile and Base Station Applications,” Final Report 2000-2001 for MICRO Project 00-061, 4 pages (2000-2001). |
Yi, J. et al., “Effect of efficiency optimization on linearity of LINC amplifiers with CDMA signal,” IEEE MTT-S International Microwave Symposium Digest, vol. 2, pp. 1359-1362 (May 2001). |
Zhang, X., An Improved Outphasing Power Amplifier System for Wireless Communications, Dissertation, University of California, San Diego, pp. i-xvii and 1-201 (2001). |
Zhang, X. and Larson, L.E., “Gain and Phase Error-Free LINC Transmitter,” IEEE Transactions on Vehicular Technology, vol. 49, No. 5, pp. 1986-1994 (Sep. 2000). |
Zhang, X. et al. “Gain/Phase Imbalance-Minimization Techniques for LINC Transmitters,” IEEE Transactions on Microwave Theory and Techniques, vol. 49, No. 12, pp. 2507-2516 (Dec. 2001). |
Zhang, X. et al., “A Gain/Phase Imbalance Minimization Technique for LINC Transmitter,” IEEE MTT-S International Microwave Symposium Digest, pp. 801-804 (2001). |
Zhang, X. et al., “Analysis of Power Recycling Techniques for RF and Microwave Outphasing Power Amplifiers,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 49, No. 5, p. 312-320 (May 2002). |
Zhang, X. et al., “Calibration scheme for LINC transmitter,” Electronics Letters, vol. 37, No. 5, pp. 317-318 (Mar. 1, 2001). |
Zhang, X. et al., Design of Linear RF Outphasing Power Amplifiers, entire book, Artech House, ISBN No. 1-58053-374-4 (2003). |
Zhong, S.S. and Cui, J.H., “A New Dual Polarized Aperture-Coupled Printer Array for SAR Applications,” Journal of Shanghai University (English Edition), vol. 5, No. 4, pp. 295-298 (Dec. 2001). |
English Abstract for European Patent Publication No. EP 0 639 307 B1, published Feb. 22, 1995, downloaded from http://v3.espacenet.com, 1 page. |
English Abstract for European Patent Publication No. EP 0 708 546 A2, published Apr. 24, 1996, downloaded from http://v3.espacenet.com, 1 page. |
English Abstract for European Patent Publication No. EP 0 892 529 A2, published Jan. 20, 1999, downloaded from http://v3.espacenet.com, 1 page. |
English Abstract for Japanese Patent Publication No. JP 60-63517 A, published Apr. 11, 1985, downloaded from http://v3.espacenet.com, 1 page. |
English Abstract for Japanese Patent Publication No. JP 2-87708 A, published Feb. 28, 1990, downloaded from http://v3.espacenet.com, 1 page. |
English Abstract for Japanese Patent Publication No. JP 3-232307 A, published Oct. 16, 1991, downloaded from http://v3.espacenet.com, 1 page. |
English Abstract for Japanese Patent Publication No. JP 5-22046 A, published Jan. 29, 1993, downloaded from http://v3.espacenet.com, 1 page. |
English Abstract for Japanese Patent Publication No. JP 6-338728 A, published Dec. 6, 1994, downloaded from http://v3.espacenet.com, 1 page. |
English Abstract for Japanese Patent Publication No. JP 10-70451 A, published Mar. 19, 1998, downloaded from http://v3.espacenet.com, 1 page. |
English Abstract for Japanese Patent Publication No. JP 2001-136057 A, published May 18, 2001, downloaded from http://v3.espacenet.com, 1 page. |
English Abstract for Japanese Patent Publication No. JP 2004-260707 A, published Sep. 16, 2004, downloaded from http://v3.espacenet.com, 1 page. |
English Translation for Romanian Patent Publication No. RO 100466, published Aug. 20, 1992, obtained from Transperfect Translations, 4 pages. |
English Abstract for Romanian Patent Publication No. RO 102824, published Nov. 19, 2001, downloaded from http://v3.espacenet.com, 1 page. |
English Translation for Russian Patent Publication No. SU 1322183 A1, published Jul. 7, 1987, obtained from Transperfect Translations, 2 pages. |
Notification of Transmittal of the International Search Report and Written Opinion, dated Mar. 4, 2008, for PCT Application No. PCT/US07/06197, 8 pages. |
Notification of Transmittal of the International Search Report and Written Opinion, dated Aug. 15, 2008, for PCT Application No. PCT/US08/06360, 6 pages. |
Notification of Transmittal of the International Search Report and Written Opinion, dated Sep. 3, 2008, for PCT Application No. PCT/US2008/008118, 6 pages. |
Notification of Transmittal of the International Search Report and Written Opinion, dated Sep. 8, 2008, for PCT Application No. PCT/US2008/007623, 6 pages. |
Silverman, L. and Del Plato, C., “Vector Modulator Enhances Feedforward Cancellation,” Microwaves & RF, pp. 1-4 (Mar. 1998). |
Notification of Transmittal of the International Search Report and Written Opinion, dated Jul. 7, 2009, for PCT Application No. PCT/US09/03212, 6 pages. |
Jang, M. et al., “Linearity Improvement of Power Amplifiers Using Modulation of Low Frequency IMD Signals,” Asia-Pacific Microwave Conference Proceedings, vol. 2, pp. 1156-1159, Dec. 4-7, 2005. |
Woo, W. et al., “A Hybrid Digital/RF Envelope Predistortion Linearization System for Power Amplifiers,”IEEE Transactions on Microwave Theory and Techniques, vol. 53, No. 1, pp. 229-237, Jan. 2005. |
Notification of Transmittal of the International Search Report and Written Opinion, dated Apr. 27, 2010, for PCT Application No. PCT/US2009/057306, 11 pages. |
English Abstract for Japanese Patent Publication No. JP 2005-151543 A, published Jun. 9, 2005, downloaded from http://v3.espacenet.com, 1 page. |
English Abstract for Japanese Patent Publication No. JP 1-284106 A, published Nov. 15, 1989, downloaded from http://v3.espacenet.com, 1 page. |
English Abstract for Japanese Patent Publication No. JP 4-095409 A, published Mar. 27, 1992, downloaded from http://v3.espacenet.com, 1 page. |
English Abstract for Japanese Patent Publication No. JP 4-104604 A, published Apr. 7, 1992, downloaded from http://v3.espacenet.com, 1 page. |
English Abstract for Japanese Patent Publication No. JP 9-018536 A, published Jan. 17, 1997, downloaded from http://v3.espacenet.com, 1 page. |
English Abstract for Japanese Patent Publication No. JP 9-074320 A, published Mar. 18, 1997, downloaded from http://v3.espacenet.com, 1 page. |
English Abstract for Japanese Patent Publication No. JP 2000-209291 A, published Jul. 28, 2000, downloaded from http://v3.espacenet.com, 1 page. |
English Abstract for Japanese Patent Publication No. JP 2003-298357 A, published Oct. 17, 2003, downloaded from http://v3.espacenet.com, 1 page. |
English Abstract for Japanese Patent Publication No. JP 2000-244261 A, published Sep. 8, 2000, downloaded from http://worldwide.espacenet.com, 1 page. |
English Abstract for Japanese Patent Publication No. JP 2001-217659 A, published Aug. 10, 2001, downloaded from http://worldwide.espacenet.com, 1 page. |
English Abstract for Japanese Patent Publication No. JP 2001-308650 A, published Nov. 2, 2001, downloaded from http://worldwide.espacenet.com, 1 page. |
English Abstract for Japanese Patent Publication No. JP 2002-543729 A, published Dec. 17, 2002, downloaded from http://worldwide.espacenet.com, 1 page. |
English Abstract for Japanese Patent Publication No. JP 5-037263 A, published Feb. 12, 1993, downloaded from http://worldwide.espacenet.com, 1 page. |
English Abstract for Japanese Patent Publication No. JP 2005- 101940 A, published Apr. 14, 2005, downloaded from http://worldwide.espacenet.com, 1 page. |
Notification of Transmittal of the International Search Report and Written Opinion, dated Aug. 14, 2012, for No. PCT/US2012/032791, 7 pages. |
Harlan, G. et al, “Dynamically-Configurable Multimode Transmitter Systems for Wireless Handsets, Cognitive Radio and SDR Applications,” IEEE International Conference on Microwaves, Communications, Antennas and Electronics Systems, Nov. 9, 2009, pp. 1-5. |
Rawlins, G. and Sorrells, D., “A Thermodynamic Theory of RF Power Transmitters with an Example,” IEEE 10th Annual Wireless and Microwave Technology Conference, Apr. 20, 2009, pp. 1-5. |
Rawlins, G. et at., “Using an IQ Data to RF Power Transmitter to Realize a Highly-Efficient Transmit Chain for Current and Next-Generation Mobile Handsets,” Proceedings of the 38th European Microwave Conference, Oct. 27. 2008, pp. 579-582. |
Notification of Transmittal of the International Search Report and Written Opinion, dated Aug. 14, 2012, for PCT Appl. No. PCT/US2012/040500, 9 pages. |
Complaint, filed Dec. 28, 2011, in the United States District Court, District of New Jersey, Maxtak Capital Advisors LLC et al. v. ParkerVision, Inc. et al., Case No. 2:11-cv-07549-CCC-JAD, 63 pages. |
English Abstract for Japanese Patent Publication No. JP H08-163189 A, published Jun. 21, 1996, downloaded from http://worldwide.espacenet.com, 2 pages. |
English Abstract for Japanese Patent Publication No. JP 2003-298361 A, published Oct. 17, 2003, downloaded from http://worldwide.espacenet.com, 2 pages. |
Number | Date | Country | |
---|---|---|---|
20130077708 A1 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
61492576 | Jun 2011 | US |