The present invention relates to an antenna device including a dipole array antenna.
Conventionally, a dipole array antenna that radiates a polarized wave parallel to a signal line is known (see, for example, Patent Literature 1).
Patent Literature 1: JP 2003-168922 A
The dipole array antenna disclosed in Patent Literature 1 is a traveling-wave dipole array antenna in which electric power is distributed to a plurality of dipole elements from a microstrip line by an impedance transformer. In the dipole array antenna disclosed in Patent Literature 1, the dipole elements are arranged on two signal lines, one signal line provided on the front surface of a substrate and other signal line provided on the back surface of the substrate at a corresponding position of the signal line on the front surface.
When the dipole array antenna disclosed in Patent Literature 1 is excited, a polarized wave parallel to the signal line is radiated in a broadside direction. In order to radiate a polarized wave perpendicular to the signal line with such a dipole array antenna, it is necessary to connect the dipole element rotated by 90 degrees to the microstrip line via a bypass line such as a bending structure. With this structure, a transmission loss is increased particularly in a high frequency band.
As described above, the dipole array antenna disclosed in Patent Literature 1 has a problem in that a transmission loss is large when a polarized wave perpendicular to the signal line is radiated as an electromagnetic wave in the broadside direction.
The present invention is intended to solve the above problem, and an object of the present invention is to provide an antenna device capable of efficiently radiating a polarized wave perpendicular to a signal line in the broadside direction.
The antenna device according to the present invention includes: a first ground provided on a first surface and having a strip shape; a plurality of first strip lines provided on the first surface, each of the first strip lines being disposed along a longitudinal direction of the first ground; a plurality of holes provided in the first ground; a signal line provided on a second surface facing opposite to the first surface, the signal line disposed at a position corresponding to the first ground, and through which a high frequency wave propagates; a plurality of branch lines provided on the second surface and branched from the signal line. The strip shape of the first ground is parallel to the signal line. Each of the first strip lines is a strip line extending from the first ground. Each of the holes intersects with a straight line along a corresponding one of the first strip lines. Each of the branch lines is disposed along a longitudinal direction of the first ground with respect to the signal line and intersects with a corresponding one of the holes located on the first surface when viewed transparently from the second surface side.
According to the present invention, the antenna device includes: a first ground having a strip shape, a signal line through which a high frequency wave propagates and the first ground being parallel; a plurality of first strip lines extending from the first ground and a plurality of branch lines branched from the signal line, each of the first strip lines and the branch lines being disposed along a longitudinal direction of the first ground; and a plurality of holes, each of the holes intersecting with a straight line along a corresponding one of the first strip lines and with the branch line at the corresponding position. As a result, a current in the branch portions where the branch lines are branched from the signal line is increased, and the strip lines are supplied with electric power by electromagnetic coupling using the holes. Therefore, the antenna device can efficiently radiate a polarized wave perpendicular to the signal line in the broadside direction.
In order to describe the present invention in more detail, a mode for carrying out the present invention will now be described with reference to the accompanying drawings.
The antenna device 1 shown in
The feed 3 is connected to the signal line 4a. The antenna device 1 is supplied with power from the feed 3. The signal line 4a is a line through which a high frequency power input to the feed 3 propagates, and is also called an electric supply line. The feed 3 shown in
Each of the branch lines 5a to 5d is a line branched from the signal line 4a, and has a shape in which, for example, the leading end of a strip-shaped conductor pattern extending from the signal line 4a is bent toward the feed 3. Further, each of the branch lines 5a to 5d has a length one-fourth the wavelength of the working frequency of the antenna device 1, and operates as an open stub. Each of the slots 6a to 6d is a hole provided along the longitudinal direction of the ground 4b, and has, for example, a rectangular hole shape that is long along the longitudinal direction of the ground 4b. Each of the slots 6a to 6d has a length 0.32 times the wavelength of the working frequency of the antenna device 1, and a width 0.026 times the wavelength of the working frequency of the antenna device 1.
As shown in
As shown in
Next, the operation will be described.
In the following, a case where the antenna device 1 is used as a transmission antenna will be described.
A high frequency power input from an RF connector to the feed 3 propagates through the signal line 4a from the feed 3. The branch lines 5a to 5d branched from the signal line 4a are each an open stub having a length one-fourth the wavelength of the working frequency of the antenna device 1, and the high frequency power propagating through the branch lines 5a to 5d are reflected. Therefore, the current is increased at the branch portions between the signal line 4a and the branch lines 5a to 5d.
Due to an increase in current at the branch portions, the slots 6a to 6d are excited, and further, due to electromagnetic coupling, the strip lines 7a-1 and 7a-2, the strip lines 7b-1 and 7b-2, the strip lines 7c-1 and 7c-2, and the strip lines 7d-1 and 7d-2 are excited to radiate electromagnetic waves into the space. Here, the strip lines 7a-1 and 7a-2, the strip lines 7b-1 and 7b-2, the strip lines 7c-1 and 7c-2, and the strip lines 7d-1 and 7d-2 are arranged in the +x direction, and thus, the electromagnetic wave radiated from the antenna device 1 has a polarized wave (along a y direction) perpendicular to the signal line 4a.
The case where the antenna device 1 is a traveling-wave antenna will be described in detail.
A portion of electric power not radiated from the strip lines 7a-1 and 7a-2 returns back to the feed 3 (in the −x direction) in the signal line 4a as a reflected wave, and the remaining electric power propagates through the signal line 4a in the +x direction. On the other hand, a portion of the electromagnetic waves propagating through the signal line 4a after passing through the branch line 5a excites the slot 6b intersecting with the branch line 5b, and is radiated to the space from the strip lines 7b-1 and 7b-2 by electromagnetic coupling. A portion of the electromagnetic waves not radiated into the space from the strip lines 7b-1 and 7b-2 returns back toward the feed 3 as a reflected wave, and the remaining electromagnetic waves propagate through the signal line 4a in the +x direction.
A portion of the electromagnetic waves propagating through the signal line 4a after passing through the branch line 5b excites the slot 6c intersecting with the branch line 5c, and is radiated to the space from the strip lines 7c-1 and 7c-2 by electromagnetic coupling. A portion of the electromagnetic waves not radiated into the space from the strip lines 7c-1 and 7c-2 returns back toward the feed 3 as a reflected wave, and the remaining electromagnetic waves propagate through the signal line 4a in the +x direction. Similarly, a portion of the electromagnetic waves propagating through the signal line 4a after passing through the branch line 5c excites the slot 6d intersecting with the branch line 5d, and is radiated to the space from the strip lines 7d-1 and 7d-2 by electromagnetic coupling. The remaining electromagnetic waves not radiated into the space from the strip lines 7d-1 and 7d-2 return back toward the feed 3 as reflected waves.
In the antenna device 1, the strip lines 7a-1 and 7a-2, the strip lines 7b-1 and 7b-2, the strip lines 7c-1 and 7c-2, and the strip lines 7d-1 and 7d-2 are supplied with electric power by electromagnetic coupling using the slots 6a to 6d. As a result, the antenna device 1 can efficiently radiate a polarized wave (along the y direction) perpendicular to the signal line 4a in the broadside direction. The case where the antenna device 1 is the transmission antenna has been described above. However, the antenna device 1 may be used as a reception antenna.
The total length of the conventional dipole antenna is generally about a half of the wavelength of the working frequency, and the width of the ground 4b of the antenna device 1 is shorter than the length of the dipole antenna. Thus, the antenna device 1 only needs to have a smaller area of the ground than the conventional dipole antenna. Therefore, when a dielectric substrate formed of a material having high light transmittance is used as the dielectric substrate 2, the antenna device 1 having high transparency can be achieved.
Next, a modification of the antenna device according to the first embodiment will be described.
As shown in
The impedances of the signal line 4a and the branch lines 5a to 5d are transformed by the transformers 8a to 8d and the transformers 9a to 9d. This makes it possible to adjust the amount of electric power to be distributed to the strip lines 7a-1 to 7d-1 and 7a-2 to 7d-2 and perform impedance matching.
Although
The slits 10a to 10d are holes that are partially opened. For example, each of the slits 10a to 10d has a shape in which the end on the side opposite to the feed 3 is opened in the direction along the strip line. Thus, even if partially opened holes are used as described above, excitation is possible, and similar to the antenna device 1, the antenna device 1b can efficiently radiate a polarized wave perpendicular to the signal line 4a in the broadside direction.
The ground 4c is a strip-shaped first ground provided on the back surface of the dielectric substrate 2 at a position corresponding to the position of the signal line 4a on the front surface. The length of the ground 4c in the longitudinal direction is equal to the length from one end of the dielectric substrate 2 along the longitudinal direction of the ground 4c to the strip lines 7d-1 and 7d-2 which are the closest to the other end of the dielectric substrate 2, as shown in
Slots 6a to 6c and a slit 6e are sequentially provided along the longitudinal direction of the ground 4c, and the slots 6a to 6c each have a rectangular hole shape that is long along the longitudinal direction of the ground 4c. The slit 6e is a hole that intersects with a straight line along the strip lines 7d-1 and 7d-2 closest to the other end of the dielectric substrate 2, and the end of the slit 6e on the other end side of the dielectric substrate 2 is open.
The ground 4c is shorter than the ground 4b of the antenna device 1 in the longitudinal direction. Accordingly, in the antenna device 1c, the area of the ground is further reduced.
Therefore, when a dielectric substrate formed of a material having high light transmittance is used as the dielectric substrate 2, the antenna device 1c can be configured to have higher transparency than the antenna device 1.
Next, characteristics of the antenna device according to the first embodiment will be described.
The configuration in which the signal line 4a, the ground 4b or the ground 4c, the branch lines 5a to 5d, and the strip lines 7a-1 to 7d-1 and 7a-2 to 7d-2 are conductor patterns formed on the dielectric substrate 2 has been described above. However, the first embodiment is not limited thereto.
For example, the antenna device may have a structure in which the signal line 4a, the ground 4b or the ground 4c, the branch lines 5a to 5d, and the strip lines 7a-1 to 7d-2 and 7a-2 to 7d-2 are composed of metal conductors, and a spacer is used instead of the dielectric substrate 2. The antenna device having such structure can also efficiently radiate a polarized wave perpendicular to the signal line 4a in the broadside direction.
In the above description, each slot has a hole shape which is rectangular and long along the longitudinal direction of the ground 4b or the ground 4c. However, each slot may have a circular shape, an elliptical shape, or a polygonal shape.
Each of the strip lines 7a-1 to 7d-1 and 7a-2 to 7d-2 may be a conductor pattern that is widened toward the leading end as shown in
Each of the strip lines 7a-1 to 7d-1 and 7a-2 to 7d-2 may be a conductor pattern in which the leading end is folded back as shown in
The antenna devices 1 and 1a to 1c may be provided with a polarizer. For example, the polarizer is disposed in parallel with the radiation direction of the electromagnetic wave of each of the antenna devices. This allows the antenna devices to operate as circularly polarized antennas.
An array antenna according to the first embodiment is a planar array antenna including a plurality of antenna devices according to the first embodiment.
Further, a phased array antenna capable of scanning a beam in an arbitrary direction can be achieved by individually supplying electric power to each antenna device 1 in the array antenna 11. Although
As described above, the antenna device 1 according to the first embodiment has the ground 4b having a strip shape parallel to the signal line 4a, the strip lines 7a-1 to 7d-1 and 7a-2 to 7d-2 each extending from the ground 4b, slots 6a to 6d intersecting with respective straight lines along the strip lines 7a-1 to 7d-1 and 7a-2 to 7d-2, and branch lines 5a to 5d, each of the branch lines 5a to 5d intersecting with the corresponding slot 6a to 6d located on the back surface as viewed transparently from the front surface side. The current in the branch portions where the branch lines 5a to 5d are branched from the signal line 4a is increased, whereby the strip lines 7a-1 to 7d-1 and 7a-2 to 7d-2 are supplied with electric power by electromagnetic coupling using the slots 6a to 6d. Thus, the antenna device 1 can efficiently radiate a polarized wave perpendicular to the signal line 4a in the broadside direction.
The antenna device 1a according to the first embodiment includes transformers 8a to 8d provided in the signal line 4a and transformers 9a to 9d provided in the branch lines 5a to 5d. Due to these components, the antenna device 1a can adjust the amount of electric power to be distributed to the strip lines 7a-1 to 7d-1 and 7a-2 to 7d-2 and perform impedance matching.
The antenna device 1b according to the first embodiment includes slits 10a to 10d. Similar to the antenna device 1, the antenna device 1b can efficiently radiate a polarized wave perpendicular to the signal line 4a in the broadside direction, even if the slots 6a to 6d are replaced with the slits 10a to 10d.
In the antenna device 1c according to the first embodiment, the length of the ground 4c in the longitudinal direction is equal to the length from one end of the dielectric substrate 2 along the longitudinal direction of the ground 4c to the strip lines 7d-1 and 7d-2 which are the closest to the other end of the dielectric substrate 2. The slit 6e that intersects with a straight line along the strip lines 7d-1 and 7d-2 closest to the other end of the dielectric substrate 2 is open on the other end side of the dielectric substrate 2. The ground 4c is shorter than the ground 4b in the longitudinal direction, and therefore, the area of the ground is further reduced. This configuration enables the antenna device 1c to have high transparency.
The array antenna 11 according to the first embodiment includes a plurality of antenna devices 1 and 1a to 1c which is arranged in parallel along the width direction of the ground 4b or 4c. Accordingly, a planar array antenna can be constructed.
The dielectric substrate 12 is disposed in parallel with and apart from the dielectric substrate 2. For example, the dielectric substrate 12 is disposed apart from the dielectric substrate 2 in the −z direction by about a quarter wavelength.
The ground 13 is a second ground provided on the surface of the dielectric substrate 12 that faces the back surface of the dielectric substrate 2. The ground 13 may be a solid ground provided on the entire surface of the dielectric substrate 12, or may be a mesh-shaped ground.
As described above, the antenna device according to the first embodiment can efficiently radiate a polarized wave perpendicular to the signal line 4a in the broadside direction. However, the beam of electromagnetic waves emitted from the antenna device is formed on both the +z side and the −z side.
On the other hand, in the antenna device 1d according to the second embodiment, the dielectric substrate 12 is disposed apart from the dielectric substrate 2 by a quarter wavelength in the −z direction, and the ground 13 is provided on the surface of the dielectric substrate 12 facing the back surface of the dielectric substrate 2.
The beam of the electromagnetic waves emitted from the antenna device 1d is limited to be formed in the +z direction by the ground 13 of the dielectric substrate 12. Therefore, the antenna device 1d can form a sharper beam than the antenna device according to the first embodiment, and can limit the radiation direction of electromagnetic waves to one direction.
The holes provided in the first ground of the antenna device 1d may be the slots 6a to 6d and the slit 6e described in the first embodiment. The shape of the slot may be circular, elliptical or polygonal. Further, the holes provided in the first ground in the antenna device 1d may be the slits 10a to 10d described in the first embodiment instead of the slots.
Furthermore, the first strip lines in the antenna device 1d may be the strip lines 7a-1 to 7d-1 and 7a-2 to 7d-2 described in the first embodiment. Each of the strip lines may be widened toward the leading end, or may be folded at the leading end as shown in
The antenna device 1d may be provided with a polarizer. For example, the polarizer is disposed in parallel with the radiation direction of the electromagnetic wave of the antenna device 1d. This allows the antenna device 1d to operate as a circularly polarized antenna.
An array antenna according to the second embodiment is a planar array antenna including a plurality of antenna devices 1d. For example, the planar array antenna is constructed by arranging a plurality of antenna devices 1d in parallel along the width direction of the ground 4b.
As described above, the antenna device 1d according to the second embodiment includes the dielectric substrate 12 disposed in parallel with and apart from the dielectric substrate 2, and the ground 13 provided on the surface of the dielectric substrate 12 facing the back surface of the dielectric substrate 2. With this configuration, the antenna device 1d can form a sharper beam than the antenna device according to the first embodiment, and can limit the radiation direction of electromagnetic waves to one direction.
In the antenna device 1d according to the second embodiment, the ground 13 has a mesh shape. This configuration enables the antenna device 1d to have higher transparency by using a dielectric substrate having higher light transmission as the dielectric substrate 12.
The dielectric substrate 14 is disposed in parallel with and apart from the dielectric substrate 2. For example, the dielectric substrate 14 is disposed apart from the dielectric substrate 2 in the −z direction by about a quarter wavelength. The dielectric substrate 14 has strip lines 15a to 15d provided on the surface facing the back surface of the dielectric substrate 2. The strip lines 15a to 15d are second strip lines provided to face the strip lines 7a-1, 7a-2 to 7d-1, and 7d-2 provided on the dielectric substrate 2.
For example, a beam of an electromagnetic wave radiated from the strip lines 7a-1 and 7a-2 is limited to be formed in the +z direction by the strip line 15a provided on the dielectric substrate 14 at the position facing the strip lines 7a-1 and 7a-2. In this way, the radiation direction of beams of the electromagnetic waves emitted from the antenna device 1e is limited to the +z direction by the strip lines 15a to 15d provided on the dielectric substrate 14. Therefore, the antenna device 1e can form a sharper beam than the antenna device according to the first embodiment, and can limit the radiation direction of electromagnetic waves to one direction.
Further, since the strip lines 15a to 15d have a smaller area of conductor patterns than the ground 13 shown in the second embodiment, the antenna device 1e having high transparency can be achieved.
The holes provided in the first ground of the antenna device 1e may be the slots 6a to 6d and the slit 6e described in the first embodiment. The shape of the slot may be circular, elliptical or polygonal. Further, the holes provided in the first ground in the antenna device 1e may be the slits 10a to 10d described in the first embodiment instead of the slots.
Each of the first strip lines and the second strip lines in the antenna device 1e may have a conductor pattern which is widened toward the leading end or which is folded at the leading end as shown in
The antenna device 1e may be provided with a polarizer. For example, the polarizer is disposed in parallel with the radiation direction of the electromagnetic wave of the antenna device 1e. This allows the antenna device 1e to operate as a circularly polarized antenna.
An array antenna according to the third embodiment is a planar array antenna including a plurality of antenna devices 1e. For example, the planar array antenna is constructed by arranging a plurality of antenna devices 1e in parallel along the width direction of the ground 4b.
As described above, the antenna device 1e according to the third embodiment includes the dielectric substrate 14 disposed in parallel with and apart from the dielectric substrate 2, and the strip lines 15a to 15d provided on the dielectric substrate 14. The strip lines 7a-1 to 7d-1 and 7a-2 to 7d-2 provided on the dielectric substrate 2 face the strip lines 15a to 15d provided on the dielectric substrate 14, respectively.
With this configuration, the antenna device 1e can form a sharper beam than the antenna device according to the first embodiment, and can limit the radiation direction of electromagnetic waves to one direction.
The present invention is not limited to the above embodiments, and two or more of the above embodiments can be freely combined, or arbitrary components in the embodiments can be modified or omitted, within the scope of the present invention.
The antenna device according to the present invention can efficiently radiate a polarized wave perpendicular to the signal line in the broadside direction, and thus can be used in, for example, a radar and a wireless communication device.
1, 1a, 1b, 1c, 1d, 1e: antenna device, 2, 12, 14: dielectric substrate, 3: feed, 4a: signal line, 4b, 4c, 13: ground, 5a, 5b, 5c, 5d: branch line, 6a, 6b, 6c, 6d: slot, 7a-1 to 7d-1, 7a-2 to 7d-2, 15a, 15b, 15c, 15d: strip line, 8a, 8b, 8c, 8d, 9a, 9b, 9c, 9d: transformer, 6e, 10a, 10b, 10c, 10d: slit, 11: array antenna
This application is a Continuation of PCT International Application No. PCT/JP2018/019860, filed on May 23, 2018, which is hereby expressly incorporated by reference into the present application.
Number | Name | Date | Kind |
---|---|---|---|
4426649 | Dubost | Jan 1984 | A |
6087989 | Song | Jul 2000 | A |
6239764 | Timofeev | May 2001 | B1 |
20130009833 | Kough | Jan 2013 | A1 |
20140071009 | Cheng | Mar 2014 | A1 |
20140104157 | Burns | Apr 2014 | A1 |
20200106194 | Takaki | Apr 2020 | A1 |
Number | Date | Country |
---|---|---|
10-303636 | Nov 1998 | JP |
2003-168922 | Jun 2003 | JP |
2007-28294 | Feb 2007 | JP |
2013-236349 | Nov 2013 | JP |
Entry |
---|
Extended European Search Report for European Application No. 18919437.6, dated Mar. 10, 2021. |
International Search Report issued in PCT/JP2018/019860 (PCT/ISA/210), dated Jul. 31, 2018. |
Office Action for Japanese Patent Application No. 2018-553256, dated Nov. 6, 2018. |
Number | Date | Country | |
---|---|---|---|
20210013627 A1 | Jan 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2018/019860 | May 2018 | US |
Child | 17033143 | US |