The present invention relates to an antenna device used in mobile phones, wireless local area networks (LANs), etc., particularly to a small, wide-bandwidth antenna device adaptable to multi-bands such as dual-band and triple-band, and a communications apparatus comprising such an antenna.
The demand of miniaturization on communications apparatus and electronic apparatuses such as mobile phones and personal computers necessitates the miniaturization of antenna devices used therein. Thus, chip antennas comprising power-supplying electrodes and radiation electrodes on or in base substrates made of dielectric or magnetic materials have become used.
There are various systems for mobile phones, for instance, EGSM (extended global system for mobile communications) and DCS (digital cellular system) widely used mostly in Europe, PCS (personal communications services) used in the U.S., and various systems using TDMA (time division multiple access) such as PDC (personal digital cellular) used in Japan. According to recent rapid expansion of mobile phones, however, a frequency band allocated to each system cannot allow all users to use their mobile phones in major cities in advanced countries, resulting in difficulty in connection and thus causing such a problem that mobile phones are sometimes disconnected during communication. Thus, proposal was made to permit users to utilize a plurality of systems, thereby increasing substantially usable frequency, and further to expand serviceable territories and to effectively use communications infrastructure of each system.
Accordingly, multi-band systems utilizing two or more frequency bands with one antenna are increasingly demanded. For instance, according to the needs of making mobile phones multi-functional, demand is mounting on small multi-band antenna devices, such as small dual-band antenna devices for handling a cellular system (for instance, transmission frequency: 824 to 849 MHz, receiving frequency: 869 to 894 MHz, though it depends on countries), a system for oral communications, and a global positioning system GPS (center frequency: 1575 MHz) having a position-detecting function, or small triple-band antenna devices for handling an EGSM system (transmission frequency: 880 to 915 MHz, receiving frequency: 925 to 960 MHz), a DCS system (transmission frequency: 1710 to 1785 MHz, receiving frequency: 1805 to 1880 MHz) and a PCS system (transmission frequency: 1850 to 1910 MHz, receiving frequency: 1930 to 1990 MHz).
As shown in
However, the antenna device of JP 11-4117 A is not suitable for sufficient miniaturization because it comprises two chip antennas in a shape of rectangular parallelepiped. Though it has been proposed to mount a chip antenna 93b on a rear surface 92b of the substrate 91 for miniaturization, it does not meet the demand of thinning, because the thickness of a mounting substrate hinders such demand. Further, the increase of an opposing area between the ground electrode 95 and the chip antenna 93a results in increase in electrostatic capacitance and thus decrease in bandwidth. Thus, the antenna device of JP 11-4117 A fails to satisfy the demands of miniaturization, space reduction and bandwidth increase.
U.S. Pat. No. 6,288,680 discloses a antenna device comprising a chip antenna comprising a radiation electrode formed on a substrate, a power-supplying electrode connected to one end of the radiation electrode, a terminal electrode connected to the other end of the radiation electrode, and a mounting substrate having this chip antenna mounted thereonto, on whose surface a radiation electrode is formed. Because of the connection of the radiation electrode of the chip antenna to the radiation electrode on the mounting substrate, this antenna device has a large effective length of a conductor and a strong radiation electric field, thereby achieving a high gain and a wide bandwidth.
The antenna device disclosed in JP 2001-274719 A comprises a chip antenna mounted onto a mounting substrate, and a notch-shaped slit in a ground portion between the chip antenna and an adjacent high-frequency circuit. The notch slit suppresses a high-frequency current from flowing from the chip antenna to the high-frequency circuit, improving radiation characteristics.
However, the conventional antenna devices are disadvantageous in failing to meet all of the requirements of miniaturization, space reduction and bandwidth increase. Though U.S. Pat. No. 6,288,680 proposes the bandwidth increase, it simply suppresses the deterioration of bandwidth in a low frequency band, failing to handle a multi-band system. The gain increase by the notch slit as in JP 2001-274719 A only limits a path of a high-frequency current flowing in the ground electrode, failing to provide the bandwidth increase and to make the system adaptable for multi-band.
When pluralities of radiation electrodes are formed in the conventional antenna substrate to make the system adaptable for multi-band, it is difficult to keep isolation because of electrostatic capacitance generated between the radiation electrodes. Specifically, the higher the electrostatic capacitance between the radiation electrodes, the more the high-frequency current flows in the radiation electrodes in opposite directions, so that the radiation electrodes weaken the radiation of an electromagnetic wave each other, resulting in decrease in the gain (sensitivity). Though a wide band and a high gain are desirable in pluralities of frequency bands in multi-band antenna devices, JP 11-4117 A and U.S. Pat. No. 6,288,680 fail to provide any discussion on such points.
Much attention is recently paid to the reduction of influence of electromagnetic waves radiated from mobile phones, etc. on human bodies (heads) for health, and therefore antenna devices having low specific absorption rates (SAR) of electromagnetic waves are desired.
Accordingly, an object of the present invention is to provide a small antenna device capable of being adapted to multi-band systems, which avoids gain decrease by securing isolation in pluralities of frequency bands, and which has a wide bandwidth and a high average gain in each frequency band.
Another object of the present invention is to provide a communications apparatus comprising such an antenna device.
The first antenna device of the present invention comprises (a) a mounting substrate having a ground portion and a non-ground portion, (b) a chip antenna mounted onto the non-ground portion, which comprises a substrate, a first radiation electrode formed on the substrate, a power-supplying electrode connected or not connected to the other end of the first radiation electrode, and a terminal electrode connected or not connected to one end of the first radiation electrode, and (c) at least one second radiation electrode formed in a conductor pattern on the non-ground portion, the second radiation electrode having one end connected or not connected to the terminal electrode and the other end which is an open end, and a cavity existing between the chip antenna and/or the second radiation electrode and the ground portion.
The second antenna device of the present invention comprises (a) a mounting substrate having a ground portion and a non-ground portion, (b) a chip antenna mounted onto a non-ground portion on a front surface of the mounting substrate, which comprises a substrate, a first radiation electrode formed on the substrate, a power-supplying electrode connected or not connected to the other end of the first radiation electrode, and a terminal electrode connected or not connected to the other end of the first radiation electrode, and (c) a second radiation electrode formed in a conductor pattern on a non-ground portion, which is an opposing surface of the chip-antenna-carrying surface of the mounting substrate, the second radiation electrode being connected or not connected to the terminal electrode, with its other end being an open end, and a cavity existing between the chip antenna and/or the second radiation electrode and the ground portion.
The third antenna device of the present invention comprises (a) a mounting substrate having a ground portion and a non-ground portion, (b) a sub-substrate fixed to the mounting substrate with space, (c) a chip antenna mounted onto the sub-substrate, which comprises a substrate, a first radiation electrode formed on the substrate, a power-supplying electrode connected or not connected to the other end of the first radiation electrode, and a terminal electrode connected or not connected to the other end of the first radiation electrode, and (d) a second radiation electrode formed in a conductor pattern on the chip-antenna-carrying surface of the sub-substrate or its opposing surface, the second radiation electrode being connected or not connected to the terminal electrode, with its other end being an open end, and a cavity existing between the chip antenna and/or the second radiation electrode and the ground portion of the mounting substrate.
The communications apparatus of the present invention such as a mobile phone comprises any one of the above antenna devices.
The antenna device 80 according to a preferred embodiment of the present invention comprises, as shown in
The antenna device 80 according to another embodiment of the present invention comprises, as shown in
The antenna device according to a further embodiment of the present invention comprises, as shown in
When the chip-antenna-carrying surface is opposing a second-radiation-electrode-bearing surface, the terminal electrode on the chip antenna mounted onto the mounting substrate is connected to the second radiation electrode preferably via a through-hole for miniaturization and the stabilization of characteristics.
When the chip antenna mounted onto the mounting substrate and the second radiation electrode formed on the opposing surface of the chip-antenna-carrying surface of the mounting substrate are disposed such that they are not overlapping with each other when viewed from above, the bandwidth of the antenna device is preferably made wider. On the contrary, when they are disposed such that they are overlapping with each other, the antenna device has a lowered center frequency, which can be utilized for frequency adjustment.
For the miniaturization of the antenna substrate, a remaining portion of the substrate after the formation of the hollow groove is desirably on the open-end side of the second radiation electrode.
The other end of the first radiation electrode may not be connected to the power-supplying electrode.
As shown in
As shown in
Though the second radiation electrode is formed on the opposing surface of the chip-antenna-carrying surface, the opposing surface is not restricted to the rear surface of the substrate. For instance, when the mounting substrate is a laminate substrate having an intermediate layer provided with the second radiation electrode, and another layer provided with a third or fourth radiation electrode, it is adapted for multi-band antenna devices of dual-band or more. Thus, the second et seq. radiation electrodes may be formed on the opposing surface of the chip-antenna-carrying surface, namely, on the rear surface of the mounting substrate, and the intermediate layer of the multi-layer substrate.
The cavity may be a hollow groove formed in the substrate, space between separate substrates fixed to each other, etc. The hollow groove 30 is a penetrating hole such as a slot, a notch slit, etc. formed in the mounting substrate 20. In
For bandwidth increase, it is important that there is large distance between the chip antenna and/or the second radiation electrode and the ground portion of the mounting substrate (the ground portion formed on the chip-antenna-carrying surface, and/or the ground portion formed on the opposite side (rear surface) of the chip-antenna-carrying surface). It has been found that increase in the bandwidth and the gain can be achieved not only by increasing that distance but also by providing the hollow groove. Because a Q value is governed by electrostatic capacitance generated between the first and second radiation electrodes and the ground electrode of the mounting substrate, particularly by electrostatic capacitance generated between the second radiation electrode and the ground electrode among LC resonance circuits comprising capacitance components between the radiation electrode and the ground electrode, it has been found that the formation of a cavity (hollow groove) having a dielectric constant and a permeability both equal to 1 between them results in the reduction of predominant coupling and thus the reduction of the Q value. It has also been found that the width of the hollow groove is {fraction (1/20)} or less of wavelength λ of the resonance frequency, particularly about {fraction (1/10)} or less in high-frequency bands, and generally 3 to 5 mm.
With respect to the miniaturization of the antenna device, it is effective to provide the remaining portion between the open end of the second radiation electrode and the ground portion. The remaining portion makes it easy to generate capacitance between the open end of the second radiation electrode and the ground portion, resulting in the size reduction of the radiation electrode, and thus the miniaturization of the antenna device. This is also an important feature of the present invention. It has also been found that the hollow groove is effective for improving the average gain. Thus, a small antenna device having a wide bandwidth and a high average gain can be obtained. By the hollow groove formed between the chip antenna and the ground portion, the first radiation electrode, the power-supplying electrode and the terminal electrode, etc. of the chip antenna are separate from the ground portion.
The antenna device of the present invention is also suitable as a multi-band antenna device covering pluralities of frequency bands having two or more separate resonance modes. When used for multi-band antenna devices, the chip antenna mounted onto the mounting substrate is combined with the second radiation electrode formed on the chip-antenna-carrying surface or its opposing surface and/or an intermediate layer (when the laminate substrate is used). Namely, second, third, fourth . . . radiation electrodes constituted by linear conductor patterns formed on the chip-antenna-carrying surface, its opposite surface, or the intermediate layer of the multi-layer substrate can be combined with the chip antenna, to make the antenna device adaptable for multi-band. For instance, by adjusting the shape, length, etc. of the first radiation electrode formed on the chip antenna to cause resonance in the first frequency band, and by adjusting the shape, length, etc. of the second radiation electrode formed in a linear conductor pattern on the mounting substrate to cause resonance in the second frequency band, the antenna device is made adaptable for dual-band. However, no isolation is secured between pluralities of frequency bands depending on the arrangement of the first radiation electrode and the second radiation electrode, making it likely that electrostatic coupling increases between the first radiation electrode and the second radiation electrode. This hinders the radiation of an electromagnetic wave from the antenna, resulting in decrease in the gain. The second radiation electrode may be formed on the rear surface of the mounting substrate or on the intermediate layer to secure isolation.
To supply power to the second radiation electrode to utilize two resonance modes, it is necessary to make the open end of the second radiation electrode close to the power-supplying electrode. The first resonance mode is obtained by an LC resonance circuit constituted by the self-inductance of the first radiation electrode, electrostatic capacitance between the first radiation electrode and the ground electrode on the substrate, and electrostatic capacitance between the first radiation electrode and the second radiation electrode. On the other hand, the second resonance mode is obtained by an LC resonance circuit constituted by the self-inductance of the second radiation electrode, electrostatic capacitance between the second radiation electrode and the ground electrode, electrostatic capacitance between the first radiation electrode and the second radiation electrode, and electrostatic capacitance between the open end of the second radiation electrode and the power-supplying electrode. When the open end of the second radiation electrode is close to the power-supplying electrode, two resonance modes are secured. This is also an important feature of the present invention.
A signal supplied from the power-supplying electrode to each resonance circuit having the above structure is resonated in the first and second frequency bands, and part of it is radiated from the antenna into the air. Oppositely, a received signal is converted to voltage via each resonance circuit.
The second radiation electrode may be formed on the chip-antenna-carrying surface or its rear surface. When the second radiation electrode is formed on the rear surface of the substrate, the conductor pattern on the rear surface of the substrate acts as a radiation electrode via the substrate, and thus a geometric distance between the first radiation electrode and the second radiation electrode increases by the substrate thickness, resulting in decrease in electrostatic capacitance between them. This leads to the weakening of coupling accordingly, securing the isolation and increasing the bandwidth. For instance, when a chip antenna of about 3 mm thick is mounted onto a substrate of about 0.6 mm thick (copper-laminated substrate having a relative dielectric constant εr of 5), the distance between the electrodes providing electrostatic capacitance is 3.6 mm. As a result, coupling between the second radiation electrode and the first radiation electrode is weakened, resulting in further increase in the bandwidth.
When the sub-substrate is provided with the chip antenna and the second radiation electrode, the antenna device can be assembled independently without restricting design on the mounting substrate. In addition, the antenna device of the present invention is free from the influence of noises and electromagnetic waves, because it can be disposed at a separate position from a liquid crystal display, etc. Further, with electromagnetic waves emitted from the antenna separate from a user head, a specific absorption rate SAR, representing the percentage of electromagnetic waves absorbed to the user head, can be drastically reduced.
The antenna device of the present invention comprises the terminal electrode between the first radiation electrode and the second radiation electrode. There may be direct connection or no connection between one end of the first radiation electrode and the terminal electrode, and between the terminal electrode and the second radiation electrode.
In the former case, the first radiation electrode and the terminal electrode are constituted by an integral conductor pattern, and the terminal electrode is connected to the second radiation electrode by soldering, etc. When the second radiation electrode is formed on the rear surface of the substrate, they can easily be connected to each other via a through-hole.
In the latter case, electrostatic capacitance between the radiation electrodes rather increases because of capacitance coupling. In this case, for miniaturization, the capacitance coupling is increased to shorten the radiation electrodes, thereby making the chip antenna smaller. This has the same effect as the formation of a remaining portion on a substrate portion between the open end of the second radiation electrode and the ground portion. As the case may be, the other end of the first radiation electrode is not connected to the power-supplying electrode to achieve capacitance coupling. In this case, by electrostatic capacitance due to the series connection of the power-supplying electrode to the radiation electrode, wide-band impedance matching can be achieved on the power-supplying side. This makes an external matching circuit unnecessary on the power-supplying side of the antenna, thereby simplifying an antenna circuit and reducing power loss. As a result, the efficiency of the entire antenna circuit is improved. Achieving a balance of bandwidth increase, efficiency improvement and miniaturization like this is also a feature of the present invention.
The present invention will be specifically explained below referring to Examples shown in drawings without intention of limiting the present invention thereto.
A hollow groove 30 between the chip antenna 10 and/or the second radiation electrode 40 and the ground portions 21a, 21b further weakens coupling between the chip antenna 10 and/or the second radiation electrode 40 and the ground portion 21a, and coupling between the chip antenna 10 and/or the second radiation electrode 40 and the ground portion 21b, resulting in a wider bandwidth.
The antenna device 80 shown in
In the case of a single-band antenna device or a dual-band antenna device covering pluralities of relatively close frequency bands by one resonance, a surface-mounted chip antenna is preferable. FIGS. 3(a)-(c) show the preferred shapes of the first radiation electrode 12 on the chip antenna 10. The first embodiment uses a helical monopole antenna shown in
In place of the helical monopole antenna, an L-shaped radiation electrode shown in
Materials for the substrate 11 may be dielectric materials, magnetic materials or their mixtures. When the substrate 11 is made of a dielectric material, the chip antenna 10 can be miniaturized because of a wavelength-decreasing effect. Alumina-based dielectric materials having a relative dielectric constant εr of 8 are preferable, though not restrictive. The alumina-based dielectric material comprises oxides of Al, Si, Sr and Ti as main components. Specifically, it comprises 10-60% by mass of Al (as Al2O3), 25-60% by mass of Si (as SiO2), 7.5-50% by mass of Sr (as SrO), and 20% by mass or less of Ti (as TiO2), and may further contain as sub-components at least one of 0.1-10% by mass of Bi (as Bi2O3), 0.1-5% by mass of Na (as Na2O), 0.1-5% by mass of K (as K2O), and 0.1-5% by mass of Co (as CoO), the total of the main components being 100% by mass.
When the substrate 11 is made of a magnetic material, the chip antenna 10 can be further miniaturized because of large inductance, resulting in smaller Q and a wider bandwidth.
When the substrate 11 is made of a mixture of a dielectric material and a magnetic material, it is possible to achieve the miniaturization of the antenna by the wavelength-decreasing effect, and bandwidth increase by the reduction of the Q of the antenna.
In this embodiment, the size of the substrate 11 may be, for instance, 4 mm wide, 10 mm long, and 3 mm thick.
The impedance matching of the chip antenna 10 can be adjusted by inserting a matching circuit (not shown) between the power-supplying line 61 and the chip antenna 10. Impedance matching can also be achieved by adjusting the width and length of the conductor pattern for the second radiation electrode 40, and the distance between the second radiation electrode 40 and the mounting substrate 20 (substrate thickness), etc.
A linear conductor pattern is preferably formed by printing, though there is no limitation in the width and length of the line. The conductor pattern is not limited to a line, but may be in various shapes such as rectangle, trapezoid, triangle, etc., depending on the characteristics required for the antenna device. The conductor pattern may be formed by a metal sheet, a flexible substrate, etc. In the case of using the metal sheet, the etching step of a copper-laminated substrate can be omitted. In the case of using the flexible substrate, there is a high degree of freedom in mounting design.
In this embodiment, the hollow groove 30 extends over substantially the entire length of the antenna device between the chip antenna 10 and the second radiation electrode 40 and the ground electrode 21 (21a, 21b). However, the hollow groove 30 may be provided only in a portion in which coupling is relatively strong. Because coupling is strong on the side of the second radiation electrode 40, the hollow groove 30 may be formed only in this region.
The formation method of the hollow groove 30 is not restrictive, but it may be formed by die-forming, punching, sawing, drilling, etc. For instance, the hollow groove 30 shown in
As the antenna characteristics of the antenna device 80 shown in
A power-supplying terminal formed on one end of an antenna-measuring substrate was connected to an input terminal of the network analyzer through a coaxial cable (characteristics impedance: 50Ω), to measure the scattering parameter of the antenna at the power-supplying terminal when viewed from the network analyzer side, and VSWR was calculated from the measured scattering parameter.
In an anechoic room, the power-supplying terminal 13 (on the transmitting side) of the antenna shown in
It is considered that the higher average gain in Example 1 is due to the fact that even with the same distance between the chip antenna 10 and/or the second radiation electrode 40 and the ground portion 21a on the chip-antenna-carrying surface and/or the ground portion 21b on the opposing surface (for instance, rear surface) of the chip-antenna-carrying surface, in Example 1 having the hollow groove 30 between the chip antenna 10 and the ground portion 21a, not only electrostatic capacitance between them is extremely low, but also little current flows in a direction canceling resonance current each other, so that the radiation of electromagnetic waves is efficiently conducted.
In this embodiment, because the chip antenna 10 and the second radiation electrode 40 are opposing each other via the mounting substrate 20, electrostatic capacitance between the chip antenna 10 and the second radiation electrode 40 is decreased by the thickness of the mounting substrate 20. This secures isolation and increases a bandwidth and an antenna gain. To keep a wide band and a high gain by reducing the capacitance coupling, as in this embodiment, the second radiation electrode 40 and the chip antenna 10 are preferably disposed such that they are not overlapping with each other when viewed from above.
Because the second radiation electrode 40 is formed on a surface opposing the surface (front surface) carrying the chip antenna 10, which is, for instance, a rear surface, or an intermediate layer when a multi-layer substrate is used, a mounting space on the front surface can be effectively utilized, contributing to the reduction of the mounting area. Because the size (width and length) of the second radiation electrode 40 can be freely changed, the electrostatic capacitance is also freely changed, thereby easily setting the multi-band center such as the modification of frequency bands, etc. The through-hole 19 makes the connection of the front surface of the substrate to the rear surface easy and simple.
In a multi-band antenna device (resonance frequencies: f1, f2, f3 . . . ) obtained in this embodiment, the pitches of the resonance frequencies can be easily adjusted on the high-frequency side. This will be explained referring to
When the second radiation electrode 40 and the chip antenna 10 are disposed such that they are overlapping with each other when viewed from above as in this embodiment, the capacitance coupling is high, while the frequency band is low. Accordingly, the center frequency can be adjusted by changing the degree of such overlap.
The concept that the pitches of resonance frequencies f1, f2, f3 in the multi-band antenna device are adjusted by changing the length of coupling between the chip antenna 10 having the first radiation electrode 12 and the second radiation electrode 40 is not restricted to this embodiment, but may be applied to all the antenna devices in the present invention.
The change of gain was investigated with the width W of the hollow groove 30 changed to (a) 10 mm (λ/37.5), (b) 6 mm (λ/62.5), and (c) 2 mm (λ/187.5). The resonance frequency of the antenna is 870 MHz (λ=375 mm). The gain was larger in the order of (a)>(b)>(c). However, it is not meaningful to increase the width W of the hollow groove 30 too much for the purpose of increasing the bandwidth, but the width W of the hollow groove 30 is desirably λ/20 or less, particularly λ/10 or less in high-frequency bands for practical applications.
As described above, in this embodiment, in which the second radiation electrode 40 is distant from the ground portion 21, and the hollow groove 30 is provided, further increase in bandwidth and gain can be achieved even in dual-band having a cellular band of 800 MHz and a GPS band of 1575 MHz, etc.
FIGS. 14(a) and 14(b) show an antenna device, in which a chip antenna 10 is mounted onto a front surface of a mounting substrate 20, and a second radiation electrode 40 is formed on a rear surface of the mounting substrate 20. An electrode 29 is for soldering the chip antenna 10. The antenna device in this embodiment has the same basic structure as those of the above antenna devices, except that the second radiation electrode 40 has a long, meandering center portion 45. The second radiation electrode 40 may easily be formed by screen printing, etc. on the substrate 20.
FIGS. 15(a) and 15(b) show a further example of an antenna device, in which a chip antenna 10 is mounted onto a front surface of a mounting substrate 20, and a second radiation electrode 40 is formed on a rear surface of the mounting substrate 20. A power-supplying electrode 13 connected to a power-supplying line 61 is connected to one end 41c of the second radiation electrode 40 formed on a rear surface of the mounting substrate 20 via through-hole 19a, and a conductor pattern of the second radiation electrode 40 extends to the other end 41d on the rear surface of the mounting substrate, and then is connected to a terminal electrode 14 of the chip antenna 10 on the front surface of the mounting substrate via a through-hole 19b. The terminal electrode 14 is connected to the first radiation electrode 12, which extends to an open end 12a on a top surface of the substrate 11 through its side surface. In this embodiment, the open end 12a of the first radiation electrode 12 formed on the chip antenna 10 is not connected to the power-supplying electrode 13, providing capacitance coupling. The other structure of the antenna device in this embodiment may be substantially the same as those of the above embodiments. The antenna device having such structure in this embodiment can also provide the same effects as those of the antenna devices in the above embodiments.
FIGS. 16(a)-(c) show an antenna device comprising a sub-substrate 25 in addition to the mounting substrate 20, a chip antenna 10 being mounted onto the sub-substrate 25. The sub-substrate 25 comprises a front non-ground portion 25a and rear non-ground portion 25b, and a chip antenna 10 is mounted onto a front surface of the sub-substrate 25. A second radiation electrode 40 is formed on a rear surface 25b of the sub-substrate 25. One end of the first radiation electrode 12 is connected to the terminal electrode 14, and the terminal electrode 14 is connected to the second radiation electrode 40 via a through-hole 19b. A power-supplying electrode 13 is connected to a power-supplying line 61a on the sub-substrate 25, which is connected to a power-supplying pin 65 vertically extending from the mounting substrate 20 via a through-hole 19a. The power-supplying pin 65 is connected to a power-supplying line 61b, which is connected to a power-supplying source 62. The sub-substrate 25 is supported by pillars 66, tables, etc. such that it is separate from the mounting substrate 20, thereby providing a cavity (space) 35 between the second radiation electrode 40 and the ground portion 21a on the mounting substrate 20. The cavity 35 acts to increase bandwidth like the above hollow groove 30.
In a foldable mobile phone, an antenna-mounting substrate is disposed on a rear side of a liquid crystal display or a keyboard in many cases (see
The antenna characteristics of the antenna device shown in
The antenna device of Example 2 had a wide band with small difference in the antenna characteristics between when the mobile phone was open and when the mobile phone was folded. That is, when the mobile phone was open, VSWR was as good as nearly 1 in a wide frequency range. The bandwidth was wider by about 15-20% in Example 2 than in Comparative Example 2 at VSWR of 2 corresponding to the reflection electric power of about 10%. The antenna device of Example 2 was stable even when the mobile phone was folded, exhibiting VSWR of 2 or less in a wide band, and VSWR of 3 or less almost in the entire band range.
FIGS. 18(a) and 18(b) show the relation between a frequency and an average gain in Example 2 and Comparative Example 2, respectively. The measurement methods are the same as described above. As is clear from
To prevent the gain from decreasing by the absorption of electromagnetic waves to a human body, and to reduce SAR, it is effective to separate an electric field generated from the chip antenna from a user head H as much as possible. In the present invention, the chip antenna can preferably be mounted onto a surface of a main substrate on the opposite side of the user head H. Particularly, when the chip antenna 10 is mounted onto the sub-substrate 25 separate from the mounting substrate 20 as in the ninth embodiment, the distance between the chip antenna 10 and the liquid crystal display LCD is desirably further increased. Also, the mounting of the chip antenna 10 in a center portion or near a microphone MI on the side of a keyboard KB in a mobile phone body as shown in
Though the antenna device of the present invention has been explained referring to the drawings, it is not restricted thereto, and various modifications may be added, if necessary, within the concept of the present invention.
As described above, because the antenna device of the present invention has a wide bandwidth due to the second radiation electrode, it may be used not only for mobile phones, but also for all wireless communications apparatuses such as mobile terminals, personal computers, GPS equipments mounted in automobiles, wireless LANs, etc. The wide-bandwidth antenna device is easily adapted not only to a single-band but also to multi-band. For instance, it may be used for mobile phones of GSM (0.9 GHz)+GPS+PCS (1.8 GHz)+DCS (1.9 GHz), cellular (0.8 GHz)+PCS (1.9 GHz)+GPS (1.5 GHz)+ . . . , etc., and communications apparatuses such as wireless LANs of wide-band CDMA (code division multiple access) (2-GHz band), 802.11a (5-GHz band)+802.11b (2.4 GHz), etc.
The hollow groove between the chip antenna and/or the second radiation electrode and the ground portion of the mounting substrate makes their capacitance coupling smaller. The formation of the second radiation electrode on the opposing surface (rear surface) of the mounting substrate, or on an intermediate layer, etc. further increases the distance between the second radiation electrode and the ground portion, thereby further decreasing their capacitance coupling. With these structures, the Q value is small, the isolation is kept, and the resonance current loss is reduced. As a result, the antenna device having a wide bandwidth and a high gain can be obtained.
In the antenna device having a second radiation electrode formed on a surface of a mounting substrate different from a chip-antenna-carrying surface, a substrate space can be effectively used, achieving further miniaturization.
Further, because a radiation electrode can be formed not only on an antenna substrate but also on a front or rear surface of a mounting substrate, or on an intermediate layer, etc. separately in the antenna device of the present invention, it is possible to avoid an electric field distribution from concentrating in a user head. As a result, the absorption of electromagnetic waves radiated from a mobile phone in a user head is reduced, and the SAR is reduced.
The antenna device of the present invention having the above features provides a small communications apparatus with a small SAR, which is adapted to multi-band such as dual-band, triple-band, etc.
Number | Date | Country | Kind |
---|---|---|---|
2003-290581 | Aug 2003 | JP | national |