The present invention relates to an antenna device having a settable directional characteristic, in particular to an antenna device having an antenna array of antenna elements situated in a matrix-like manner. The present invention furthermore relates to a method for operating an antenna device, in particular an antenna device according to the present invention.
There are many applications in which it is desirable or necessary to use an antenna to emit electromagnetic waves having a predefined directionality, i.e., having a predetermined directionality pattern, which is also referred to as a directional characteristic. It is advantageous in radar applications, for example, to emit electromagnetic waves having a certain directionality in order to be able to assign the electromagnetic waves reflected on an object and received to the position of the object.
In particular in radar applications, it is necessary to vary the direction in which the electromagnetic waves are emitted to be able to monitor a larger spatial area with the aid of the radar. Movable or swiveling antennas are used for this purpose, for example. Such antenna require a mechanical system which allows the antenna attached to the mechanical system to be suitably moved.
Furthermore, in conventional so-called phased array antennas, the antenna radiation pattern is electronically swivelable. Phased array antennas are made up of a plurality of antenna elements (array), which are supplied from a shared signal source. To swivel the antenna radiation pattern of such a phased array antenna, the individual transmitting elements of the phased array antenna are activated by a suitably phase-shifted signal. As a result, the individual emitted electromagnetic waves superimpose in the desired direction with a constructive interference and thus form, for example, a maximum or a minimum of radiated energy in the desired direction.
To individually set the phase and amplitude, such phased array antennas include a phase shifter and an attenuator for each of the transmitting elements. An antenna suitable for use in radar applications is described in German Patent Application No. DE 10 2010 040 793 A1, for example.
The present invention provides an antenna device and a method.
The present invention provides an antenna device having a settable directional characteristic, including: a feed signal provision unit, with the aid of which a first, second, third and fourth electrical feed signal are providable, the electrical feed signals being coherent with one another and having phases relative to one another which are adapted to set the settable directional characteristic of the antenna device, the phases being adaptable with the aid of a feed signal adaptation unit; a first feed link having a first plurality of first branching units, the first electrical feed signal being feedable into the first feed link with the aid of a first feed terminal situated on a first end of the first feed link, and the second electrical feed signal being feedable into the first feed link with the aid of a second feed terminal situated on a second end of the first feed link; a second feed link having a second plurality of second branching units, the third electrical feed signal being feedable into the second feed link with the aid of a third feed terminal situated on a first end of the second feed link, and the fourth electrical feed signal being feedable into the second feed link with the aid of a fourth feed terminal situated on a second end of the first feed link; and a third plurality of antenna columns, each antenna column including a respective fourth plurality of electrically connected antenna elements, each of the antenna columns being electrically coupled between one of the first branching units of the first feed link and one of the second branching units of the second feed link, signals being conductable with the aid of each of the first branching units from the first feed link to the respective antenna column coupled to the first branching unit for inducing the antenna elements of the respective antenna column to emit electromagnetic waves having the set directional characteristic, and signals being conductable with the aid of each of the second branching units from the second feed link to the respective antenna column coupled to the second branching unit for inducing the antenna elements of the respective antenna column to emit electromagnetic waves having the set directional characteristic.
A feed link shall be understood to mean in particular a line which is used to feed electrical signals to antenna columns, it also being possible for the feed link to include one or multiple branchings and/or signal adaptation units, such as phase shifters or amplifiers. An arrangement of an element A “electrically between” two other elements B shall in particular be understood to mean that electrical signals, which run on the electrical path having the lowest loss, preferably along an electrical conductor, between the two other elements B, inevitably traverse element A.
Furthermore, a method for operating an antenna device is provided, in particular an antenna device according to the present invention, including the following steps: generating a first, second, third and fourth electrical signal, which are coherent with one another; providing a first, second, third and fourth electrical feed signal by adapting at least relative phases of the first, second, third and fourth electrical signal for setting the directional characteristic of the antenna device; applying the first feed signal to a first feed terminal of the antenna device; applying the second feed signal to a second feed terminal of the antenna device; applying the third feed signal to a third feed terminal of the antenna device; and applying the fourth feed signal to a fourth feed terminal of the antenna device.
In accordance with the present invention, the directional characteristic of an antenna device, which includes antenna elements situated in a matrix-like manner as individual radiating elements and which is fed four or more feed signals which are independent of one another and individually variable in terms of amplitude and/or phase at four or more different feed terminals, is two-dimensionally adaptable. This means that in particular an elevation and an azimuth of the main lobe of the directional characteristic is adaptable, and the main lobe is thus electronically swivelable in two dimensions.
According to the present invention, this is into account and the present invention provide an option for feeding, in particular simultaneously, four or more feed signals to an antenna device, which are adapted in such a way that antenna elements of the antenna device are excited by electrical signals phase shifted with respect to one another in such a way that the directional characteristic of the antenna device is formed as desired by superposition of the emitted electromagnetic waves.
Particularly advantageously, feed signals in the frequency range of 1 to 150 gigahertz, in particular from 20 to 100 gigahertz, are used. It is then possible to select the dimensions of the individual antenna elements in the millimeter range, for example. The antenna array is easy to implement in circuit board technology. Particularly preferably, feed signals in a frequency range of 70 to 85 gigahertz and essentially square antenna elements having an edge length in the order of magnitude of one millimeter are used. Advantageously, the antenna device is situated on a vehicle, in particular a road vehicle or a rail vehicle.
Advantageous specific embodiments and refinements are described herein with reference to the figures.
According to one preferred refinement, a signal adaptation unit, with the aid of which at least one parameter, in particular a phase and/or an amplitude, of an electrical signal propagating along the first feed link between the pair of the two branching units following one another along the first feed link, is situated between at least one, in particular each, pair of two branching units following one another along the first feed link.
According to one further preferred refinement, a signal adaptation unit, with the aid of which at least one parameter, in particular a phase and/or an amplitude, of an electrical signal propagating along the second feed link between the pair of the two branching units following one another along the second feed link, is situated between at least one, in particular each, pair of two branching units following one another along the second feed link. In this way, a particularly advantageous distribution of the fed electrical feed signals for attaining the desired directional characteristic may take place.
According to one further preferred refinement, a signal adaptation unit, with the aid of which at least one parameter, in particular a phase and/or an amplitude, of an electrical signal propagating between the branching unit and the antenna column, is electrically situated between at least one, in particular each, of the branching units and a respective antenna column coupled into the at least one branching unit.
According to one further preferred refinement, at least one signal adaptation unit includes a phase shifter. The at least one parameter of the electrical signal adaptable with the aid of the signal adaptation unit is thus a phase of the electrical signal. Preferably, each of the signal adaptation units is designed as a phase shifter. The signal adaptation unit is advantageously designed as an angled or curved deviation of a strip conductor from a track of the strip conductor on a shortest path between two branching units or between one branching unit and one antenna column. In this way, phase shifters may be implemented with particularly low technical complexity.
According to one further preferred refinement, at least one, preferably all, of the branching units is/are designed as simple line nodes, in particular as three-line nodes.
According to one further preferred refinement, at least the first and second feed links, the first and second branching units, the antenna columns, and the antenna elements are designed in microstrip technology. Preferably, the entire antenna array is designed in microstrip technology. In this way, the antenna array is producible with particularly low technical complexity.
According to one preferred refinement of the method according to the present invention, the first, second, third and fourth feed terminals are created at least partially simultaneously. In this way, particularly precise setting of the directional characteristic is possible by superimposing the signals exciting the antenna elements, which are based on the feed signals.
According to one further preferred refinement, the method includes the following step: adapting the phase and/or the amplitude of at least one of the first, second, third and fourth feed signals to adapt the set directional characteristic. In this way, for example, electronic beam scanning may be achieved.
The present invention is described in greater detail below based on the exemplary embodiments shown in the figures.
In all figures, identical or functionally equivalent elements and devices were denoted by the same reference numerals, unless indicated otherwise.
Feed signal generation unit 310 includes a signal generator 370, with the aid of which a coherent electrical original signal D0 having an original phase and an original amplitude may be generated. Original signal D0 is transmitted to a division unit 320, which divides the original signal into a first through fourth subsignal T1, T2, T3, T4, T-i for short, and transmits each of these to a first through fourth phase adaptation unit 360-1, 360-2, 360-3, 360-4, 360-i for short, controllable with the aid of control unit 400. According to the first specific embodiment, division unit 320 is a quadruple line splitter, i.e., a five-line node, with the aid of which original signal D0 is divided into the four subsignals T-i, each having a power of one quarter of an original signal power.
The i-th controllable phase adaptation unit 360-i, where i is from one through four, is designed to shift an i-th phase of i-th subsignal T-i by an i-th phase shift value Δφ-i relative to the original phase of the original signal. An “i-th phase” or an “i-th amplitude of i-th subsignal T-i” shall only be understood to mean a designation, not, for example, that the i-th subsignal has multiple phases or amplitudes from a first to an i-th.
For example, third controllable Δ phase adaptation unit 360-3 is designed to shift the third phase of third subsignal T-3 by a third phase shift value Δφ-3 relative to the original phase of the original signal. One or multiple of the i-th phase shift values Δφ-i may also be vanishing, i.e., equal to zero, so that corresponding i-th subsignal T-i may remain in-phase with the original signal. According to the first specific embodiment, controllable phase adaptation units 360-i are designed as phase shifters.
The particular i-th controllable phase adaptation unit 360-i transmits the i-th subsignal with the i-th phase shifted by i-th phase shift value Δφ-i to a respective i-th amplitude adaptation unit 380-i, with the aid of which a particular i-th amplitude of the i-th subsignal is amplifiable or reducible by a particular i-th amplification value dB-i. I-th amplification value dB-i may also be one, so that essentially no amplification or reduction of the i-th amplitude takes place. The particular i-th subsignal having the i-th phase shifted by i-th phase shift value Δφ-i and the i-th amplitude amplified or reduced by i-th amplification value dB-i is transmitted as the i-th, i.e., as the first, second, third or fourth, feed signal D1, D2, D3, D4 to a particular i-th output terminal 331-i of feed signal provision unit 300. For example, the third subsignal having the phase shifted by third phase shift value Δφ-3 and the third amplitude amplified by third amplification value dB-3 is transmitted as third feed signal D3 to third output terminal 331-3.
According to the first specific embodiment, the particular i-th output terminal 331-i is electrically connected via electrical lines, in particular directly, via i-th line L-i to a particular i-th feed terminal 131, 132, 133, 134. For example, third output terminal 331-3 is electrically connected via third line L-3 to third feed terminal 133.
Antenna array 101 of antenna device 100 includes a first, essentially linear feed link 110 and a second, essentially linear feed link 120. First feed signal D1 may be fed into first feed link 110 on a first of two ends of first feed link 110 with the aid of first feed point 131, and second feed signal D2 may be fed at a second of the two ends of first feed link 110 with the aid of second feed point 132. Third feed signal D3 may be fed into second feed link 120 on a first of two ends of second feed link 120 with the aid of third feed point 133, and fourth feed signal D4 may be fed at a second of the two ends of second feed link 120 with the aid of fourth feed point 134.
First feed link 110 includes a first plurality of first branching units 150-i, which are situated spaced apart from one another along first feed link 110. According to the first specific embodiment, the first plurality is four. First branching units 150-1, 150-2, 150-3, 150-4 are each designed as simple, T-shaped three-line nodes, as shown in
Second feed link 120 includes a second plurality of second branching units 151-i, which are situated spaced apart from one another along second feed link 120. According to the first specific embodiment, the second plurality is four. Second branching units 151-1, 151-2, 151-3, 151-4 are each designed as simple, T-shaped three-line nodes, as shown in
One of a third plurality of antenna columns 140-i, here of four antenna columns 140-i, is electrically coupled in each case between a first branching unit 150-i and a second branching unit 151-i. Each of antenna columns 140-i includes a fourth plurality of antenna elements 142-ij, which according to the first specific embodiment are designed as patch antennas. According to the first specific embodiment, furthermore all fourth pluralities are identical and have the value five. The patch antennas may be designed in differing sizes, for example having relatively larger surface areas in the vicinity of first and second feed links 110, 120 and having relatively smaller surface areas in the vicinity of a center between first and second feed links 110, 120.
Antenna columns 140-i are essentially in parallel to one another. To form antenna columns 140-i, antenna elements 142-ij are each electrically connected to one another within a particular antenna column 140-i via a linear line 144-i designed in microstrip technology. Linear first and second power links 110, 120 are also in parallel to one another and are advantageously situated perpendicularly on antenna columns 140-i.
A first phase shifter 160-i, which shifts a phase of an electrical signal propagating between the respective two first branching units 150-i, is situated electrically between respective two first branching units 150-i following one another along first feed link 110. A second phase shifter 161-i, which shifts a phase of an electrical signal propagating between the respective two second branching units 151-i, is situated electrically between respective two second branching units 151-i following one another along second feed link 120.
As shown in
According to the first specific embodiment, dimensions of phase shifters 160-i, 161-i and of feed links 110, 120 are selected in such a way that the propagation time of at least one feed signal T1, T2, T3, T4, preferably of all feed signals T1, T2, T3, T4, fed into a feed link 110, 120 between two branching units 150-i, 150-i following one another along corresponding feed link 110, 120 is always increased by the same propagation time difference. For example, the dimensions of phase shifters 160-i, 161-i and of feed links 110, 120 are selected in such a way that first feed signal T1 fed at first feed point 131 impinges on first branching unit 150-1 at a point in time to, impinges along first feed link 110 on second branching unit 150-2 at a point in time t0+1Δt, impinges along first feed link 110 on third branching unit 150-3 at a point in time t0+2Δt, and impinges along first feed link 110 on fourth branching unit 150-4 at a point in time t0+3Δt.
By simultaneously feeding two, three or four of the first through fourth feed signals T1, T2, T3, T4, each having the adapted i-th phases and/or adapted i-th amplitudes, it is thus possible to deliberately control with which signals at which points in time which antenna elements 142-ij are induced to emit electromagnetic radiation, whereby an instantaneous directional characteristic of the antenna device corresponds to the set directional characteristic. By further adapting the i-th phases and/or i-th amplitudes of the first through fourth feed signals T1, T2, T3, T4, electronic beam scanning may be carried out.
In an arrangement of the antenna array 101 in a plane perpendicular to the ground, with feed links 110, 120 in parallel to the ground, such as in a vehicle, elevation angles and azimuth angles θ of a main lobe of the directional characteristic may be set. To form a minimal azimuth angle Θmin, for example, only first and second feed signals T1, T2 may be fed, and to form a maximal azimuth angle Θmax, for example, only third and fourth feed signals T3, T4 may be fed. To form a minimal elevation angle, for example, only first and third feed signals T1, T3 may be fed, and to form a maximal elevation angle, for example, only second and fourth feed signals T2, T4 may be fed.
For a directional characteristic having a directivity of essentially zero at zero degrees of the elevation angle, shown in
In further contrast to antenna array 101, antenna array 201, as shown in
As shown in
In a step S01, first, second, third and fourth electrical subsignals T1, T2, T3, T4 are generated, as is described in greater detail above based on
In a step S02, first, second, third and fourth electrical feed signals D1, D2, D3, D4 are provided by adapting at least relative phases of first, second, third and fourth electrical subsignals T1, T2, T3, T4 for setting the directional characteristic of antenna device 100; 200.
To induce antenna elements 142-ij to emit electromagnetic radiation having the set directional characteristic, in a step S03 first feed signal D1 is applied to first feed terminal 131 of antenna device 100; 200; in a step S04 second feed signal D2 is applied to second feed terminal 132 of antenna device 100; 200; in a step S05 third feed signal D3 is applied to third feed terminal 133 of antenna device 100; 200; and in a step S06 fourth feed signal D1 is applied to fourth feed terminal 134 of antenna device 100; 200. Application S03, S04, S05, S06 may take place repeatedly, permanently and/or always or at least partially simultaneously.
In a step S07, the phase and/or the amplitude of at least one of first, second, third and fourth feed signals D1, D2, D3, D4 is adapted for adapting the set directional characteristic. This may take place, for example, by feed signal adaptation unit 340, controlled by control unit 400.
Although the present invention has been described above based on preferred exemplary embodiments, it is not limited thereto, but is modifiable in a variety of ways. The present invention may in particular be changed or modified in multiple ways without departing from the core of the present invention.
For example, the antenna columns may include fourth pluralities of antenna elements which are each different. The antenna elements may also have differing dimensions within an antenna column, for example they may tend to be smaller toward the edge of a matrix-shaped antenna array than toward the center.
Number | Date | Country | Kind |
---|---|---|---|
10 2014 212 494.8 | Jun 2014 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2015/058884 | 4/24/2015 | WO | 00 |