The present disclosure in some embodiments relates to an antenna device of a massive MIMO antenna composed of a dual-polarized antenna array. More particularly, the present disclosure relates to a shield wall for shielding multiple dual-polarized antenna modules constituting a massive MIMO antenna from each other.
The statements in this section merely provide background information related to the present disclosure and do not necessarily constitute prior art.
A massive Multiple Input Multiple Output (MIMO) technique is a spatial multiplexing technique that utilizes multiple antennas to dramatically increase data transmission capacity, involving a transmitter for transmitting different data by each different transmit antenna and a receiver for distinguishing the transmit data through proper signal processing. The MIMO technique increases the number of both transmit and receive antennas leading to increased channel capacity for transmitting more data. For example, a 10-times increase of antennas can secure a channel capacity of about ten times for the same frequency band used as compared to employing a current single antenna system.
4th Generation (4G) Long Term Evolution-advanced (LTE-advanced) networks have utilized up to eight antennas, the present stage of pre-5G (5th generation) sees products being developed with 64 or 128 antennas installed, and a base station equipment in the 5G stage is expected to have a much larger number of antennas, which is referred to as a massive MIMO technology. While the current cell operation is 2-dimensional, the massive MIMO technology, enabling 3D-beamforming as it is introduced, is also called full dimension or FD-MIMO.
In the massive MIMO technology, the number of antenna elements increases, which in turn increases the weight and volume of the base station equipment altogether. Miniaturizing, weight lightening and performance-boosting of the relevant components are required taking account of the environment in which a base station is installed, such as a building rooftop, a skyscraping structure, etc., which, however, are hardly achieved due to at least a shield wall for minimizing the frequency interference between dual-polarized antennas.
The present disclosure in some embodiments provides a shield wall formed between multiple dual-polarized antennas by arranging a plurality of staple-shaped unit partitions seeking to replace a shield wall of a conventional thin plate type between dual-polarized antennas, thereby improving both the X-POL isolation and CO-POL isolation characteristics between the multiple dual-polarized antennas while achieving targeted miniaturization and lightening of the weight of an antenna device.
To resolve the above matters, at least one aspect of the present disclosure provides an antenna device including a base substrate, an antenna module array, and a first shield wall. The antenna module array includes a plurality of antenna module strings arranged in a first direction, the antenna module strings each including at least one or more antenna modules that are dual-polarized and arrayed in a second direction perpendicular to the first direction on the base substrate. The first shield wall is disposed between the antenna module strings that are neighboring each other, the first shield wall being formed by a plurality of unit partitions arranged in the second direction and spaced apart from each other.
The first shield wall may be formed by unit partitions made of a conductive linear member.
The unit partitions may each include at least one or more vertical shield members having one ends mounted on the base substrate, and a horizontal shielding member connected to the vertical shield members and spaced apart from the base substrate by a first clearance height.
Multiples of the horizontal shield member may be arranged in a row along the second direction.
The horizontal shield member may be straight.
The horizontal shield member may have a length that allows a mutual frequency interference to be reduced in proportion to a reduced array spacing between the antenna modules, and that is less than an array spacing of the antenna module array in the first direction.
Multiples of the horizontal shielding member may have an array spacing determined to reduce mutual interference between the antenna modules due to radio waves reflected by the unit partitions, the array spacing including an array spacing that is measured in the second direction between the multiples of the horizontal shielding member to be equal to or less than an integer multiple of the length of the horizontal shielding member.
The length of the horizontal shield member may be equal to or less than a quarter of the array spacing of the antenna module array in the first direction.
The array spacing of the multiples of the horizontal shielding member may be at most twice the length of the horizontal shielding member.
The unit partitions may each include two vertical shielding members which have one ends connected to the base substrate and other ends connected to both ends of the horizontal shielding member, respectively.
The antenna device may further include second shield walls disposed on the antenna module string at both outer sides respectively, distally in the first direction, the second shield walls being formed by a plurality of unit partitions arranged in the second direction and spaced apart from each other, wherein the unit partitions of the second shield wall each include a horizontal shielding member spaced apart from a reflector by a second clearance height which is lower than the first clearance height.
The vertical shield members may have other ends, further including connection terminals formed to connect each of the unit partitions to the base substrate.
The connection terminals may each include a pin member inserted through the base substrate.
The connection terminals may each include a lead member extending in parallel with the base substrate, and the lead member may be configured to be soldered onto the base substrate.
The first shield wall may be formed by unit partitions that are composed of a printed circuit board erected on the base substrate and a conductive pattern formed on the printed circuit board.
As described above, the present disclosure provides a shield wall formed between multiple dual-polarized antennas by arranging a plurality of staple-shaped unit partitions to mount a higher density of antenna modules with ease, thereby realizing a desirable antenna structure which is compact and lightweight, shielding against frequency interference.
Hereinafter, some embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In the following description, like reference numerals designate like elements, although the elements are shown in different drawings. Further, in the following description of some embodiments, a detailed description of known functions and configurations incorporated therein will be omitted for the purpose of clarity and for brevity.
Additionally, various terms such as first, second, A, B, (a), (b), etc., may be used solely to differentiate one component from the other but not to imply or suggest the substances, order, or sequence of the components. Throughout this specification, when a part “includes” or “comprises” a component, the part is meant to further include other components, not to exclude thereof unless specifically stated to the contrary. The terms such as “unit,” “module,” and the like refer to one or more units for processing at least one function or operation, which may be implemented by hardware, software, or a combination thereof.
In general, a dual-polarized antenna includes antenna patches 910, a base substrate including a feed line 930 and a reflector, and shield walls 920. Of various shapes in use, the most common type of antennas for wireless communications apparatus is an X-POL (dual polarization) antenna having rectangular antenna patches and diagonally arranged poles oriented at an angle of +45 or −45. Such an X-POL antenna arrangement allows twice more antennas to be integrated into the same space as compared to a V-POL (single polarization) antenna to realize a large number of antennas in a smaller dimension. Such an antenna patch needs a predetermined interval to be secured between an adjacent patch to minimize their frequency interference. However, taking into account the mobile communication frequency band inhibits narrowing the interval of patches, which puts a limitation on reducing the size of the base station antenna.
As shown in
The base substrate 310 may be a structure including a reflector, serve as a provider of grounding of the antenna circuit, and as a reflective surface. The rear radiation of the dual-polarized antenna is reflected in the main radiation direction, thereby improving the beam efficiency of the dual-polarized antenna. The antenna module 110 described below is supposed to include the antenna patches 910 and a feed line for supplying an RF signal to the antenna patches 910.
To reduce the weight and costs of manufacturing, a first comparative example by a conventional approach may be considered, in which shield walls 210 are installed only in one direction, i.e., longitudinal direction (a second direction D2) as shown in
A typical massive MIMO antenna requires the X-POL and CO-POL isolation characteristics to have a 20 dB or more shieling performance.
In describing the present disclosure, the shield wall 42 of
As shown in
In short, each shield wall 42 has an alignment of multiple component unit partitions 410, each featuring the horizontal shielding member 412 that is disposed flush with the antenna modules 110 and further having the vertical shielding members 414, wherein the horizontal shielding member 412 and the vertical shielding members 414 are made of a wire bent into the unit partition 410 which is simple and easy to surface-mount.
The unit partition 410 may further take the shapes of
The array spacing between the unit partitions 410, the length of the horizontal shielding member 412, and the height of the vertical shielding member 414 may factor into determining the performance of the shield wall 42 according to at least one embodiment of the present disclosure, that is, the performance of reducing mutual interference between the antenna modules 110 due to the radio wave reflected by the unit partitions 410. In at least one embodiment, the height of the vertical shield member 414 is equivalent to the elevation of the horizontal shielding member 412 from above the base substrate 310 as a reference plane.
Amounting to the speed of light (3×108 m/s), the speed of electromagnetic waves equals the product of wavelength and frequency. Here, the wavelength of 2.5 GHz, which is the band of the mobile communication frequency, is calculated to be 120 mm. The optimum shield wall design factor values according to at least one embodiment of the present disclosure are as follows.
The length of the horizontal shielding member 412 of the unit partition 410 is λ/8 and is preferably equal to one-eighth of the wavelength of the frequency in use, which corresponds to 15 mm for the frequency of 2.5 GHz. In at least one embodiment, the antenna module 110 has an array spacing that has been reduced in first direction D1 than in the conventional case, and the length of the horizontal shielding member 412 in at least one embodiment is so determined that can reduce mutual frequency interference between adjacent antenna modules 110. In particular, the antenna module 110 preferably has a length shorter than the array spacing in direction D1 between the antenna modules 110.
This is the case where the antenna modules 110 have an array spacing of λ/2 in second direction D2, and the length of the horizontal shielding member 412 is equivalent to a size of one-quarter of the array spacing between the antenna modules 110. In the arrangement of the unit partitions 410 according to at least one embodiment of the present disclosure, this may be interpreted that the array spacing of the horizontal shielding members 412 in second direction D2 preferably has an integer multiple of the length of the horizontal shielding member 412. Where the placement of the antenna modules 110 is different from the at least one embodiment, the array spacing of the horizontal shield members 412 may be optimized not to exceed the size determined by the conditions described above. The vertical shield member 414 preferably has a height referred to as a first clearance height that equals to λ/10 of the wavelength of the frequency in use, and that the distance between the horizontal shielding member 412 and the base substrate 310 is less than the length of the horizontal shielding member 412 and is equal to 12 mm for 2.5 GHz. The distance between the horizontal shielding member 412 and the base substrate 310 is 12 mm. The array spacing of the unit partitions 410 is preferably less than λ/3, and in at least one embodiment, it is designed to be λ/6 by which the unit partitions 410 are arranged. When considering modifications to the basic arrangement of the antenna modules 110, it is preferable that the array spacing between the unit partitions 410 is smaller than twice the length of the horizontal shielding member 412 to shield radio waves that can be transmitted through the shield walls 42. The numerical values associated with the size and number of the unit partitions 410 may be determined by the arrangement of the antenna modules 110 and the wavelength of the frequency they use, and the numerical values can be easily optimized by computer simulation.
As shown in
Therefore, when employed by the massive MIMO antenna, the shield wall 42 in which the unit partitions 410 are arranged according to at least one embodiment of the present disclosure may be designed to have the horizontal shielding member 412 at its best length, the vertical shielding member 414 at its best height and have a predetermined size or relatively smaller array spacing, which can satisfy both the X-POL and the CO-POL isolation characteristics.
Referring again to
In at least one embodiment, the array spacing of the antenna modules 110 or the shield walls 42 in first direction D1, which is the transverse direction, is set to 0.5λ, the array spacing of the antenna modules 110 in second direction D2, which is the longitudinal direction, is set to 0.7λ, and the CO-POL isolation between the antenna modules 110 as disposed transversely generally depends on the transverse array spacing in first direction D1. However, considering the various related components and circuits mounted on the rear surface of the antenna along with the base station antenna structure and the like, the array spacing in the transverse direction, which is first direction D1, is more restrictive in design. The transverse distance between the elements of the antenna module 110 needs to be less than the wavelength λ of the frequency in use to prevent the generation of a grating lobe and to be larger than the λ/2 size to reduce the coupling between the elements so that the longitudinal distance is preferably to set close to the middle ground that is 0.7λ.
Where the array spacing is narrow in the horizontal direction, i.e., first direction D1, X-POL isolation is degraded by installing the shield walls 210 alone longitudinally in second direction D2 as shown in
Although the unit partition 410 according to at least one embodiment of the present disclosure has the form of a staple having a rectangular shape with one side removed for the sake of convenience of manufacture, various modified forms from a staple form, such as, among others, a ‘π’ shape or a partition having an inwardly or outwardly inclined leg.
According to at least one embodiment of the present disclosure, the unit partition 410 is included in a plane to which the shield wall 42 belongs and can shield the frequency interference between the neighboring antenna modules 110 with the horizontal shielding member 412 or the vertical shielding member 414 not being necessarily straight. The horizontal shielding member 412 of the unit partition 410 in at least one embodiment may not be straight as far as the projected image of the horizontal shielding member 412 on a first plane parallel to the antenna module 10 is straight. When making the horizontal shielding member 412 non-straight, the distance between both ends of the horizontal shielding member 412 and the array spacing between the unit partitions 410 may be designed through an optimization process using a computer simulation or other methods.
Besides, although not shown, unit partitions in the form of hollow sheets should also be construed to be included within the scope of the present disclosure. It is to be understood that the unit partition in the form of a sheet with a hollow interior also has a shielding effect similar to the shape formed by a linear member in the form of a wire, and such embodiments are also intended to be included within the scope of the present disclosure. In this case, the width, the height, and the internal hollow dimension of the sheet based on the frequency wavelength used can be provided with optimized numerical values of design variables through computational simulation as with the linear member in the staple form.
According to the present disclosure, the shield wall 42, which has the unit partitions 410 arranged in the longitudinal second direction D2, is structured as bent wire pieces, resulting in just a little gain in weight of the entire shield wall 44 but an advantageous gain in production and installation. The very lightweight unit partition 410 obviates the need for the base substrate 310 to be formed with vias for assembly so that the unit partition 410 can be firmly attached to the base substrate 310 by SMD soldering alone. A person skilled in the art will be able to use various methods of improving the coupling strength between the unit partition 410 and the base substrate 310 after the surface mounting, such as by further bending the end of the vertical shield member 414 of the unit partition 410 so that the bent end extends in parallel to the base substrate 310.
By implementing the shield wall 42 with the conductive pattern units 430 mounted on the printed circuit board 432, manufacturing costs of the shield wall 42 can be reduced, mounting on the base substrate 310 can be very simple, and the shield wall 42 can be easily redesigned to have various types of conductive pattern units 430 conforming to various antenna devices.
In principle, a massive MIMO antenna, used as an external antenna in a wireless communication base station, is harshly exposed to temperature change, vibration, etc. so that it is preferably structured to be shock-proof. With the unit partition 410 according to at least one embodiment of the present disclosure, the quality and workability of the soldering process can be very high compared to the soldering of a member having a wide metal piece or copper foil layer which quickly absorbs and dissipates heat applied during soldering. Such improvement of the unit partition 410 is a very advantageous point for the massive MIMO antennas that need to be designed with mass production in mind.
Apart from the principal symmetry generally maintained along second direction D2 between the antenna modules 110 and the shield walls 42, the antenna device has edges 510 where symmetry is absent. In this case, unless sufficient ground areas are secured for the edges 510 of the base substrate 310, the frequency characteristics of the outermost antenna modules 110 may be degraded.
Although the ground areas of the edges 510 of the base substrate 310 are required to maintain the antenna characteristics, the ground area of each edge 510 of the base substrate 310 is preferably minimized for the sake of some saved dimension of the entire massive MIMO antenna since those areas do not take part in transmitting and receiving the actual radio frequency signal.
Accordingly, a computer simulation-based optimization process has been conducted for securing the design specification of the second partition 440 to prevent degradation of the frequency characteristics of the adjacent antenna modules 110 while minimizing the ground area of the edge 510 of the base substrate 310.
As shown in
As shown in
As shown in
An antenna device according to at least one embodiment of the present disclosure can provide a massive MIMO antenna capable of providing sufficient performance within a reduced overall dimension by lowering the height of the shield wall 42 disposed at both edges 510 of the antenna device relative to the shield wall 42 disposed at the inner side. As shown in
The shield walls 42 and 43, according to various embodiments of the present disclosure are capable of attenuating a beam penetrating the shield wall 42 or reflected from the shield walls 42 and 43. With the shield walls 42 and 43 in which the unit partitions 410 and conductive pattern units 430 are employed according to at least one embodiment of the present disclosure, the antenna modules 110 can be implemented with the freedom of arrangement.
Referring back to
As shown in
According to the computational simulations shown in
By using the shield wall 42 employing the unit partitions 410 (or the conductive pattern units 430) according to at least one embodiment of the present disclosure, the same number of antenna modules can be effectively arrayed taking a smaller footprint. Besides, as shown in
Although exemplary embodiments of the present disclosure have been described for illustrative purposes, those skilled in the art will appreciate that various modifications, additions, and substitutions are possible, without departing from the idea and scope of the claimed invention. Therefore, exemplary embodiments of the present disclosure have been described for the sake of brevity and clarity. The scope of the technical idea of the present embodiments is not limited by the illustrations. Accordingly, one of ordinary skill would understand the scope of the claimed invention is not to be limited by the above explicitly described embodiments but by the claims and equivalents thereof.
Number | Date | Country | Kind |
---|---|---|---|
10-2018-0004286 | Jan 2018 | KR | national |
This application is a continuation application of International Application No. PCT/KR2018/016589, filed on Dec. 24, 2018, which claims priority to and benefit of Korean Patent Application No. 10-2018-0004286 filed on Jan. 12, 2018, the disclosures of which are incorporated by reference herein in their entirety.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/KR2018/016589 | Dec 2018 | US |
Child | 16925277 | US |