1. Field of the Invention
The present invention generally relates to an antenna device, and especially relates to an antenna device that includes a ground plate that is shaped like a plate, and a feeding unit that extends at a predetermined angle from the ground plate for a predetermined length, the feeding unit being prepared perpendicular to the ground plate.
2. Description of the Related Art
In recent years and continuing, radio communications technology using UWB (ultra-wide band) attracts attention since radar positioning and communications at a large transmission capacity are possible. As for UWB, U.S. FCC (Federal Communications Commission) allowed use of a 3.1-10.6 GHz band in 2002.
Communications at UWB are performed by sending a pulse signal using a wide frequency band. Accordingly, an antenna device used for UWB has to be capable of receiving a wide band signal.
For UWB communications, at least in the 3.1-10.6 GHz frequency band approved by the FCC, an antenna device consisting of a ground plate and a feeder is proposed (Non-patent Reference 1).
An antenna 10 shown in
Here, the circular cone is set up such that the side of the circular cone and the ground plate 11 make an angle θ. A desired antenna device property is obtained by setting the angle θ.
An antenna 20 shown in
The feeding units 12 and 22 of the antennas 10 and 20, respectively, are connected to a filter 31, as shown in
[Non-Patenting Reference 1]
“An Omnidirectional and Low-VSWR Antenna for the FCC-Approved UWB Frequency Band”, published by The Institute of Electronics, Information and Communication Engineers, B-1-133, page 133, Takuya Taniguchi and Takehiko Kobayashi (The Tokyo Electric University) (Presented on Mar. 22, 2003 at classroom B201).
[Problem(s) to be Solved by the Invention]
As described above, the conventional wideband antenna device needs to have a filter for sorting out a radio wave in addition to an antenna.
It is a general object of the present invention to provide an antenna device that substantially obviates one or more of the problems caused by the limitations and disadvantages of the related art.
Features and advantages of the present invention are set forth in the description that follows, and in part will become apparent from the description and the accompanying drawings, or may be learned by practice of the invention according to the teachings provided in the description. Objects as well as other features and advantages of the present invention will be realized and attained by an antenna device particularly pointed out in the specification in such full, clear, concise, and exact terms as to enable a person having ordinary skill in the art to practice the invention.
To achieve these and other advantages and in accordance with the purpose of the invention, as embodied and broadly described herein, the present invention provides an antenna device that includes a ground plate and a feeding unit. Therein, the feeding unit extends from the ground plate at a predetermined angle for a predetermined length, the feeding unit being prepared perpendicular to the ground plate. Further, the ground plate includes a non-conductive section that is formed in a shape corresponding to a desired frequency to pass.
In this manner, there is no need for an additional external filter, simplifying the structure of the antenna device.
In the following, embodiments of the present invention are described with reference to the accompanying drawings.
The antenna device 100 includes an antenna 101 and a transceiver unit 102.
The antenna 101 includes a feeder unit 111 and a ground plate 112. The feeder unit 111 is made from an electrically conductive material, such as a metal, and includes a sphere section 111a, a cone section 111b, and a feeder section 111c structured in one body. The sphere section 111a is arranged such that it is embedded in the base of cone section 111b.
The cone section 111b is set up so that the side of the cone section 111b and the surface of the ground plate 112 make an angle θ. The feeder section 111c is extended in the direction of Z1 from the apex of the cone section 111b. The feeder section 111c passes through a center hole 112a from the surface side to the rear side of the ground plate 112. The feeder section 111c is connected to the transceiver unit 102 on the rear side of the ground plate 112.
The ground plate 112 is made from an electrically conductive material, is formed in the shape of a disk, and is grounded. The center hole 112a that provides an opening between the surface and the rear side is formed at the center of the ground plate 112. Through the center hole 112a, the feeder section 111c of the feeder unit 111 is passed. At this time, between the feeder section 111c and the wall of the center hole 112a, an insulator is inserted such that the feeder unit 111 and the ground plate 112 are electrically insulated.
Further, through-holes 112b each in the shape of a circular arc are formed in the ground plate 112 along a circle having a radius r1 from the center, the width of the through-holes 112b being W1. The inside and the outside of the circle, along which circle the through-holes 112b are provided, are electrically and mechanically connected by bridge sections 112c prepared every 90 degrees. According to the antenna 101 structured in this way, an electromagnetic wave generated between the feeder unit 111 and the ground plate 112 is influenced by the through-holes 112b, providing a filtering effect.
The transceiver unit 102 is connected to the feeder unit 111, and supplies a transmission signal to the feeder unit 111.
As shown in
The antenna device 200 includes the antenna 201 that is different from the first embodiment in that the antenna 201 includes a ground plate 212 that is different from the first embodiment. The difference is that the ground plate 212 has through-holes 212b that have a width W2, as shown in
By setting the width of through-holes 212b at W2, which is greater than W1, the VSWR peaks at a frequency f2 that is lower than f1 as shown in
As described above, a desired frequency characteristic can be obtained by properly setting the width W1 and W2 of the through-holes 112b and 212b, respectively. In this manner, according to this embodiment, an external filter is dispensed with for obtaining a desired frequency characteristic.
Thus, according to the first and the second embodiments of the present invention, change of the frequency characteristic is attained by changing the sizes of the through-holes 112b and 212b.
Further, it becomes possible to finely tune the frequency characteristic by inserting electrically conductive or dielectric pieces in the through-holes 112b and 212b as described below.
[The Adjustment Method of Antenna Device]
FIGS. A and 9B show how the frequency characteristic of the antenna device 101 according to the first embodiment the present invention is finely tuned.
A method is as shown in
Another method is as shown in
Here, through-holes 133 are shaped to be different from the through-holes 112b as shown in
The antenna device 300 includes a feeding unit 301, a ground plate 302, and a transceiver unit 303 prepared on a printed wiring board 304.
The feeding unit 301 is formed by an electrically conductive pattern 311 provided on the printed wiring board 304. The electrically conductive pattern 311 is formed in the shape that is obtained when the center of the antenna 101 shown in
The triangle pattern 322 corresponds to the cone section 111b of the feeding unit 111 of the first and the second embodiments, and is arranged such that the apex of the triangular pattern 322 faces the ground plate 302. The feeder pattern 323 connects the apex of the triangular pattern 322 and the transceiver unit 303, the feeder pattern 323 being insulated from the ground plate 302. In this manner, the transmission signal output from the transceiver unit 303 is provided to the feeding unit 301.
The ground plate 302 having a length L31 and width W31 is formed between the feeding unit 301 and the transceiver unit 303. The ground plate 302 includes a filter section 331 for filtering the transmitted electric wave, and a penetration section 332 for the feeder pattern 323 to run through.
The filter section 331 having a length L32 is constituted by a pattern made from a non-conductive material, and is located near the center of the ground plate 302. The filter section 331 influences the electromagnetism between the ground plate 302 and the feeding unit 301, and VSWR of a specific frequency is changed.
The characteristic shown in
As described above, according to this embodiment, the antenna device 300 is constituted by the electrically conductive pattern 311 on the printed wiring board 304, and further, the transceiver unit 303 is mounted on the printed wiring board 304. In this way, the antenna device 300 is made small and thin.
The antenna device 400 includes a ground plate 402 that is provided on the rear side (undersurface) of the printed wiring board 304.
The ground plate 402 has a length L31 and a width W31, and is provided at a position corresponding to between the feeding unit 301 and the transceiver unit 303 on the rear side of the printed wiring board 304. The ground plate 402 includes a filter section 431 for filtering the frequency of a transmitted electric wave.
The filter section 431 having the length L32 is constituted by a pattern of a non-conductive material, and is provided near the center of the ground plate 402. The filter section 431 influences the electromagnetism between the ground plate 402 and the feeding unit 301, and VSWR changes at a specific frequency.
When L31=25 mm, L32=7 mm, and W31=50 mm, nearly the same frequency characteristic as shown by
The antenna device 500 includes a feeding unit 501, a ground plate 502, a transceiver unit 503, and a printed wiring board 504.
The feeding unit 501 and the ground plate 502 are formed by an electrically conductive pattern having a thickness t on the printed wiring board 504. The feeding unit 501 is the same as the circular section 321 of the feeding unit 301 of the third and the fourth embodiments, except that both ends in the directions of arrows Y are cut off parallel to the directions of arrows X. The feeding unit 501 has a length L51 and a width W51.
As for the feeding unit 501, the apex of the triangle section 522 serves as a feeding point p, and the transceiver unit 503 is connected to the feeding point p.
The ground plate 502 having a length L52 and a width W52 is connected to the ground. Concavities 531 and 532 are formed in the ground plate 502 on both sides of the feeding point p, i.e., the center of the ground plate 502 in the directions of the arrows Y.
Formation of the concavities 531 and 532 starts at a distance equivalent to W53 measured from the center of the ground plate 502 in the directions of the arrows Y, and ends at a distance equivalent to W54 measured from the center of the ground plate 502 in the directions of the arrows Y. The concavities 531 and 532 each have a length L54. The electromagnetism between the ground plate 502 and the feeding unit 501 is influenced by the concavities 531 and 532, and the VSWR changes at a specific frequency.
The property shown in
Further, the present invention is not limited to these embodiments, but various variations and modifications may be made without departing from the scope of the present invention.
The present application is based on Japanese Priority Application No. 2004-066117 filed on Mar. 9, 2004, with the Japanese Patent Office, the entire contents of which are hereby incorporated by reference.
Number | Date | Country | Kind |
---|---|---|---|
2004-066117 | Mar 2004 | JP | national |