1. Field of the Invention
The present invention relates to an antenna device provided to a vehicle to receive signals transmitted from an artificial satellite, and more particularly, to a vehicle antenna device having a simplified structure so that the size and cost can be reduced.
2. Description of the Related Art
In recent years, a system to receive signal waves transmitted from multiple artificial satellites that orbit around the earth by a receiver and detect the present position of the receiver based on information included in the received signal waves has come into widespread use. The system is generally called GPS (Global Positioning System) in countries including Japan and the United States of America and typically uses the GPS satellites controlled by the U.S. Department of Defense, while there are similar systems such as Galileo in Europe and Glonass in the Russian Federation. Herein, the positioning system using artificial satellites, the artificial satellites for the positioning system, signal waves transmitted from the artificial satellites, and receivers receiving the signal waves will be referred to as GPS, GPS satellites, GPS signals, and GPS receivers, respectively for ease of representation.
The GPS allows the present position of a moving body to be detected highly accurately and almost in real time, and therefore the system is primarily used for measuring the present position of a moving body such as an automobile, an airplane, and a mobile telephone using a receiver provided in the moving body.
Today, GPS receivers suitable for automobiles, in other words, vehicle GPS receivers have rapidly come into widespread use. When such a GPS receiver is provided in an automobile, an antenna device for receiving a GPS signal is provided on the exterior of the automobile such as on the roof.
Also in recent years, a satellite broadcasting system in which signals including audio and video information are transmitted from a broadcasting satellite for broadcasting has been in wide use. At present, in the United States of America, audio sound information provided by such a satellite broadcasting system, so-called satellite radio broadcasting is provided by XM Satellite Radio Inc. In the satellite radio broadcasting, signals transmitted from a satellite can be received in a wide area on the earth, and therefore the broadcasting can be received and listened to not only in fixed locations such as in general households with a receiver, but also in a moving body (vehicle) such as an automobile with a receiver provided in the moving body. The latter case has attracted much attention.
An antenna device 100 as shown in
As shown in
There has been a demand for smaller vehicle antenna devices in order to improve the appearance of the vehicle exterior. A so-called diversity method by which a number of antenna devices are provided to a vehicle has been suggested in order to improve the receiving sensitivity. By this method, a plurality of antenna devices must be provided to the vehicle, and the demand for smaller size, less costly antenna devices is strong.
The conventional antenna device 100 however includes a large number of parts as described above, and therefore there is a limit to the size and cost reduction.
The invention has been made in view of the above described circumstances associated with the conventional technique, and it is an object of the invention to provide a vehicle antenna device attached to a vehicle for receiving a signal transmitted from an artificial satellite having a simple structure, so that the size and cost may be reduced.
An antenna device according to the invention is provided to a vehicle and receives a signal transmitted from an artificial satellite. The device includes an antenna module stored in a main body case for receiving the signal, a low noise amplifying circuit provided directly on a ground plane of the antenna module for amplifying the signal received by the antenna module, and a shield case shielding the low noise amplifying circuit.
In the antenna device according to invention, the low noise amplifying circuit is provided on the ground plane of the antenna module, and therefore a circuit board and a member such as a length of double-faced adhesive tape to attach the circuit board that would otherwise be required by the conventional antenna device are not necessary. Therefore, the number of parts can significantly be reduced, and the structure can considerably be simplified.
In the antenna device according to invention, the low noise amplifying circuit is provided on the ground plane of the antenna module, and therefore a circuit board and a member to attach the circuit board that would otherwise be required by the conventional antenna device are not necessary. In this way, the size of the vehicle antenna device as a whole can readily be reduced, which contributes to the cost reduction.
Now, an embodiment of the invention will be described in detail in conjunction with the accompanying drawings. Note that the invention is suitably applicable to an arbitrary antenna device that receives a satellite signal transmitted from an artificial satellite such as a vehicle antenna device that receives satellite radio broadcasting. In the following, a GPS receiving antenna 10 shown in
As shown in
The antenna module 11 includes a ceramic material in a rectangular plate shape and antenna elements formed on one surface of the ceramic material. A so-called planar patch antenna is thus formed. As shown in
On the ground plane 11a of the antenna module 11, a filter element 15 that extracts signals in a prescribed frequency band among signals received by the antenna module 11 is provided in addition to the LNA circuit 12. The GPS receiving antenna 10 can remove unwanted frequency components included in the received signals using the filter element 15, and therefore the receiving characteristic can significantly be improved.
The circuit formed on the ground plane 11a of the antenna module 11 is connected with an output cable 16 to extract signals to the outside.
The LNA circuit 12 includes a first stage amplifier (LNA: Low Noise Amplifier) 3, a band-pass filter 4, and a second stage amplifier (LNA: Low Noise Amplifier) 5, and is operated for example in a frequency band of 1500 MHz.
Trap circuits are provided in the first stage of the LNA circuit 12, so that the circuit is designed to have frequency selectivity. More specifically, a first trap circuit 6 for trapping signals in the range from 800 MHz to 900 MHz, and a second trap circuit 7 for trapping signals in the range from 1800 MHz to 1900 MHz are connected. Note that the trap frequency is set to a frequency band for mobile phone for example, while the frequency band for mobile phone are different among countries and areas, and therefore the trap frequencies of the trap circuits 6 and 7 are adjusted depending on the country or area in which the device is used.
Herein, the first trap circuit 6 includes an inductor L1 and a capacitor C1 connected in series, and the second trap circuit 7 includes two systems of LC (inductance-capacitance) circuits (L2+C2 and L3+C3) connected in parallel. More specifically, the first and second trap circuits 6 and 7 are both an LC trap filter using LC.
In this way, since the trap circuits 6 and 7 are provided in the first stage of the LNA circuit 12, radio waves transmitted from a mobile phone received by an antenna part 1 are let to pass to GND through the trap circuit 6 or 7 depending on the frequency band, and waves produced by attenuating signals in the frequency bands other than the target range are input to the first stage amplifier 3. In this way, the first stage amplifier 3 is not saturated by the waves transmitted from the mobile phone, and receiving failure caused by the saturation of the first stage amplifier 3 and a drop in the amplifying degree in the GPS frequency band can be prevented.
In the above described GPS receiving antenna 10, the LNA circuit 12 and the filter element 15 are provided on the ground plane 11a of the antenna module 11, and therefore circuit boards needed by the conventional antenna device, or members for attaching the circuit boards are not necessary, which significantly reduces the number of parts. Furthermore, the structure can considerably be simplified. Consequently, the size of the GPS receiving antenna 10 as a whole can be reduced and the cost can be reduced.
Number | Date | Country | Kind |
---|---|---|---|
P. 2003-336728 | Sep 2003 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5859614 | Paolella et al. | Jan 1999 | A |
6236366 | Yamamoto et al. | May 2001 | B1 |
6281844 | Kodim et al. | Aug 2001 | B1 |
6567049 | Huang et al. | May 2003 | B1 |
6639559 | Okabe et al. | Oct 2003 | B1 |
6721544 | Franca-Neto | Apr 2004 | B1 |
20020067312 | Hilgers | Jun 2002 | A1 |
20020126049 | Okabe et al. | Sep 2002 | A1 |
20040056803 | Soutiaguine et al. | Mar 2004 | A1 |
Number | Date | Country |
---|---|---|
2001-68912 | Mar 2001 | JP |
Number | Date | Country | |
---|---|---|---|
20050068237 A1 | Mar 2005 | US |