The present application claims priority to European Patent Application No. 21165136.9, filed Mar. 26, 2021, the entire contents of which are incorporated herein by reference.
The present disclosure relates to an antenna device.
Various PCB (printed circuit board) based antenna or antenna array solutions are known for usage with fully integrated radar sensors or wireless communication systems in the mm-wave (millimeter-wave) frequency range. In most commercial products single layer patch antennas are applied. Most common types of antennas are series-fed patch or combline antenna arrays because of their compact size and high gain.
However, the useful bandwidth of series-fed antenna arrays is limited. Good sidelobe suppression requires amplitude tapering which reduces the bandwidth further. Furthermore, system miniaturization is difficult to achieve by conventional microstrip feeding networks.
The “background” description provided herein is for the purpose of generally presenting the context of the disclosure. Work of the presently named inventor(s), to the extent it is described in this background section, as well as aspects of the description which may not otherwise qualify as prior art at the time of filing, are neither expressly or impliedly admitted as prior art against the present disclosure.
It is an object to provide an antenna device that provides an increased overall gain, allows system miniaturization, operates in an increased overall bandwidth and/or sufficiently suppresses sidelobes.
According to an aspect of the present disclosure there is provided an antenna device comprising
According to an aspect of the present disclosure there is provided an antenna device comprising
One of the aspects of the disclosure is to provide a dual- or multi-layer stacked patch antenna that may be mounted on a multilayer PCB. The electromagnetic wave carrying the signal information propagates from electronic devices to the antenna and vice versa. The antenna may be placed on one side of the PCB whereas the electronic devices may be placed on the opposite side of the PCB. Interconnection of antenna and frontend components may be achieved by employing a mm-wave through signal via with multiple matching structures. Unwanted modes on the stacked patches may be suppressed by virtual AC (alternating current) short circuits. Therefore, an antenna radiation efficiency of more than 50% in a frequency range between 76-81 GHz can be achieved.
The arrangement of a compact feeding network may ensure amplitude tapering on the antenna patches while having almost no impact on the radiation characteristic. An offset arrangement of the dual patches results in a sidelobe suppression below −15 dB over the entire frequency range or dedicated frequency bands. The mm-wave signal may be fed to the antenna patches by employing a parallel feed network. Multiple parallel-fed antenna array can be arranged side by side in a half wavelength configuration. The obtained results indicate that the presented antenna device reduces the form factor of PCB based mm-wave radar systems while obtaining better wideband radiation characteristics compared to conventional patch antenna arrays.
The foregoing paragraphs have been provided by way of general introduction, and are not intended to limit the scope of the following claims. The described embodiments, together with further advantages, will be best understood by reference to the following detailed description taken in conjunction with the accompanying drawings.
A more complete appreciation of the disclosure and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
An antenna is a commonly used part of a transmitter and a receiver of many electronic systems, such as radars and mobile or wireless communication systems. Antennas can be configured in many different sizes and forms, one of which is being a microstrip patch antenna, which has the advantages of being small in size and which can be fabricated directly on a PCB together with other circuitries, thus reducing the production costs. A single antenna has a fixed gain (which relates to the amount of energy it can radiate or receive) and fixed beam angles. In order to increase the overall gain and/or to generate a beam with desired angles, an antenna array is often used.
Referring now to the drawings, wherein like reference numerals designate identical or corresponding parts throughout the several views,
The substrate 10 is generally formed by a dielectric material. The patch 11 (also called radiator patch) and the ground layer 15 are generally made from metal. The patch 11 can be in many different shapes, e.g. square or triangle, etc. The commonly used shape is a rectangle. To meet the radiating condition, the length, L, of the patch 11 should be just about or slightly less than half guided wavelength of the signal. The width of the patch is indicated by W. Higher order mode excitation may be avoided by keeping W shorter than two times L.
There are many ways to launch/deliver a signal to the radiating element. Examples include:
A single-patch antenna as shown in
The a two-layer stacked patch antenna 20 comprises two patches 21A, 21B, a substrate 22 comprising two substrate layers 22A, 22B, a feedline 23 with a port 24, and a ground layer 25. The upper patch 21A is arranged on the top surface 211 of the upper substrate layer 22A. The lower patch 21B is arranged between the upper substrate layer 22A and the lower substrate layer 22B, i.e., on the upper surface of the lower substrate layer 22B.
The material(s) properties, including dielectric constant(s) and thickness(es), etc., and metal thickness(es) may all have an effect on the guided wavelength for each radiating frequency, i.e. the design of the length of each patch. The two substrate layers 22A, 22B may or may not be made from the same material, and may or may not have the same thickness. Different layers of metal may be of different thicknesses.
There are different types of PCB layer stacks available. In an embodiment a prepreg-prepreg-prepreg-core-prepreg-prepreg-prepreg configuration may be used. This means that only the center part of the PCB is made of rigid material and the upper copper layers are pressed together with prepreg layers. These layers might suffer from height variation. Furthermore, losses on prepreg material are approximately two times higher than on core material. An advantage of such a stack is the great design flexibility as micro via holes can be realized on every layer. Conventional stacks e.g. use a core-prepreg-core-prepreg-core-repreg-core configuration. As core material is rigid, the losses are very low and the height is constant. However, there are small deviations in the material parameters of prepreg and core material although they are very similar. Typical values for the dielectric constant of core and prepreg materials are between 2.5 and 4.
On the feedlines higher order modes should be avoided. Assuming a dielectric constant of 3, the thickness of the lower substrate layer 22B should be between 50 μm and 100 μm. If the height between the upper patch and the ground plane is increased a higher relative bandwidth of the patch antenna is obtained. Therefore, the height of the upper substrate layer 22A should be between 70 μm and 300 μm if a dielectric constant of 3 is assumed.
There are many ways to launch energy to all different patches. In the embodiment shown in
The width of the two (or more; see
Different from a single patch antenna, that can only work for a narrow band of frequency, the antenna 20 having different sizes of patches can work for more than one bands of frequencies. If these bands are close together, it can be seen that the antenna is working for a very wide band of frequency.
In still other embodiments, instead of or in addition to the different sizes of the patches 21A, 21B, they may be offset (in x- and/or y-direction; preferably in width direction (=x-direction)) with respect to each other so that their symmetry lines (in z-direction) are not identical, but are offset (in x- and/or y-direction).
It should be noted that the explanations given above for length, width and materials of the antenna elements of the known antenna 10 shown in
If one or more radiating elements are isolated, e.g. the upper patch 21A of the antenna 20, a higher-order mode may appear in those patches. In order to eliminate, or to minimize, the effect of unwanted higher-order modes, via hole(s) can be introduced to link different patches.
Apart from shorting out certain unwanted mode, the via holes 31 enable to feed energy between the patches 21A, 21B. There could be more than two via holes. Further, the location of the via holes may be in the middle of the patch, but finally depends on design requirements. The desired via positions can e.g. be obtained through a three-dimensional electromagnetic time-domain simulation or any other suitable technique.
In this embodiment, the array comprises five antennas, but the number may be smaller or larger. Each of the antennas of the array may be configured like the antennas shown in
The antennas are arranged horizontally in this embodiment. By adjusting the phase of the feeding signals on the antenna beam steering in the azimuth direction can be achieved. However, as in this embodiment it is one-dimensional array (having a single row of antennas and multiple columns), the radiation in elevation direction will substantially be the same as for a single antenna and cannot be changed. In another embodiment, a two-dimensional array with multiple rows and columns of antennas may be provided, enabling that beam-steering in azimuth and elevation direction is supported.
One of the potential effects of having an antenna array is that multiple side-lobes may be introduced. These side-lobes are generally much more significant than those of a single antenna. Side-lobes may be useful for certain applications, but generally, they are not desirable. The side-lobe level is frequency dependent which relates to the size of the patch. Although it can be suppressed by adjusting the separation between radiating elements and the radiated power (antenna gain and signal level can be adjusted) of each radiating element, this basic side-lobe suppression technique has very narrow bandwidth, i.e. it works well in one frequency but get worse further away from that frequency. The use of stacked antennas radiating at different frequencies provides the option to design beam angles and to control side-lobe levels at different frequencies.
In the embodiment shown in
Further, in the embodiment shown in
Via the feedlines 23 different or identical feeding signals can be individually provided to the antennas. In other embodiments, all antennas or groups of antennas are provided with the same feeding signal.
Different widths of the patches may be useful in an antenna array configuration. In an embodiment all patches on the first substrate layers may have the same length and all patches on the second substrate layers may have the identical length. The length of the patches that are arranged on the first substrate layer might have the same or different length compared to the patches arranged on the second substrate layer. Even if the length of the patches on the first and second substrate layers are kept identical, the operating frequency of the patches is different. This is due to the fact that the patches on the second substrate layer are encapsulated by substrate material. Hence, the effective dielectric constant for patches on the first substrate layer is different compared to the effective dielectric constant for patches on the second substrate layer.
The mm-wave signal is fed from the bottom layer 26F of the PCB by applying a through hole via 32. As shown in
A parallel microstripline network 27 on the second substrate layer 22B feeds the antenna elements. Power dividers 28 may additionally be applied in this embodiment to feed the antennas. Unequal power division can provide additional amplitude tapering on the antenna elements for increased sidelobe suppression. Optional additional structures on the feedline network 27 may provide antenna impedance matching.
The mm-wave signal propagates on a transmission line 61 (e.g. microstrip line, coplanar waveguide) which is located on the bottom substrate layer 22G from an electronic device to the via hole interconnect of the via hole 32. The via hole 32 transfers the mm-wave signal from the bottom to the top layer or second metal layer where the mm-wave signal is coupled into the antenna feed network. The copper cutout distance of the metal layers and via diameter may be similar to a coaxial TEM mode waveguide. However, connection pads 29 which are larger than the via diameter may be required due to manufacturing tolerances of given PCB process technologies. These pads 29 form additional capacitances and inductances which have an impact on the impedance. To overcome such potential impairments, additional matching structures may be applied. A first matching structure 62A is placed on the bottom layer 26E. A 90-degree bend is integrated into the matching structure 62B. Other matching structures 62A formed by arcs may be placed on the inner layers 26A to 26D.
A distance equal or less than half a wavelength in air between the antenna arrays (D3) is achieved by designing compact feed networks 27 on the top layer or second metal layer and introducing a 90-degree bend into the bottom layer matching structure 62A. The electronic device is placed close to the through via transition to minimize feedline losses.
According to the present disclosure various essential elements may be provided in an antenna device separately or in combination.
According to one feature, micro via holes are used linking between radiating patches to suppress higher-order mode in a multilayer patch antenna or an antenna array where unwanted modes on the stacked patches are suppressed by short circuit vias.
Since the length and width of each patch determine its intrinsic resonant frequency and antenna gain, respectively, each patch can be designed to have a different size for various frequencies and antenna gains (the gain can be varied to compensate for dispersion). To cover lower frequencies, the size of the patch is made larger. Higher-order resonant mode could appear under those large patches. To ensure mono-mode operation, micro via holes are introduced between the patches to suppress higher-order modes. These via holes additionally couple or feed energy (i.e. signal) to from one patch to another patch. The number of via holes and their positions can be designed to accomplish both of these functions.
According to another feature, used in an antenna array, the resonators are offset, i.e., patches on different metal layers are offset, to suppress side-lobes at different frequencies where the spacing of the antenna elements at different (metal) layers can be varied to achieve similar beam width and side-lobe level across a wider frequency band. Hence, different from a single-layer antenna array that has a narrow bandwidth, the proposed multi-layer stacked antenna radiating at different (narrow) frequency bands allows the spacing between patches at each layer to be different because the half-wavelength for different frequency is different.
According to the present disclosure a dual- or multi-layer stacked patch antenna which is mounted on a dual- or multi-layer PCB is presented. Three-dimensional time and frequency domain analysis are applied to characterize the antenna. Feeding of the antenna may be achieved from the backside of the PCB by employing a mm-wave signal via with multiple matching structures. Unwanted modes on the stacked patches are suppressed by short circuits. Therefore, an antenna radiation efficiency better than 50% in a frequency range between 76 GHz and 81 GHz is achieved. The arrangement of the compact feeding network ensures amplitude tapering on the antenna patches while having almost no impact on the radiation characteristic. An offset arrangement of the patches results in a sidelobe suppression below −15 dB over the entire frequency range or dedicated frequency bands. The highly compact antenna design ensures that the single antenna array can be arranged in a half wavelength MIMO array configuration. The results obtained indicate that the disclosed antenna device reduces the form factor of PCB based mm-wave radar systems while obtaining better wideband radiation characteristics compared to conventional patch antenna arrays.
According to preferred embodiments, which may be used in any arbitrary combination in practical realizations, feedlines may be routed from the lowest substrate layer and connected by a via to the antenna layer, matching circuits may be placed on the inner PCB layers (the lowest substrate layer), power dividers with unequal amplitude distribution may be placed on the second substrate layer, and a large two-dimensional array with half wavelength spacing among all radiating elements can be formed by cascading multiple antenna arrays side by side.
According to further embodiments a power divider may be applied that distribute power to different antenna elements in an antenna array. Further, in embodiments a large through-PCB via may be used that carries signals from one side of the PCB to the other side of the PCB.
Thus, the foregoing discussion discloses and describes merely exemplary embodiments of the present disclosure. As will be understood by those skilled in the art, the present disclosure may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. Accordingly, the disclosure of the present disclosure is intended to be illustrative, but not limiting of the scope of the disclosure, as well as other claims. The disclosure, including any readily discernible variants of the teachings herein, defines, in part, the scope of the foregoing claim terminology such that no inventive subject matter is dedicated to the public.
In the claims, the word “comprising” does not exclude other elements or steps, and the indefinite article “a” or “an” does not exclude a plurality. A single element or other unit may fulfill the functions of several items recited in the claims. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measures cannot be used to advantage.
It follows a list of further embodiments of the disclosed subject matter:
Number | Date | Country | Kind |
---|---|---|---|
21165136 | Mar 2021 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
4070676 | Sanford | Jan 1978 | A |
4761654 | Zaghloul | Aug 1988 | A |
4827271 | Berneking | May 1989 | A |
4835538 | McKenna | May 1989 | A |
5003318 | Berneking | Mar 1991 | A |
5444452 | Itoh | Aug 1995 | A |
6181277 | Kesler | Jan 2001 | B1 |
6812891 | Montgomery | Nov 2004 | B2 |
6977614 | Poe | Dec 2005 | B2 |
6982672 | Lin | Jan 2006 | B2 |
7164385 | Duzdar | Jan 2007 | B2 |
7202818 | Anguera Pros | Apr 2007 | B2 |
7253770 | Yegin | Aug 2007 | B2 |
7277056 | Thiam | Oct 2007 | B1 |
7800542 | Li | Sep 2010 | B2 |
8174455 | Miyoshi | May 2012 | B2 |
11522299 | Park | Dec 2022 | B2 |
20020175871 | Johansson et al. | Nov 2002 | A1 |
20040032368 | Spittler | Feb 2004 | A1 |
20040090369 | McCarrick | May 2004 | A1 |
20040090370 | McCarrick | May 2004 | A1 |
20080122697 | Mierke | May 2008 | A1 |
20110279344 | He | Nov 2011 | A1 |
20120212384 | Kam | Aug 2012 | A1 |
20150236425 | Sudo | Aug 2015 | A1 |
20170054217 | Hashimoto | Feb 2017 | A1 |
20170201025 | Lea et al. | Jul 2017 | A1 |
20190020121 | Paulotto | Jan 2019 | A1 |
20190319364 | Yang | Oct 2019 | A1 |
20200021037 | Wu | Jan 2020 | A1 |
20200067178 | Hu | Feb 2020 | A1 |
20200067191 | Rogers | Feb 2020 | A1 |
20200076078 | Tehran | Mar 2020 | A1 |
20200127387 | Park | Apr 2020 | A1 |
20200287287 | Ying | Sep 2020 | A1 |
20200295437 | Ueda | Sep 2020 | A1 |
20200328518 | Park | Oct 2020 | A1 |
20210151853 | Park | May 2021 | A1 |
20220200149 | Tamrakar | Jun 2022 | A1 |
20220368028 | Govoni | Nov 2022 | A1 |
20220376397 | Ott | Nov 2022 | A1 |
Entry |
---|
Ma et al., “Wide Bandwidth Stacked Patch Antenna on Fourteen Layers Microwave Board”, IEEE, 2006, pp. 2031-2034. |
Number | Date | Country | |
---|---|---|---|
20220376397 A1 | Nov 2022 | US |