Antenna element

Information

  • Patent Grant
  • 6639559
  • Patent Number
    6,639,559
  • Date Filed
    Tuesday, February 26, 2002
    22 years ago
  • Date Issued
    Tuesday, October 28, 2003
    21 years ago
Abstract
To provide an antenna element having a radiation electrode formed mainly on one surface of a dielectric substrate. The radiation electrode is substantially symmetric in form with respect to the center thereof, and has a first half and a second half with the same direction of main polarization of radiation emitted therefrom. Each of the halves of the radiation electrode may be a quarter-wave antenna for a wavelength of the emitted radiation. A power supply conductor to be connected to a high frequency signal source is connected to the first half of the radiation electrode, and a ground conductor to be connected to a ground is connected to the second half. A total impedance of the first half of the radiation electrode and the power supply conductor and a total impedance of the second half of the radiation electrode and the ground conductor can substantially match to one another, so that resonance between the halves of the radiation electrode can be enhanced and a wider bandwidth can be realized.
Description




CROSS-REFERENCE TO RELATED APPLICATIONS




This application claims convention priority based on Japanese Patent Applications No. 2001-63168 filed on Mar. 7, 2001, and 2001-295743 filed on Sep. 27, 2001. These Japanese patent Applications are incorporated by reference in this application.




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to a small antenna element suitable for use in a mobile telecommunication device, in particular, to a surface-mounted antenna element.




2. Description of the Related Art




An antenna element used in a mobile telecommunication device may often be a linear antenna element, in particular, a half-wave antenna element having a length one-half a wavelength for a used frequency to produce resonance. However, for miniaturization of antennas, a monopole antenna consisting of a quarter-wave radiation electrode has come into use.




While the quarter-wave monopole antenna can be miniaturized easier than the half-wave antenna because of its shorter radiation electrode, it has a problem in that a radiation characteristic thereof is disturbed by an induced current occurring in a board-grounding conductor or housing for electromagnetically shielding a circuit of the telecommunication device. To solve this problem, in U.S. Pat. No. 5,517,676 issued May 14, 1996 and U.S. Pat. No. 5,903,822 issued May 11, 1999, there has been proposed a technique of using a quarter-wave monopole antenna and canceling the effect of the induced current flowing through a housing by forming a recess in the housing at a position distant from an antenna feeding point by a quarter of a wavelength for a used frequency. Besides, a technique of canceling the effect of the induced current by providing a stub having a length of a quarter of the wavelength has been proposed. However, these techniques contradict miniaturization. On the contrary, the half-wave antenna element has the advantage of being less affected by the board-grounding surface. However, since the half-wave antenna requires the radiation electrode longer than that of the quarter-wave antenna, it is not suitable for miniaturization, and therefore has typically been used as the monopole antenna pulled out of the telecommunication device.




Furthermore, a chip antenna, which is a small chip, having a radiation electrode formed on a dielectric substrate has the advantage that the antenna element can be miniaturized and the substrate can be mounted on a printed wiring board. However, it has the disadvantage that an available frequency bandwidth is narrow.




SUMMARY OF THE INVENTION




Thus, an object of the present invention is to provide a small antenna element with a stable characteristic that can be enhanced in radiation efficiency and bandwidth thereof.




Another object of the present invention is to provide a telecommunication device having the antenna element mounted thereon, for example, a telecommunication device mounted on a cellular phone, a headphone, a personal computer, a notebook PC, a digital camera or the like as an antenna for Bluetooth.




Another object of the present invention is to provide an antenna element having a radiation electrode of a shape symmetric with respect to the center thereof, both the halves of the radiation electrode being matched in impedance, and capable of producing enhanced resonance in the antenna portion, and a telecommunication device having the antenna element.




An antenna element according to the present invention comprises a dielectric substrate, and a radiation electrode of an electric conductor formed mainly on a surface of the dielectric substrate. The dielectric substrate is a dielectric chip, preferably a hexahedron of dielectric material. The antenna element has a power supply conductor and a ground conductor, which are connected to the radiation electrode, on the dielectric substrate, preferably on a surface other than the surface of the dielectric substrate on which the radiation electrode is formed. The radiation electrode has first and second halves, the first and the second halves being substantially symmetric in form to one another with respect to the center of the radiation electrode and being to radiate with the same direction of main polarization of radiation emitted from the radiation electrode. The first half has a first open end at its outer end and a first connection terminal adjacent to the center. The second half has a second open end at its outer end and a second connection terminal adjacent to the center, the second connection terminal being at a distance from the first connection terminal on the radiation electrode. A power supply conductor is formed on the dielectric substrate and connected to the first connection terminal at one end thereof and has at the other end a terminal for connecting to a high frequency signal source. A ground conductor is formed on the dielectric substrate and connected to the second connection terminal at one end thereof and has at the other end a terminal for connecting to a ground.




A portion of the first half between the first open end and the first connection terminal is asymmetric in form to a portion of the second half between the second open end and the second connection terminal. Alternatively, the power supply conductor is asymmetric in form to the ground conductor. Due to this asymmetric form, the total impedance of the power supply conductor and the portion of the first half between the first open end of the first half and the terminal of the power supply conductor at the other end for connecting to a high frequency signal source and the internal impedance of the high frequency signal source can substantially match, in total impedance, the ground conductor and the portion of the second half between the second open end of the second half and the terminal of the ground conductor at the other end for connecting to a ground.




In the antenna element according to this invention, it is preferred that the first and the second halves of the radiation electrode connect capacitively to a ground at the first and at the second open ends, respectively. Further preferably, the antenna element further comprises ground electrodes, formed adjacent to the first and the second open ends on the dielectric substrate, for connecting a ground, each of the ground electrodes connecting capacitively to the first and the second halves of the radiation electrode at the first and at the second open ends, respectively.




The radiation electrode of the antenna element according to this invention is preferably in a meandering form. Since the meandering form allows the radiation electrode to be mounted on a small surface of the dielectric substrate even if the radiation electrode is long, the size of the antenna element can be reduced.




The electric conductor forming the radiation electrode may be discontinuous between the first connection terminal and the second connection terminal and divided into the first and the second halves. Alternatively, the electric conductor forming the radiation electrode may be continuous from the first half to the second half and have one of the first and the second connection terminals around the center of the radiation electrode.




Each of the first and the second halves may be a quarter-wave antenna. Here, the “quarter-wave antenna” refers to a radiation electrode that has an electrical equivalent length of a quarter of a wavelength for a used frequency to produce resonance.




In the antenna element according to this invention, the electric conductor width of each of the first and the second halves of the radiation electrode may be narrowing from the center toward each of the open ends and the distance between the electric conductors of each of the first and the second halves may be increasing from the center toward each of the open ends.




According to this invention, on a surface of the dielectric substrate on which the radiation electrode is formed, another dielectric substrate may be provided to bury the radiation electrode in the dielectric. The length of the dipole radiation electrode, which is needed to produce resonance at the wavelength related with the frequency of the radiation used by the mobile telecommunication device, depends on an effective dielectric constant εreff of the substrate having the radiation electrode thereon. Specifically, the length is represented by λ/4×1/εreff for the quarter-wave antenna, indicating that the length is in inverse proportion to εreff. Preferred materials for the dielectric substrate are glass fabric based epoxy resin and alumina ceramics having an effective dielectric constant of about 4 and about 8 to 10, respectively. The higher the effective dielectric constant of the substrate, the shorter the radiation electrode can be made, and burying the radiation electrode in the dielectric can assure the advantage of using the dielectric.




While in the above description, the radiation electrode made of a conductor is formed mainly on one surface of the dielectric substrate, the whole radiation electrode made of a conductor may be formed on that one surface of the dielectric substrate. Alternatively, in the antenna element of this invention, most part of the radiation electrode may be formed on one side of the substrate, and the remainder of the radiation electrode may be formed on a side adjacent to that side.




A telecommunication device according to this invention comprises a printed wiring board and an antenna element mounted on the printed wiring board. The printed wiring board has a ground area of the board with a ground conductor, a ground-free area of the board without a ground conductor and a high frequency signal lead. The antenna element comprises a dielectric substrate, and a radiation electrode of an electric conductor formed mainly on a surface of the dielectric substrate. The dielectric substrate is a dielectric chip, preferably a hexahedron of dielectric material. The antenna element has a power supply conductor and a ground conductor, which are connected to the radiation electrode, on the dielectric substrate, preferably on a surface other than the surface of the dielectric substrate on which the radiation electrode is formed. The antenna element is mounted on the ground-free area of the board so that a dielectric substrate surface other than the dielectric substrate surface on which the radiation electrode is formed faces on the ground-free area.




The radiation electrode having a first and a second halves, the first and the second halves being substantially symmetric in form to one another with respect to the center of the radiation electrode and being to radiate with the same direction of main polarization of radiation emitted from the radiation electrode. The first half has a first open end at its outer end and a first connection terminal adjacent to the center. The second half has a second open end at its outer end and a second connection terminal adjacent to the center, the second connection terminal being at a distance from the first connection terminal on the radiation electrode. A power supply conductor is formed on the dielectric substrate and connected to the first connection terminal at one end of the power supply conductor and has at the other end a terminal connected to the high frequency signal lead on the printed wiring board. A ground conductor is formed on the dielectric substrate and connected to the second connection terminal at one end of the ground conductor and has at the other end a terminal connected to the ground conductor on the printed wiring board.




A portion of the first half between the first open end and the first connection terminal is asymmetric in form to a portion of the second half between the second open end and the second connection terminal. Alternatively, the power supply conductor is asymmetric in form to the ground conductor on the dielectric substrate. Thereby, the total impedance of the power supply conductor and the portion of the first half between the first open end of the first half and the terminal, at the other end of the power supply conductor, connected to the high frequency signal lead and the impedance of the high frequency signal source substantially match, in total impedance, the ground conductor and the portion of the second half between the second open end of the second half and the terminal, at the other end of the ground conductor, connected to the ground conductor on the printed wiring board.




The printed wiring board of the telecommunication device according to this invention preferably has the ground-free area of the board between the ground area of the board and a side edge of the board, and the antenna element is preferably mounted on the ground-free area of the board so that the dielectric substrate surface having the radiation electrode is adjacent to the side edge of the board and a dielectric substrate surface other than the dielectric substrate surface having the radiation electrode faces the ground-free area of the board.




In the telecommunication device according to this invention, since the radiation electrode of the antenna element is spaced apart from the ground conductor on the printed wiring board, the effect of the grounding can be eliminated.




The antenna element of the telecommunication device according to this invention preferably further comprises ground electrodes, formed adjacent to the first and the second open ends on the dielectric substrate, connected to the ground conductor on the printed wiring board, each of the ground electrodes connecting capacitively to the first and the second halves at the first and the second open ends, respectively. The radiation electrode is preferably in a meandering form.




The electric conductor forming the radiation electrode may be discontinuous between the first connection terminal and the second connection terminal and divided into the first and the second halves. Alternatively, the electric conductor forming the radiation electrode may be continuous from the first half to the second half and have one of the first and the second connection terminals around the center of the radiation electrode. Each of the first and the second halves may be a quarter-wave antenna.




In the telecommunication device according to this invention, the electric conductor width of each of the first and the second halves of the radiation electrode may be narrowing from the center toward each of the open ends and the distance between the electric conductors of each of the first and the second halves may be increasing from the center toward each of the open ends.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1A

is a perspective view of an antenna element according to EXAMPLE 1 of the present invention viewed from a front side;





FIG. 1B

is a perspective view of the antenna element viewed from a rear side;





FIG. 1C

is a perspective bottom view of the antenna element viewed from a rear side;





FIG. 1D

is a perspective bottom view of the antenna element according to modified EXAMPLE 1 viewed from a rear side;





FIG. 2A

shows an equivalent circuit of the antenna element according to EXAMPLE 1 of the present invention;





FIG. 2B

shows an equivalent circuit of the antenna element according to modified EXAMPLE 1 of the present invention;





FIG. 3A

is a perspective view of the antenna element according to EXAMPLE 2 of the present invention viewed from the front side;





FIG. 3B

is a perspective view of the antenna element viewed from the rear side;





FIG. 3C

is a perspective bottom view of the antenna element viewed from the rear side;





FIG. 4

is a perspective view of the antenna element according to EXAMPLE 3 of the present invention;





FIG. 5

shows an equivalent circuit of the antenna element according to EXAMPLE 3;





FIG. 6

is a perspective view of the antenna element according to EXAMPLE 4 of the present invention;





FIG. 7

is a perspective view of the antenna element according to EXAMPLE 5 of the present invention;





FIG. 8

is a perspective view of the antenna element according to EXAMPLE 6 of the present invention;





FIG. 9A

is a perspective view of a telecommunication device according to EXAMPLE 7 of the present invention having the antenna element of this invention mounted on a printed wiring board;





FIG. 9B

is an enlarged perspective view of the telecommunication device, showing an area of the printed wiring board on which the antenna element is to be mounted;





FIG. 9C

is a perspective view of the antenna element viewed from the front side;





FIG. 9D

is a perspective bottom view of the antenna element in

FIG. 9C

viewed from the rear side;





FIG. 9E

is an enlarged view of the telecommunication device, showing a modification of the area shown in

FIG. 9B

;





FIG. 10

is a perspective view of the telecommunication device according to EXAMPLE 8 of the present invention having the antenna element of this invention mounted on the printed wiring board;





FIG. 11

is an exploded perspective view of the telecommunication device according to EXAMPLE 9 of the present invention, having the antenna element of this invention mounted on the area of the printed wiring board on which the antenna element is to be mounted;





FIG. 12A

is a perspective view of the telecommunication device according to EXAMPLE 10 of the present invention having the antenna element of this invention mounted on the printed wiring board;





FIG. 12B

is a perspective bottom view of the antenna element in

FIG. 12A

viewed from the rear side;





FIG. 13A

is a perspective view of the telecommunication device according to EXAMPLE 11 of the present invention having the antenna element of this invention mounted on the printed wiring board;





FIG. 13B

is an enlarged perspective view of essential parts of the telecommunication device;





FIG. 14

is an exploded perspective view of the telecommunication device shown in

FIG. 13

;





FIG. 15

is a perspective view of a modification of the antenna element according to the present invention;





FIG. 16A

is a plan view of another modification of the antenna element according to the present invention;





FIG. 16B

is a plan view of another modification of the antenna element according to the present invention;





FIG. 16C

is a plan view of another modification of the antenna element according to the present invention;





FIG. 17

is a perspective view of a modification of the telecommunication device having the antenna element mounted thereon according to the present invention;





FIG. 18

is a developed view of a conductor portion of the antenna element used in EXPERIMENT 1;





FIG. 19

is a graph showing a relationship between a reflection loss (dB) and a frequency (GHz) of the antenna element used in EXPERIMENT 1;





FIG. 20

is a graph showing a relationship between a voltage standing wave ratio (VSWR) and a frequency (GHz) of the antenna element used in EXPERIMENT 1;





FIG. 21

is a developed view of the conductor portion of the antenna element used in EXPERIMENT 2; and





FIG. 22

is a graph showing a relationship between a voltage standing wave ratio and a frequency (GHz) of the antenna element used in EXPERIMENT 2.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS





FIG. 1A

is a perspective view of an antenna element


1


according to EXAMPLE 1 of the present invention. In this drawing, a radiation electrode


20


is provided on a top surface


11


of a dielectric hexahedron substrate


10


, and a first half


30


(left half) and a second half


40


(right half) of the radiation electrode are provided to be substantially symmetric to one another with respect to a center line


12


indicated by a two-dot chain line. Each of the first half


30


and the second half


40


is a quarter-wave antenna. The radiation electrode


20


is shown as a segment in this drawing, which is preferably printed to be continuous.




Since two halves


30


,


40


of the radiation electrode are provided on the surface


11


in a symmetric form with respect to the center line


12


, they have the same direction of main polarization of radiation emitted therefrom. The first half


30


on the left side has a first connection terminal


31


, connected to a power supply conductor


50


, at one end thereof adjacent to the second half


40


on the right side, and the power supply conductor


50


is provided on a front surface


13


of the substrate


10


. The power supply conductor


50


is connected to the first connection terminal


31


at one end thereof and has at the other end a terminal


51


for connecting to a high frequency signal source


70


. The second half


40


on the right side has, at one end thereof adjacent to the first half


30


on the left side, a second connection terminal


41


connected to a ground conductor


60


, which is also provided on the front surface


13


. The ground conductor


60


has at the other end thereof a terminal


61


for connecting to a ground


75


. Outer ends of the first and second halves of the radiation electrode constitute a first open end


32


and a second open end


42


, respectively. These open ends


32


,


42


are capacitively connected to the ground.




For better understanding of the structure of the antenna element


1


,

FIG. 1B

is a perspective view of the antenna element viewed from the opposite side, that is, with a rear side


14


thereof facing frontward, and

FIG. 1C

is a perspective bottom view of the antenna element


1


with a bottom surface


15


thereof facing upward and the rear side


14


facing frontward. As can be seen from

FIGS. 1A through 1C

, the antenna element


1


has the radiation electrode


20


only on the top surface


11


and the first and second connection terminals


31


,


41


provided adjacent to one another. There is no conductor on the bottom surface


15


and the rear surface


14


. Through the bottom surface


15


or rear surface


14


, which has no conductor thereon, the antenna element can be mounted on an area, having no ground conductor, of a printed wiring board of a telecommunication device. Typically, a ground conductor is provided on a printed wiring board, and an area without the ground conductor is provided on the printed wiring board and the antenna element


1


is mounted on the area without the ground conductor. The area without the ground conductor may comprise a power supply lead or high frequency signal lead for connecting to the power supply conductor


50


, ground lead for connecting to the ground conductor


60


, ground electrodes for capacitively connecting to the first and second open ends


32


,


42


, leads for connecting the ground electrodes to the ground conductor of the printed wiring board or the like as required.




While the radiation electrode shown is in a meandering form, it may be in a helical form or linear form. The meandering form of the radiation electrode allows substantially the whole radiation electrode to be provided on one surface of the hexahedron substrate


10


, as well as a long radiation electrode to be provided on a small substrate.




In the construction of the antenna element


1


described above, the power supply conductor


50


and the ground conductor


60


are provided adjacent to one another, so that a capacitance between the power supply conductor


50


and the ground conductor


60


is large. Furthermore, the first and second open ends


32


,


42


are spaced apart from one another, so that the interaction therebetween is small, and therefore, the antenna element


1


can be represented by an equivalent circuit shown in FIG.


2


A.




In

FIG. 2A

, reference symbols L


30


, L


40


denote an inductance of the first and second halves


30


,


40


of the radiation electrode


20


, respectively, reference symbols L


50


, L


60


denote an inductance of the power supply conductor


50


and the ground conductor


60


, respectively, and reference symbols C


30


-


40


, C


50


-


60


denote a capacitance between the halves of the radiation electrode and a capacitance between the power supply conductor and the ground conductor, respectively. Furthermore, reference symbols R


30


, R


40


denote a radiation resistance of the halves


30


,


40


, respectively, and reference symbols C


32


, C


42


denote a ground capacitance between the first open end and the ground and between the second open end and the ground, respectively. Since the halves of the radiation electrode are provided symmetrically, impedance match can be accomplished therebetween. In addition, since the power supply conductor


50


and the ground conductor


60


are provided adjacent to one another on the same surface of the substrate, the capacities C


30


-


40


and C


50


-


60


are large. By adjusting the positional relationship therebetween, the halves of the radiation electrode can be sufficiently matched to one another.




Since matching can be easily achieved, when one of the halves of the radiation electrode emits radiation, resonance is enhanced in both the halves, so that an induced current occurs in the other half of the radiation electrode. Therefore, a circuit on the printed wiring board is less affected, and a change in a resonance frequency or directional pattern can be reduced.




In

FIG. 2A

, reference symbol R


0


denotes an impedance of the antenna element


1


from the high frequency signal source


70


to the feeding point (terminal


51


of the power supply conductor


50


) including the internal impedance of the high frequency signal source


70


, and the total input impedance from the high frequency signal source


70


to the antenna element is typically set at about 50 ohms. In order to provide the ground conductor


60


with an impedance substantially equivalent to the impedance, the ground conductor


60


is extended as shown in the perspective bottom view in

FIG. 1D

, the extension constituting an impedance adjustment conductor


62


. Thus, an equivalent circuit having the impedance Z


62


on the side of the ground conductor as shown in

FIG. 2B

is provided. In this EXAMPLE, the first half


30


and the second half


40


of the radiation electrode are substantially symmetric in form to one another, the power supply conductor


50


and the ground conductor


60


are asymmetric in form to one another, and the impedance of the radiation electrode on the side of the ground conductor can be matched to the impedance thereof on the side of the power supply conductor, that is, the high frequency signal source


70


, so that resonance in a wide bandwidth can be realized.





FIG. 3

shows an antenna element


2


of EXAMPLE 2. In

FIG. 3

, the same components as in

FIG. 1

are denoted by the same reference symbols.

FIG. 3A

is a perspective view, in which a first half


30




a


and a second half


40




a


of a radiation electrode


20




a


are provided in a form rotationally symmetric about a point


12




a


over the top surface


11


and the rear surface


14


of the dielectric hexahedron substrate


10


. While the radiation electrode


20




a


is provided on the adjacent two surfaces


11


,


14


, it is mainly provided on the top surface


11


, and in the state where the two surfaces are developed, the first half and the second half are rotationally symmetric to one another about the point


12




a


. The first half


30




a


and the second half


40




a


of the radiation electrode are both quarter-wave antennas.

FIG. 3B

is a perspective view in which the top surface


11


faces upward and the rear surface


14


faces frontward, and

FIG. 3C

is a perspective bottom view in which the bottom surface


15


of the antenna element


2


faces upward and the rear surface


14


faces frontward. The first half


30




a


of the radiation electrode on the left side in

FIG. 3A

has a first connection terminal


31




a


, connected to the power supply conductor


50


, at one end thereof adjacent to the second half


40




a


on the right side, and the power supply conductor


50


is provided on the front surface


13


of the substrate


10


. The second half


40




a


on the right side has, at one end thereof adjacent to the first half


30




a


on the left side, a second connection terminal


41




a


connected to a ground conductor


60




a


. The ground conductor


60




a


is provided on the bottom surface


15


of the substrate


10


and has at the other end thereof a terminal


61




a


for connecting to the ground.




The other ends of the first half


30




a


and the second half


40




a


of the radiation electrode constitute open ends


32




a


and


42




a


, respectively. Although the power supply conductor


50


and the ground conductor


60




a


are provided on different surfaces, that is, on the front surface


13


and on the bottom surface


15


, respectively, since the portions of the first and second halves


30




a


and


40




a


of the radiation electrode which are adjacent to the center of symmetry are provided adjacent to one another, and the power supply conductor


50


and the ground conductor


60




a


are located relatively near to one another, the capacitance between the halves of the radiation electrode is large, and resonance is easy to produce. In the example shown in this drawing, the first half


30




a


and the second half


40




a


of the radiation electrode are substantially symmetric in form to one another, the ground conductor


60




a


is longer than and is asymmetrical in form to the power supply conductor


50


. This brings about a state where the impedance adjustment conductor is added to the side of the ground conductor


60




a


. Thus, it will be understood that the equivalent circuit shown in

FIG. 2B

is provided also in this EXAMPLE. In addition, impedance match between the half of the radiation electrode on the side of the high frequency signal source and the half of the radiation electrode on the side of the ground conductor is easy to achieve.




The first half


30




a


and the second half


40




a


of the radiation electrode are in a meandering form, and each of the conductors is wider in the portion near the center than the portion near the open end. In the case of the quarter-wave antenna, the amplitude of current is large at the power supply side end and small at the open end, so that the conductor loss can be reduced by widening the conductor at the portion where the amplitude of current is large.





FIG. 4

is a perspective view of an antenna element


3


of EXAMPLE 3. In this drawing, a meandering radiation electrode


20




b


is provided symmetrically with respect to a center line


12




b


, indicated by a two-dot chain line, on a rear surface


14




b


of a dielectric hexahedron substrate


10




b


. Here, a first half


30




b


on the left side and a second half


40




b


on the right side of the radiation electrode


20




b


are symmetric in form to one another with respect to the center (intersection of the center line


12




b


and the radiation electrode


20




b


)


41




b


. Each of the halves


30




b


and


40




b


of the radiation electrode


20




b


constitute a quarter-wave antenna.




Since the radiation electrode


20




b


is provided symmetrically with respect to the center


41




b


thereof to extend in the longitudinal direction of the substrate


10




b


, the halves have the same direction of main polarization of radiation emitted therefrom. A ground conductor


60




b


, which is grounded, extends from a front surface


13




b


and across a bottom surface


15




b


to be connected to the center


41




b


of the radiation electrode


20




b


, so that the center


41




b


constitutes a second connection terminal of the ground conductor


60




b


. A power supply conductor


50




b


connected to the high frequency signal source


70


also extends from the front surface


13




b


and across the bottom surface


15




b


to be connected to a first connection terminal


31




b


spaced apart from the center


41




b


of the radiation electrode


20




b


by a predetermined distance. In addition, the outer ends of the radiation electrode


20




b


constitute a first open end


32




b


and a second open end


42




b


. The first and second open ends


32




b


,


42




b


are capacitively connected to ground electrodes


34




b


,


44




b


, respectively, that are provided at both ends of the bottom surface


15




b


of the substrate


10




b


. The impedance of the portion of the radiation electrode between the second connection terminal


41




b


for connecting the ground conductor


60




b


to the radiation electrode and the first connection terminal


31




b


and the impedance of the portion of the radiation electrode between the open end


32




b


of the radiation electrode and the first connection terminal


31




b


can be adjusted by varying the position of the first connection terminal


31




b


for connecting the power supply conductor


50




b


to the first half


30




b


of the radiation electrode


20




b


. The impedance can also be adjusted by varying the length of the power supply conductor


50




b


. In addition, the capacitance between the power supply conductor


50




b


and the ground conductor


60




b


can be adjusted by varying the patterns thereof. Through the adjustment of these impedances, the impedance between the radiation electrode and the high frequency signal source can be arbitrarily adjusted, so that impedance match can be easily achieved. That is, as is apparent from the drawing in this EXAMPLE, the first half


30




b


of the radiation electrode between the first open end


32




b


and the first connection terminal


31




b


and the second half


40




b


of the radiation electrode between the second open end


42




b


and the second connection terminal


41




b


are asymmetric to one another in form. While the power supply conductor


50




b


and the ground conductor


60




b


are substantially symmetric in form to one another, they may be asymmetric in form to one another to achieve impedance match.




As can be seen from

FIG. 4

, in the antenna element


3


, the radiation electrode


20




b


is provided only on the rear surface


14




b


of the substrate


10




b


, and the power supply conductor


50




b


and the ground conductor


60




b


are provided adjacent to one another on the bottom surface


15




b


. By mounting the antenna element via the bottom surface


15




b


on the area without a ground conductor of the printed wiring board of the telecommunication device, the power supply conductor


50




b


and the ground conductor


60




b


can be connected to the ground lead or power supply lead mounted on the printed wiring board. While a ground conductor is typically provided on the printed wiring board of the telecommunication device, an area having no ground conductor mounted thereon or having any ground conductor removed therefrom may be provided in a region adjacent to an end of the printed wiring board to create an antenna mounting port, and the antenna element


3


may be mounted on the region.




While the radiation electrode shown is in a meandering form, it may be in a helical form or linear form. The meandering or helical form of the radiation electrode allows the size of the substrate


10




b


to be reduced.




In the construction of the antenna element


3


described above, the power supply conductor


50




b


and the ground conductor


60




b


are provided adjacent to one another, so that a capacitance between the power supply conductor


50




b


and the ground conductor


60




b


is large. Furthermore, the open ends


32




b


,


42




b


of the radiation electrode are spaced apart from one another, so that the interaction therebetween is small, and therefore, the antenna element


3


can be represented by an equivalent circuit shown in FIG.


5


.




In

FIG. 5

, reference symbols L


11


, L


12


denote an inductance of the left half of the radiation electrode


20




b


, reference symbols L


13


, L


14


denote an inductance of the right half of the radiation electrode


20




b


, reference symbols L


50




b


, L


60




b


denote an inductance of the power supply conductor


50




b


and the ground conductor


60




b


, respectively, and reference symbol C


50




b


-


60




b


denotes a capacitance between the power supply conductor and the ground conductor. Furthermore, reference symbols R


30




b


, R


40




b


denote a radiation resistance of the radiation electrode. And, reference symbol R


0


denotes an input impedance including the internal impedance of the high frequency signal source


70


, and reference symbols C


32




b


, C


42




b


denote capacitive couplings between the open ends of the radiation electrode and the respective ground electrode. Since the radiation electrode has a form substantially symmetrical with respect to the center


41




b


at which the ground conductor


60




b


is connected to the radiation electrode


20




b


, as for an equivalent inductance of the radiation electrode, the sum of the inductances of L


11


and L


12


equals to the sum of the inductances of L


13


and L


14


. The inductances L


11


and L


12


can be varied by adjusting the position of the first connection terminal


31




b


for connecting the power supply conductor


50




b


to the radiation electrode


20




b


. The inductances L


50




b


and L


60




b


can be adjusted by varying the patterns of the power supply conductor


50




b


and the ground conductor


60




b


, respectively. The capacitance C


50




b


-


60




b


can be adjusted by varying the distance between the power supply conductor


50




b


and the ground conductor


60




b


. In this way, impedance match can be achieved between the half of the radiation electrode on the side of the high frequency signal source


70


and the half of the radiation electrode on the side of the ground conductor, so that a change in the resonance frequency or directional pattern can be reduced.





FIG. 6

is a perspective view of an antenna element


4


of EXAMPLE 4. The same components as in

FIG. 4

are denoted by the same reference symbols. In this EXAMPLE, the substrate


10




b


, radiation electrode


20




b


, ground conductor


60




b


, and ground electrodes


34




b


,


44




b


have the same configuration as those shown in

FIG. 4. A

power supply conductor


50




c


extends from the front surface


13




b


of the substrate


10




b


and across the top surface


11




b


, has a first connection terminal


31




c


distant from the center


41




b


of the radiation electrode, and is connected to the radiation electrode


20




b


at the terminal.




Open ends


32




c


,


42




c


of the radiation electrode


20




b


of the antenna element are provided on the bottom surface


15




b


by extending the radiation electrode from the rear surface


14




b


along the surface of the substrate. Since the distances between the open ends


32




c


,


42




c


of the radiation electrode and the ground electrodes


34




b


,


44




b


, respectively, can be made smaller than those in EXAMPLE 3 shown in

FIG. 4

, the capacitive couplings therebetween can be enhanced. Consequently, the resonance frequency is lowered, and the radiation electrode can be shortened, so that the antenna element can be miniaturized further.




In EXAMPLE 3 in FIG.


4


and EXAMPLE 4 in

FIG. 6

, the ground electrodes


34




b


,


44




b


are provided from the front surface


13




b


to the bottom surface


15




b


on the substrate


10




b


. Since the ground electrodes


34




b


,


44




b


are mounted on the substrate


10




b


in such a manner, the distance between the ground electrode and the open end of the radiation electrode is determined on the antenna element, so that the capacitance is kept constant regardless of the mount condition of the antenna element on the printed wiring board, and a stable characteristic can be realized.




Instead of providing the ground electrodes on the substrate, the ground electrodes may be provided on the printed wiring board on which the antenna element is mounted. On the printed wiring board on which the antenna element is mounted, similar ground electrodes are provided at positions facing the ground electrodes otherwise provided on the substrate, thereby capacitive couplings with the open ends of the radiation electrode can be accomplished. However, the value of the capacitance varies depending on the mount condition of the antenna element on the printed wiring board, so that the mount condition needs to be always the same.





FIG. 7

is a perspective view of an antenna element


5


of EXAMPLE 5. In this drawing, the same components or parts as in

FIG. 4

are denoted by the same reference symbols. In this embodiment, the substrate


10




b


, power supply conductor


50




b


, ground conductor


60




b


, and ground electrodes


34




b


,


44




b


have the same configuration as those shown in FIG.


4


.




The antenna element


5


is similar to the antenna element


3


in that a radiation electrode


20




d


is provided on the rear surface


14




b


of the substrate


10




b


and extends symmetrically with respect to the center


41




b


in the longitudinal direction of the substrate. And, the length of each of the halves of the radiation electrode extending from the center


41




b


to the open ends


32




d


,


42




d


also is a quarter of the wavelength. However, the radiation electrode


20




d


becomes narrower from the center toward the outer open ends, and the distance between the vertical conductors of the radiation electrode becomes wider from the center toward the outer open ends.




A high frequency current appearing in the radiation electrode in a resonant state of the antenna has a maximum value at the center of the radiation electrode and a minimum value at the both ends. Therefore, by configuring the conductor of the radiation electrode so as to become narrower from the center toward the tips thereof, the radiation electrode can be miniaturized without causing a loss. Furthermore, a high frequency voltage appearing in the radiation electrode in a resonant state of the antenna has a minimum value at the center of the radiation electrode and a maximum value at the both ends. Therefore, by widening the distance between the conductors of the radiation electrode from the center toward the tips thereof, concentration of the electric field among the conductors can be alleviated. In addition, the tips of the radiation electrode emitting radiation can be less affected by the other portions of the radiation electrode. Thus, the radiation efficiency can be enhanced.





FIG. 8

is a perspective view of an antenna element


6


of EXAMPLE 6. In this drawing, the same components or parts as in

FIG. 4

are denoted by the same reference symbols. In this EXAMPLE, the substrate


10




b


, power supply conductor


50




b


, and ground conductor


60




b


have the same configuration as those shown in FIG.


4


.




Each of halves of a radiation electrode


20




e


, which extend from the center to the outer open ends, has a length of λ/4. Vertical conductors


28




e


of the radiation electrode


20




e


are provided on the rear surface


14




b


of the substrate


10




b


, and horizontal conductors


29




e


and


29




e


′ interconnecting the vertical conductors


28




e


are provided on the top surface


11




b


and the bottom surface


15




b


of the substrate


10




b


, respectively. Compared with EXAMPLE 3 shown in

FIG. 4

, if the substrate


10




b


used has the same size, the radiation electrode in this embodiment can be longer than that in EXAMPLE 3. Therefore, the antenna element


6


can deal with a lower frequency.




When the antenna element


6


is mounted on the printed wiring board, part of the radiation electrode


20




e


may approach the ground surface of the printed wiring board, and thus an induced current produced in the substrate ground surface may be increased, thereby reducing efficiency. Therefore, the radiation electrode needs to be prevented from approaching the ground surface of the substrate.





FIG. 9

is a perspective view of EXAMPLE 7.

FIG. 9A

shows a printed wiring board


80


and an antenna element


2




a


mounted thereon. Also in

FIG. 9

, the same components as in

FIGS. 1 through 8

are denoted by the same reference symbols. The printed wiring board


80


includes an area having a ground conductor


82


and an area


83


in which a base material of the substrate is exposed and no ground conductor is provided, and the area


83


on which the antenna element is to be mounted is adjacent to an end


81


of the substrate


80


. As shown in the enlarged view of

FIG. 9B

, a power supply lead


71


, a ground lead


84


, and floating electrodes for fixing


85


,


85


′ are mounted on the area


83


. The power supply lead


71


is supplied with power via a printed wire on the rear surface of the printed wiring board and the ground lead


84


is connected to a substrate ground conductor


82


. The antenna element


2




a


is substantially the same as the antenna element


2


in EXAMPLE 2, and the first half


30




a


on the left side of the radiation electrode


20




a


and the second half


40




a


on the right side thereof are both quarter-wave antennas. However, the antenna element


2




a


differs from the antenna element


2


in that, as shown in

FIGS. 9A

,


9


C and


9


D, additional electrodes


39


and


49


are provided from the bottom surface


15


to the front surface


13


at both the ends of the substrate


10


for soldering to the floating electrodes


85


,


85


′ on the printed wiring board


80


. Here,

FIG. 9C

is a perspective view of the antenna element


2




a


, and

FIG. 9D

is a perspective bottom view thereof. A terminal


61




a


, which is constituted by a portion of the ground conductor


60




a


folded over the front surface


13


, and the power supply conductor


50


are soldered to the ground lead


84


and the power supply lead


71


mounted on the printed wiring board, respectively, and the additional electrodes


39


,


49


are soldered to the floating electrodes


85


,


85


′, respectively, so that the antenna element


2




a


is firmly attached to the printed wiring board


80


. Even if the antenna element is used in a telecommunication device such as a mobile telecommunication device, the antenna element can be prevented from being loosened or falling off during handling thereof.




Furthermore,

FIG. 9E

shows a modification of the area


83


in the printed wiring board having no ground conductor shown in the enlarged view of FIG.


9


B. In

FIG. 9E

, the ground lead


84


′ is longer than the ground lead


84


in

FIG. 9B

so that it reaches the rear surface


14


of the antenna element


2




a


. Since a tip of the ground lead


84


′ can be soldered to the second half


40




a


of the radiation electrode at the rear surface, the substrate


10


of the antenna element


2




a


can be fixed to the board


80


at the front surface


13


and the rear surface


14


thereof, so that vibration resistance is enhanced. Furthermore, the longer ground lead


84


′ serves as an impedance adjustment conductor, thereby providing an excellent matching with the poser supply side.




As is apparent from

FIG. 9A

, the antenna element


2




a


is mounted on the area


83


of the printed wiring board


80


having no ground conductor through the surface of the substrate having no radiation electrode, that is, the bottom surface


15


thereof with the rear surface


14


of the substrate having the radiation electrode located at the end


81


of the board


80


, and the top surface


11


and the rear surface


14


having the radiation electrode are distant from the ground conductor


82


and the circuit conductor on the printed wiring board. By making the radiation electrode distant from the ground conductor and the circuit conductor in such a manner, the effect of grounding is reduced, and the radiation efficiency is increased.





FIG. 10

is a perspective view of a printed wiring board


80




a


on which the antenna element


2




a


is mounted according to EXAMPLE 8. In this example, the antenna element is mounted so that the radiation electrode is parallel to the longitudinal direction of the printed wiring board


80




a


. Except that, the telecommunication device shown in

FIG. 10

is identical to that shown in FIG.


9


.





FIG. 11

is a perspective view of EXAMPLE 9, showing the printed wiring board


80




b


and the antenna element


2




b


before being mounted thereon. The antenna element


2




b


is essentially the same as the antenna element


2




a


, but the first open end


32




a


and the second open end


42




a


of the respective halves of the radiation electrode are capacitively connected to the ground electrodes


34




b


and


44




b


provided on the side surfaces


16


and


17


with intervals


33




b


and


43




b


therebetween, respectively. Since the open ends of the halves of the radiation electrode have a large capacitance, the radiation electrode can be shortened. In addition, on the area


83




b


of the printed wiring board


80




b


having no ground conductor, ground electrodes


85




b


,


85




b


′ are provided in stead of the floating electrodes


85


,


85


′ shown in

FIG. 9

, and the ground electrodes


34




b


,


44




b


of the antenna element


2




b


can be soldered to the ground electrodes


85




b


,


85




b


′, respectively, so that the vibration resistance is further enhanced.





FIG. 12

is a perspective view of EXAMPLE 10, in which

FIG. 12A

shows an antenna element


7


mounted on the printed wiring board


80


, and

FIG. 12B

is a perspective view of the antenna element


7


viewed from the rear side


14


. Also in

FIG. 12

, the same components as in

FIGS. 1 through 11

are denoted by the same reference symbols.




A radiation electrode


20




f


in this embodiment is provided only on the top surface


11


and the rear surface


14


of the dielectric hexahedron substrate


10


in a meandering form. The antenna element


7


is mounted on the area


83


of the printed wiring board


80


having no ground conductor through the bottom surface having no radiation electrode with the rear surface


14


of the substrate having the radiation electrode


20




f


located at the end


81


of the board


80


. Each of a first half


30




f


and a second half


40




f


of the radiation electrode


20




f


is a quarter-wave antenna. Since the radiation electrode is disposed on the top surface


11


and the rear surface


14


centering around a ridge


18


of the substrate


10


distant from the ground conductor


82


of the printed wiring board


80


(the ridge defined by the top surface


11


and the rear surface


14


), the portions of the folded conductors of the radiation electrode adjacent to the first connection terminal and the second connection terminal of the halves of the radiation electrode are distant from the ridge, and the nearer to the open ends of the radiation electrode, the closer to the ridge the radiation electrode gets. That is, the distance between the folded conductor of the radiation electrode and the ground conductor


82


of the printed wiring board is gradually increased from the power supply terminal and the ground terminal of the radiation electrode toward the open ends thereof. In this way, by making the antenna tip most significantly affected by the grounding distant from the ground, the radiation efficiency is enhanced.





FIG. 13

is a perspective view of EXAMPLE 11 of the present invention.

FIG. 13A

shows an antenna element


3


mounted on the exposed board area


83


of the printed wiring board


80


. Each of the halves of the radiation electrode


20




b


of the antenna element


3


is a quarter-wave antenna. While the ground conductor


82


is mounted substantially on the whole of the printed wiring board


80


, the area


83


having no ground conductor


82


(exposed board area) is provided in the area adjacent to the end


81


of the printed wiring board


80


, and the area constitutes an antenna mount area.





FIG. 13B

is an enlarged perspective view of the area of the printed wiring board on which the antenna element


3


is mounted, showing the mount condition of the antenna element


3


. In addition, for more readily understanding of the mount condition of the antenna element


3


onto the printed wiring board


80


,

FIG. 14

is a perspective view of the antenna element before being mounted on the printed wiring board.




Since the ground conductor


82


of the printed wiring board


80


is in the form of a sheet, it can also be referred to as a ground conductor surface. If a laminated substrate is used as the printed wiring board, the ground conductor


82


may not be the outermost layer, but an internal layer, such as a second or third layer, and an insulating layer may be disposed thereon.




The ground lead


84


and electrodes


85




c


,


85




c


′ extending from the ground conductor


82


toward the exposed board area


83


are provided, connected to the ground conductor


60




b


and the ground electrodes


34




b


,


44




b


of the antenna element


3


, respectively, and grounded. On a portion of the antenna mount area corresponding to the power supply conductor


50




b


of the antenna element


3


, the power supply lead


71


for connecting to the power supply conductor


50


is provided so that the antenna element is connected to the high frequency signal source (not shown in

FIGS. 13B and 14

) by the lead


74


through a through-hole


73


. In addition, floating electrodes


86


,


86


′,


87


, and


87


′ are provided on the exposed board area


83


so that the respective conductors on the bottom surface of the antenna element


3


can be soldered thereto. In this way, since the antenna element


3


is soldered to the printed wiring board


80


at many portions, even if the antenna element is used in a telecommunication device such as a mobile telecommunication device, the antenna element can be prevented from being loosened or falling off during handling thereof.




As is apparent from

FIGS. 13 and 14

, since the antenna element


3


is mounted in such a manner that the radiation electrode thereof is close to the end


81


of the printed wiring board


80


, the radiation electrode is distant from the ground conductor


82


of the printed wiring board


80


and less affected by the induced current produced in the ground surface, so that a high radiation efficiency can be realized.





FIGS. 15 through 17

shows modifications of the antenna element according to the present invention. The antenna element


8


shown in

FIG. 15

is constructed by forming the radiation electrode


20


shown in

FIG. 1

on the dielectric hexahedron substrate


10


and laminating a dielectric hexahedron substrate


10


′ thereon, in which the radiation electrode


20


is buried in the two dielectric substrates


10


,


10


′. Burying the radiation electrode in the dielectrics in such a manner allows the electrical length of the radiation electrode to be shortened, so that the antenna can be miniaturized.




The antenna element


9


shown in

FIG. 16

comprises an antenna element


9


′ and an antenna element


9


″ overlaid one on another in a multi-layered board with the directions of main polarization thereof being perpendicular to one another, the antenna element


9


′ comprising a first half


30




g


and a second half


40




g


of a radiation electrode


20




g


symmetrically provided on a surface of a dielectric hexahedron substrate 10 g with the same direction of main polarization, and the antenna element


9


″ comprising a first half


30




g


′ and a second half


40




g


′ of a radiation electrode


20




g


′ symmetrically provided on a surface of a similar substrate


10




g


′ with the same direction of main polarization. Arrows shown in

FIGS. 16A and 16B

indicate the respective directions of main polarization of the antenna element


9


′,


9


″.

FIG. 16C

, which is a superimposing of these drawings, is a perspective view. Since the antenna element


9


has the directions of main polarization perpendicular to one another, it can efficiently receives both the vertical polarization and the horizontal polarization, so that communication can be accomplished efficiently regardless of the direction of the device used. Here, the two antenna elements


9


′ and


9


″ may be arranged side-by-side.





FIG. 17

shows an antenna element (for example, the antenna element


8


shown in

FIG. 15

) integrated into a multi-layered ceramic substrate


90


. The multi-layered ceramic substrate


90


constitutes a module substrate and has a chip component


91


, such as a bypass capacitor, an RF-IC


92


and the like connected thereto, in which a balun and a filter can be made of a multi-layered conductor. Since the multi-layered ceramic substrate


90


and the antenna element


87


can be fabricated collectively, manufacturing cost can be reduced and the positional precision of the antenna is enhanced, so that the variation in frequency due to the variation in mounting can be reduced.




Experiment 1




The antenna element


2


shown in

FIG. 3

was fabricated and the reflection loss and the voltage standing wave ratio (VSWR) thereof was measured. Using a dielectric having a dielectric constant .epsilon.r of 40, and tan .delta. of 0.0002, a hexahedron substrate


10


of 3.0 mm wide, 13.4 mm long, and 1.5 mm thick was prepared. The halves


30




a


,


40




a


of the meandering radiation electrode


20




a


were provided on the top surface


11


and the rear surface


14


so that the respective halves have a length of a quarter of the radiation wavelength. Here again, reference numerals


13


and


15


denote the front surface and the bottom surface of the substrate


10


, respectively. The widths of the respective conductors were, from the outer side toward the center, 0.40 mm, 0.45 mm, 0.50 mm, 0.55 mm, 0.60 mm, 0.65 mm, and 0.70 mm, and the heights (vertical widths in the drawing) of the folded portions were, from the outer side toward the center, 0.40 mm, 0.45 mm, 0.50 mm, 0.55 mm, 0.60 mm, and 0.65 mm. The gap width between the conductors was 0.4 mm, and the center interval between the halves of the radiation electrode was 0.9 mm.

FIG. 18

is a developed view of only conductors including the radiation electrode


20




a


of the antenna element, the ground conductor


82


of the printed wiring board


80


, and conductors and leads for connecting them. In

FIG. 18

, the bottom surface


15


, the rear surface


14


, the top surface


11


, the front surface


13


of the dielectric substrate


10


of the antenna element, the printed wiring board


80


, the area


83


having no ground conductor, and the ground conductor


82


are shown in this order from top to bottom. The antenna element


2


was mounted on the printed wiring board


80


in such a manner that it is 3 mm distant from the exposed ground conductor


82


, the rear surface


14


is located at the end


81


of the substrate, and the bottom surface


15


is mounted on the area of the board


80


having no ground conductor (This mount condition is the same as that shown in FIG.


9


). The frequency characteristic was measured for cases where the meandering radiation electrode


20




a


is rotationally symmetrical with respect to the point


12




a


, and where it is linearly symmetrical with respect to a cutting plane passing through the point


12




a.







FIG. 19

shows a frequency characteristic of the reflection loss, and

FIG. 20

shows a frequency characteristic of the voltage standing wave ratio (VSWR). As is apparent from the graphs, in the vicinity of the frequency of 2.44 GHz, the antenna element according to the present invention had a frequency bandwidth equal to or wider than 155 MHz, within which the reflection loss is equal to or less than −6 dB (VSRW is equal to or less than 3%), and in the case of a rotationally-symmetrical quarter-wave radiation conductor, the bandwidth was further widened to become 368 MHz. In addition, the bandwidth within which the reflection loss is equal to or less than −9.54 dB (VSWR is equal to or less than 2%) was 226 MHz.




Experiment 2




The antenna element


3


shown in

FIG. 4

was fabricated and the voltage standing wave ratio (VSWR) thereof was measured. Using a dielectric having a dielectric constant εr of 40, and tan δ of 0.0002, a hexahedron substrate of 3.0 mm wide, 10 mm long, and 2 mm thick was prepared.

FIG. 21

is a developed view of only conductors including the antenna element


20




b


, the ground conductor


82


of the printed wiring board


80


, and conductors and leads for connecting them. In this drawing, the rear surface


14




b


and the bottom surface


15




b


of the dielectric substrate


10




b


, and the ground conductor area


82


of the printed wiring board


80


are shown in this order from top to bottom. The both halves of the radiation electrode


20




b


were meandering quarter-wave antennas. The width of the conductor of the radiation electrode was 0.60 mm, and the gap width between the conductors was 0.60 mm. The antenna element


2


was mounted on the printed wiring board


80


in such a manner that the front surface of the substrate is brought into contact with the exposed ground conductor


82


.





FIG. 22

shows a frequency characteristic of the voltage standing wave ratio (VSWR). As is apparent from the graph, in the vicinity of the frequency of 2.44 GHz, the antenna element according to the present invention had a frequency bandwidth equal to or wider than 100 MHz, within which the VSRW is equal to or less than 2%. The relative bandwidth (bandwidth/center frequency) thereof was 4.1%. From the above description, it is apparent that the antenna element according to the present invention can provide a good characteristic even when it is in contact with the ground conductor of the printed wiring board and a high performance within a saved space.




As described above in detail, the antenna element according to the present invention having the radiation conductor symmetrically disposed is compact, provides a good matching, can enhances the radiation efficiency, and allows the bandwidth to be widened.



Claims
  • 1. An antenna element comprising:a dielectric substrate, a radiation electrode of an electric conductor formed mainly on a surface of the dielectric substrate, the radiation electrode having a first and a second halves, the first and the second halves being substantially symmetric in form to one another with respect to a center of the radiation electrode, and radiating with the same direction of main polarization of radiation emitted from the radiation electrode, the first half having a first open end at its outer end, another end at a distance of a quarter radiation wavelength along the radiation electrode from the first open end, and a first connection terminal between the first open end and the other end of the first half, the second half having a second open end at its outer end and a second connection terminal at a distance of a quarter radiation wavelength along the radiation electrode from the second open end, the second connection terminal being at a distance from the first connection terminal on the radiation electrode, a power supply conductor formed on the dielectric substrate and connected to the first connection terminal at one end of the power supply conductor and having at the other end of the power supply conductor a terminal for connecting to a high frequency signal source, and a ground conductor formed on the dielectric substrate and connected to the second connection terminal at one end of the ground conductor and having at the other end of the ground conductor a terminal for connecting to a ground, wherein a total conductor length of a portion of the first half between the first open end and the first connection terminal, and the power supply conductor is so different from a total conductor length of a portion of the second half, between the second open end and the second connection terminal, and the ground conductor that the total impedance of the power supply conductor and the portion of the first half between the first open end of the first half and the terminal of the power supply conductor at the other end for connecting to a high frequency signal source and the internal impedance of the high frequency signal source substantially match, in total impedance, the ground conductor and the portion of the second half between the second open end of the second half and the terminal of the ground conductor at the other end for connecting to a ground.
  • 2. An antenna element as set forth in claim 1, wherein the first and the second halves of the radiation electrode connect capacitively to a ground at the first and at the second open ends, respectively.
  • 3. An antenna element as set forth in claim 2, further comprising ground electrodes, formed adjacent to the first and the second open ends on the dielectric substrate, for connecting a ground, each of the ground electrodes connecting capacitively to the first and the second halves of the radiation electrode at the first and at the second open ends, respectively.
  • 4. An antenna element as set forth in claim 3, wherein the radiation electrode is in a meandering form.
  • 5. An antenna element as set forth in claim 1, wherein the electric conductor forming the radiation electrode discontinues between the other end of the first half and the second connection terminal and is divided into the first and the second halves, and the first connection terminal is positioned at the other end of the first half.
  • 6. An antenna element as set forth in claim 5, wherein the radiation electrode is in a meandering form.
  • 7. An antenna element as set forth in claim 5, wherein the electric conductor width of each of the first and the second halves of the radiation electrode is narrowing from the center toward each of the open ends and the distance between the electric conductors of each of the first and the second halves is increasing from the center toward each of the open ends.
  • 8. An antenna element as set forth in claim 5, wherein the ground conductor has an impedance adjustment conductor on a surface of the dielectric substrate.
  • 9. An antenna element as set forth in claim 1, wherein the electric conductor forming the radiation electrode continues at the other end of the first half from the first half to the second half and has the second connection terminal at the other end of the first half.
  • 10. An antenna element as set forth in claim 9, wherein the radiation electrode is in a meandering form.
  • 11. An antenna element as set forth in claim 9, wherein the electric conductor width of each of the first and the second halves of the radiation electrode is narrowing from the center toward each of the open ends and the distance between the electric conductors of each of the first and the second halves is increasing from the center toward each of the open ends.
  • 12. An antenna element as set forth in claim 9, wherein the ground conductor has an impedance adjustment conductor on a surface of the dielectric substrate.
  • 13. An antenna element as set forth in claim 1, further comprising another dielectric substrate formed on the surface of the dielectric substrate on which the radiation electrode is formed.
  • 14. The antenna element as set forth in claim 1, wherein said portion of the first half has a length less than that of said portion of the second half.
  • 15. A telecommunication device comprising:a printed wiring board having a ground area of the board with a ground conductor, a ground-free area of the board without a ground conductor and a high frequency signal lead, and an antenna element, the antenna element comprising: a dielectric substrate, a radiation electrode of an electric conductor formed mainly on a surface of the dielectric substrate, the radiation electrode having a first and a second halves, the first and the second halves being substantially symmetric in form to one another with respect to a center of the radiation electrode, and radiating with the same direction of main polarization of radiation emitted from the radiation electrode, the first half having a first open end at its outer end, another end at a distance of a quarter radiation wavelength along the radiation electrode from the first open end, and a first connection terminal between the first open end and the other end of the first half, the second half having a second open end at its outer end and a second connection terminal at a distance of a quarter radiation wavelength along the radiation electrode from the second open end, the second connection terminal being at a distance from the first connection terminal on the radiation electrode, a power supply conductor formed on the dielectric substrate and connected to the first connection terminal at one end of the power supply conductor and having at the other end of the power supply conductor a terminal connected to the high frequency signal lead on the printed wiring board, and a ground conductor formed on the dielectric substrate and connected to the second connection terminal at one end of the ground conductor and having at the other end of the ground conductor a terminal connected to a ground on the printed wiring board, wherein a total conductor length of a portion of the first half, between the first open end and the first connection terminal, and the power supply conductor is so different from a total conductor length of a portion of the second half between the second open end and the second connection terminal and the ground conductor that the total impedance of the power supply conductor and the portion of the first half between the first open end of the first half and the terminal, at the other end of the power supply conductor, connected to the high frequency signal lead and the impedance of the high frequency signal source substantially match, in total impedance, the ground conductor and the portion of the second half between the second open end of the second half and the terminal, at the other end of the ground conductor, connected to the ground on the printed wiring board, wherein the antenna element is mounted on the ground-free area of the board so that a dielectric substrate surface other than the dielectric substrate surface on which the radiation electrode is formed faces the ground-free area.
  • 16. A telecommunication device as set forth in claim 15, wherein the printed wiring board has the ground-free area of the board between the ground area of the board and a side edge of the board andthe antenna element is mounted on the ground-free area of the board so that the dielectric substrate surface having the radiation electrode is adjacent to the side edge of the board and a dielectric substrate surface other than the dielectric substrate surface having the radiation electrode faces the ground-free area of the board.
  • 17. A telecommunication device as set forth in claim 16, wherein the antenna element further comprises ground electrodes, formed adjacent to the first and the second open ends on the dielectric substrate, connected to the ground conductor on the printed wiring board, each of the ground electrodes connecting capacitively to the first and the second halves at the first and the second open ends, respectively.
  • 18. A telecommunication device as set forth in claim 17, wherein the radiation electrode is in a meandering form.
  • 19. A telecommunication device as set forth in claim 15, wherein the electric conductor forming the radiation electrode discontinues between the other end of the first half and the second connection terminal and is divided into the first and the second halves, and the first connection terminal is positioned at the other end of the first half.
  • 20. A telecommunication device as set forth in claim 19, wherein the electric conductor width of each of the first and the second halves of the radiation electrode is narrowing from the center toward each of the open ends and the distance between the electric conductors of each of the first and the second halves is increasing from the center toward each of the open ends.
  • 21. A telecommunication device as set forth in claim 19, wherein the ground conductor has an impedance adjustment conductor on a surface of the dielectric substrate.
  • 22. A telecommunication device as set forth in claim 15, wherein the electric conductor forming the radiation electrode continues at the other end of the first half from the first half to the second half and has the second connection terminal at the other end of the first half.
  • 23. A telecommunication device as set forth in claim 22, wherein the electric conductor width of each of the first and the second halves of the radiation electrode is narrowing from the center toward each of the open ends and the distance between the electric conductors of each of the first and the second halves is increasing from the center toward each of the open ends.
  • 24. A telecommunication device as set forth in claim 22, wherein the ground conductor has an impedance adjustment conductor on a surface of the dielectric substrate.
  • 25. The antenna element as set forth in claim 15, wherein said portion of the first half has a length less than that of said portion of the second half.
Priority Claims (2)
Number Date Country Kind
2001-063168 Mar 2001 JP
2001-295743 Sep 2001 JP
US Referenced Citations (5)
Number Name Date Kind
5517676 Sekine et al. May 1996 A
5903822 Sekine et al. May 1999 A
6329962 Ying Dec 2001 B2
6417816 Sadler et al. Jul 2002 B2
6452548 Nagumo et al. Sep 2002 B2