The present invention relates to the base station of a wireless remote-control system.
A wireless remote-control system includes a base station and a portable remote controller. The base station is at a target device. The remote controller is carried by a user. The base station and the remote controller wirelessly communicate with one another for remote control of the target device.
An antenna having a printed circuit board (PCB) and a metallic stamped antenna structure is provided. The antenna structure is directly mounted on the PCB. The antenna structure includes a lineal antenna body and a plurality of legs. The antenna body and the legs are unitary with one another. The legs extend from the antenna body and are mechanically mounted to the PCB to support the antenna body over the PCB with the antenna body lying above the PCB within a plane.
The PCB includes a top side and a bottom side and a ground plane between the top and bottom sides. The legs include support legs, a ground leg, and a feed leg. The antenna body is supported by the legs over the top side of the PCB. The ground leg is electrically connected to the ground plane. The feed leg is electrically connected to an electrical component to thereby electrically connect the antenna to the electrical component. The electrical component is mounted either to the bottom side of the PCB or the top side of the PCB.
The electrical component electrically connected to the antenna may be a receiver, a transmitter, and/or a transceiver. The receiver, transmitter, and/or transceiver may be a part of a base station of a wireless remote-control system.
The support legs, the ground leg, and the feed leg are formed within a boundary of the antenna body.
The plane in which the antenna body lies within may be parallel to the PCB. The support legs, the ground leg, and the feed leg may have a same length such that the antenna body is spaced from the ground plane by a predetermined distance.
The legs are soldered to the PCB to be mechanically mounted to the PCB. The legs may be mechanically mounted to the PCB by using soldering, press fit pins, or mechanical contacts.
The antenna structure is made from a single metal blank having a planar profile. The legs are bent out from planar profile of the single metal blank within a boundary of the antenna body with the antenna body remaining in the planar profile of the single metal blank.
The antenna body may have a rectangular, square, oval, or circular configuration.
The antenna may be for ultra-high frequency (UHF) communications having an operating range between 300 MHz and 3 GHz including a preferred operating range between 300 MHz and 1 GHz.
A base station of a wireless remote-control system includes an electrical component, an antenna, and a controller. The electrical component is electrically connected to the antenna. The electrical component is a receiver for receiving communications via the antenna, a transmitter for transmitting communications via the antenna, and/or a transceiver for receiving and transmitting communications via the antenna. The controller is for controlling a function of a target device in accordance with the communications. The antenna includes a PCB and a metallic stamped antenna structure directly mounted on the PCB. The antenna structure includes a lineal antenna body and a plurality of legs. The antenna body and the legs are unitary with one another. The legs extend from the antenna body and are mechanically mounted to the PCB to support the antenna body over the PCB with the antenna body lying above the PCB within a plane.
Detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the present invention that may be embodied in various and alternative forms. The figures are not necessarily to scale; some features may be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.
Referring now to
In the description herein, as illustrated in
Remote-control system 10 may be configured to perform remote keyless entry (RKE) functions. RKE capability enables fob 14 to remotely control vehicle 16 in response to user actuation of switches, buttons, or the like of the fob. An example of a RKE function is base station 12 unlocking vehicle doors 18 in response to receiving an unlock door command from fob 14. Fob 14 transmits the unlock door command to base station 12 in response to corresponding user actuation of the fob. For instance, fob 14 includes an unlock door switch (not shown) disposed on a front face of the fob for the user to actuate. Another example of a RKE function is base station 12 unlatching a trunk latch 20 in response to receiving an unlatch trunk command from fob 14. Fob 14 transmits the unlatch trunk command to base station 12 in response to corresponding user actuation of an unlatch trunk switch (not shown) disposed on the front face of the fob.
Base station 12 can receive the RKE commands from fob 14 when vehicle 16 is within a broadcasting range of the fob. Base station 12 can transmit RKE communications (e.g., confirmation messages) to fob 14 when the fob is within the broadcasting range of vehicle 16. Fob 14 transmits the RKE commands and base station 12 transmits the RKE communications using radio-frequency (RF) communications. The RF communications involve ultra-high frequency (UHF) communications. The UHF operating frequency range is between 300 MHz to 3 GHz and includes a preferred 300 MHz to 1 GHz operating range.
Remote-control system 10 may be configured to perform passive entry passive start (PEPS) functions (or just passive entry (PE) functions or just passive start (PS) functions). PEPS capability enables remote-control system 10 to remotely control vehicle 16 automatically (or “passively”) without user actuation of fob 14. An example of a passive entry function is base station 12 automatically unlocking vehicle doors 18 when the base station detects fob 14 (assumed to be authorized) to be close to vehicle 16. An example of a passive start function is base station 12 automatically starting vehicle 16 upon a user in possession of fob 14 pressing a start button on a dashboard of the vehicle (not shown).
Base station 12 can receive PEPS authorization communications from fob 14 (e.g., answers from the fob in response to challenge inquiries from the base station) when vehicle 16 is within a broadcasting range of the fob. Base station 12 processes the PEPS authorization communications from fob 14 to confirm that the fob is authorized to control vehicle 16. Base station 12 can transmit PEPS authorization communications to fob 14 (e.g., the challenge inquiries from the base station to the fob) when the fob is within the broadcasting range of vehicle 16. Fob 14 and base station 12 transmit the PEPS authorization communications using the UHF communications.
Referring now to
In other embodiments, only one of receiver 22 and transmitter 24 is electrically connected to antenna 28. In other embodiments, there are multiple antennas 28 such that receiver 22 is electrically connected to a respective one of the antennas and transmitter 24 is electrically connected to another respective one of the antennas.
In operation, receiver 22 receives, via antenna 28, RKE commands and/or PEPS authorization communications from fob 14. Controller 26 processes the received communications from fob 14 to confirm that the fob is authorized to control vehicle 16 and controls the actuation of a vehicle function 30 accordingly. Controller 26 is further operable to control transmitter 24 to transmit RKE response communications and/or PEPS polling/challenge communications to fob 14. Transmitter 24 transmits such communications using antenna 28 or other antennas (not shown) which may be located at various locations of vehicle 16.
Fob 14 includes a transceiver 32 and a controller 34. Transceiver 32 includes an antenna 36. Controller 34 is operable to control transceiver 32 to transmit RKE commands in response to user actuation of fob 14 and/or is operable to control transceiver 32 to transmit PEPS authorization communications in response to PEPS polling/challenge communications from base station 12.
Referring now to
Antenna structure 40 is made from a single metal blank and has a metallic stamped design. Antenna structure 40 includes a lineal antenna body 44, a plurality of support legs 46, a ground leg 48, and a feed leg 50. Antenna body 44 and legs 46, 48, and 50 are unitary with one another.
PCB 42 includes a first (e.g., top) side 52 and an opposite second (e.g., bottom) side 54. PCB 42 further includes within its inner body a ground plane 56 between top and bottoms PCB sides 52 and 54. Ground plane 56 is electrically connected to RF ground (not shown). Ground plane 56 is constructed of copper or other similar material having enhanced electrically conductive properties.
Antenna body 44 lies above top side 52 of PCB 42 within a plane. The plane may be parallel to PCB 42 as shown in
As shown in
Supporting antenna body 44 over PCB 42 is a purpose of support legs 46. Ground leg 48 and feed leg 50 have additional functions other than supporting antenna body 44 over PCB 42. Particularly, ground leg 48 is electrically connected to ground plane 56 of PCB 42. Feed leg 50 is electrically connected to a transmission line (i.e., RF input) from receiver 22 to thereby electrically connect antenna 28 to the receiver. Receiver 22 is mounted on bottom side 54 of PCB 42 (not shown). Feed leg 50 provides electrical signals indicative of the communications received by antenna 28 to receiver 22. Other electronic components which may or may not be part of base station 12 may also be mounted on bottom side 54 of PCB 42.
By locating receiver 22 (i.e., an electronic component) on bottom side 54 of PCB 42, the receiver is separated from antenna body 44 by ground plane 56 of the PCB. This provides good RF isolation between receiver 22 and antenna body 44.
Feed leg 50 may also be electrically connected to a transmission line (i.e., RF output) from transmitter 24 to thereby electrically connect antenna 28 to the transmitter. Transmitter 24 is mounted on bottom side 54 of PCB 42 (not shown). Feed leg 50 provides electrical signals indicative of the communications received from transmitter 24 to antenna 28.
Ground leg 48 and feed leg 50 are located at respective predetermined locations of antenna body 44. Ground leg 48 and feed leg 50 are spaced apart by a predetermined distance to enhance the communication transmission and reception capabilities of antenna 28. In this way, antenna 28 is an inverted antenna.
Referring now to
Referring now to
Although antenna body 44 is illustrated in
Antenna 28 is intended to provide long-range signal transmission and reception capabilities (e.g., 500 meters). In this way, antenna 28 is suitable for remote communications systems such as remote start applications requiring relatively long activation range. Antenna 28 advantageously achieves such performance while being associated with a reduced manufacturing cost. The reduced manufacturing cost results from the reduction in metal scrap of antenna 28 and the antenna being attached to PCB 42 using reflow soldering rather than compliant pins or heat staking.
While exemplary embodiments are described above, it is not intended that these embodiments describe all possible forms of the present invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the present invention. Additionally, the features of various implementing embodiments may be combined to form further embodiments of the present invention.
Number | Name | Date | Kind |
---|---|---|---|
5550554 | Erkocevic | Aug 1996 | A |
5668560 | Evans | Sep 1997 | A |
6239753 | Kado | May 2001 | B1 |
6339402 | McKivergan | Jan 2002 | B1 |
6414642 | Honda et al. | Jul 2002 | B2 |
6646606 | Mikkola et al. | Nov 2003 | B2 |
6774849 | Umehara | Aug 2004 | B2 |
6850200 | Tracy | Feb 2005 | B2 |
6958732 | Yuanzhu | Oct 2005 | B2 |
6958737 | Lee | Oct 2005 | B2 |
7046199 | Montgomery et al. | May 2006 | B2 |
7050011 | Ghabra et al. | May 2006 | B2 |
7075484 | Sung | Jul 2006 | B2 |
7151492 | Iguchi | Dec 2006 | B2 |
7180448 | Suganthan et al. | Feb 2007 | B2 |
7183985 | Tseng | Feb 2007 | B2 |
7237318 | Annamaa et al. | Jul 2007 | B2 |
7733274 | Azulay et al. | Jun 2010 | B2 |
8004465 | Schano | Aug 2011 | B2 |
8482466 | Thiam et al. | Jul 2013 | B2 |
8711039 | Horisawa | Apr 2014 | B2 |
8803760 | Chakam et al. | Aug 2014 | B2 |
9136594 | Shi et al. | Sep 2015 | B2 |
9287626 | Zou | Mar 2016 | B2 |
9293816 | Samardzija | Mar 2016 | B2 |
9472846 | Ng | Oct 2016 | B2 |
10230152 | Chiu | Mar 2019 | B2 |
20020126051 | Jha | Sep 2002 | A1 |
20030107881 | Muramatsu | Jun 2003 | A1 |
20060001573 | Kim | Jan 2006 | A1 |
20140253405 | Leger | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
102007055327 | Jun 2009 | DE |
2146393 | Jan 2010 | EP |
3028337 | May 2016 | FR |